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Abstract
We extend structured prediction to deliberative
outcomes. Specifically, we learn parameterized
games that can map any inputs to equilibria as the
outcomes. Standard structured prediction mod-
els rely heavily on global scoring functions and
are therefore unable to model individual player
preferences or how they respond to others asym-
metrically. Our games take as input, e.g., UN res-
olution to be voted on, and map such contexts to
initial strategies, player utilities, and interactions.
Players are then thought to repeatedly update their
strategies in response to weighted aggregates of
other players’ choices towards maximizing their
individual utilities. The output from the game is
a sample from the resulting (near) equilibrium
mixed strategy profile. We characterize condi-
tions under which players’ strategies converge to
an equilibrium in such games and when the game
parameters can be provably recovered from ob-
servations. Empirically, we demonstrate on two
real voting datasets that our games can recover
interpretable strategic interactions, and predict
strategies for players in new settings.

1. Introduction
Structured prediction methods (Lafferty et al., 2001; Taskar
et al., 2003; Tsochantaridis et al., 2005; Nowozin and Lam-
pert, 2011) typically operate on parametric scoring functions
whose maximizing assignment is used as the predicted con-
figuration. Since the parameters can be learned directly to
maximize prediction accuracy, often via surrogate losses,
the methods have been successful across areas (Chen et al.,
2015; Globerson et al., 2015; London et al., 2016; Cortes
et al., 2016; Osokin et al., 2017; Pan and Srikumar, 2018).

Not all structured observations can be naturally modeled
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as extrema of scoring functions. For instance, votes cast in
response to a bill in the US Congress likely involve rounds
of negotiations prior to casting the final votes. As a result,
the votes reflect individual utilities of representatives as well
as their interactions with subsets of others. Absent some
unifying scoring function, contentious votes are more nat-
urally modeled in game theoretic terms as an equilibrium
rather than a maximizing assignment (Waugh et al., 2011;
Garg and Jaakkola, 2017). For example, one could consider
the voting outcome directly as a pure strategy Nash equi-
librium (PSNE) of some fixed underlying graphical game
(Irfan and Ortiz, 2014; Honorio and Ortiz, 2015; Garg and
Jaakkola, 2016; 2017). The observed votes would be in this
case directly actions in the game, and complete observations
help estimation. However, most games do not permit pure
strategy equilibria (Tardos and Vazirani, 2007). The voting
outcome is therefore best viewed as a sample from a prod-
uct distribution that represents a mixed strategy equilibrium
(guaranteed to exist for any game).

Our goal is to use games in a predictive sense. We must
therefore explicitly model the game dynamics, i.e., how an
equilibrium outcome is reached from the initial conditions.
Previous methods for estimating game parameters from data
often side-step the issue of game dynamics. It is therefore
not possible in such approaches to directly output an equi-
librium as the predicted outcome. For games to be useful
in structured prediction, the game parameters as well as the
initial strategies for the players, prior to deliberation, must
be also conditioned on a common context such as a bill to
be voted on.

Strategic prediction. In this paper, we turn games into
structured prediction methods and call such approaches
strategic prediction methods. At a high level, our model
takes the available context such as the written bill – the input
– and maps it to a mixed strategy equilibrium – the output.
The input-output mapping is obtained via a deliberative pro-
cess akin to multiple rounds of negotiations between the
countries. The observed actions by players, e.g., how coun-
tries voted on the bill, are then viewed as samples from this
mixed strategy equilibrium. We model the impact of context
by parametrically mapping it to each player as player types.
These types are simply learned vectors quantifying what
each player derives from the context so as to guide their
behavior in the game. The types also specify the utility func-
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tions and initial strategies for players. A key part of strategic
prediction pertains to how players interact with each other.
In this paper, we limit our focus to so called aggregative
games where the players respond to weighted aggregates
of other players’ actions or strategies. The interactions are
weighted and asymmetric, and the weights can be positive
or negative representing cooperative or competing relation-
ships between the players. We follow a best-response game
dynamics to evolve players’ initial strategies towards the
predicted output, a (near) mixed strategy equilibrium. We
call our parametrized games strategic aggregative prediction
(SAP) models.

Our games can be viewed as conditional versions of directed
graphical games (Kearns et al., 2001; Kearns and Mansour,
2002), restricted to a rich subclass of aggregative games
that subsumes Cournot oligopoly, mean field, public goods,
and population games (Garg and Jaakkola, 2017). These
games shield each player from specific information about
any neighbor since players respond to aggregate (weighted
sum) of their neighbors’ strategies.

Modeling game dynamics. A key novelty of our ap-
proach is to explicitly incorporate game dynamics. In our
implementation, we follow a k-step best response dynam-
ics, seeded with predicted initial strategies. As we operate
on continuous strategies and our best response updates are
differentiable, we can back-propagate through the k-step
strategy updates, and thus learn parameters efficiently, un-
like, e.g. (Garg and Jaakkola, 2016; 2017). Since game
dynamics plays a critical role in predictive use of games, we
also introduce and provide a deeper analysis of more gen-
eral dynamics and types of aggregation strategies. Our work
yields exact conditions under which strategies converge to
different types of equilibrium.

Identifiability. We provide identifiability guarantees for
the game parameters. For the analysis, we adopt a simpler
one-shot setting, where the observed outcome is sampled
from player strategies after just one round of communication
instead of following k-steps. We characterize conditions
under which one-shot interaction weights are identifiable in
the sense that we can recover the neighbors of any player
as well as the correct sign (positive or negative) of their
interaction. Prior guarantees exist for the recovery of equi-
libria, not game parameters, showing conditions for the
recovery of a set of pure strategy equilibria under various
noise assumptions (Ghoshal and Honorio, 2017).

The rest of this paper is structured as follows. The basic
setup is introduced in section 2. We describe parameter
estimation in section 3, and extension to new players in
section 4. Identifiability is discussed in section 5, and con-
vergence of dynamics in section 6. We present detailed
experiments on two real datasets to illustrate the benefits of

our approach in section 7. We defer the details of our proofs
to the Supplementary.

2. Basic strategic prediction model
We first introduce our basic strategic prediction model. To
this end, we need to define several components of the model.
These include (a) the graphical layout of the game, and how
players influence each other; (b) the player types and how
these are derived from the context; (c) individual utilities
for the players; (d) initial strategies for the players before
witnessing the play of others; (e) and the game dynamics,
i.e., how players respond to others. Later, in the transferable
setting, we will no longer individuate players through their
identities but instead introduce feature vectors to predict the
strategies of new players in new contexts.

Let G = (V,E) be a connected digraph such that vertex i
identifies player i ∈ [n] , {1, 2, . . . , n}, n = |V |. LetA be
the finite discrete set of actions, the same for all the players.
Each player i plays a randomized (mixed) strategy, i.e., a
distribution over actions σi ∈ 4(A), from the simplex

4(A) ,

{
σi

∣∣∣∣ ∑
ai∈A

σi(ai) = 1, σi(ai) ≥ 0 ∀ai ∈ A

}
.

We will denote a joint strategy profile of all the players by
(σi, σ−i) to emphasize the distinction between player i and
the other players.

We model the influence of players on others through a
weighted aggregation of the strategies. The weightswij ∈ R
denote the strength of influence of player j on player i. We
will call players j ∈ [n] \ {i} that have wij 6= 0 the neigh-
bors of players i. We define a weight matrix W ∈ Rn×n
such that W (i, i) = 0 and W (i, j) = wij . Player i commu-
nicates with other players only through aggregator Ai that
maps the strategies of other players, i.e., σ−i to the weighted
sum

∑
j 6=i wijσj , the effective influence of others.

The context influences the game through the types. The
type of a player is her valuation that quantifies what she
derives from the context. The mapping from context to
types could be defined in multiple ways. For simplicity,
we parameterize the private type zi of each player i via a
matrix θi that maps any context x ∈ X ⊆ Rd to vector
zi(x) = θix. Henceforth, we will keep the dependence on
context implicit for simplicity, and write zi(x) as zi when
the context is clear.

We model the utility or payoff of player i ∈ [n], of type zi,
under strategy profile (σi, σ−i) as:

Ui(σi, σ−i, zi) = σ>i (Ai(σ−i)− zi) + τH(σi) , (1)

where H(σi) is the entropy associated with σi and τ ≥ 0.
The entropy encourages completely mixed strategy choices,
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in the interior of simplex ∆(A). The type of a player is by
design hidden from the other players. Thus by subtracting
the player type, the payoff function mitigates the (indirect)
role of player’s valuation in guiding the aggregate response
of the others. Our games are flexible to accommodate a
wide variety of other payoff functions.

Our choice of payoff function (1) maintains a linear de-
pendence on the strategies of others for two reasons. First,
our games are related to linear influence games that have
been studied previously, e.g., as models of how to vaccinate
against a disease, install antivirus software, or get home
insurance (Irfan and Ortiz, 2014; Honorio and Ortiz, 2015;
Ghoshal and Honorio, 2017). We extend these games by
allowing multi-way actions and types. Second, the linear de-
pendence also helps establish provable recovery guarantees
for the game parameters.

The utilities naturally define the best response of player i
when it observes the aggregate input Ai(σ−i):

βτi (Ai(σ−i), zi) ∈ arg max
σi∈4(Ai)

Ui(σi, σ−i, zi) . (2)

We say that (σ∗i , σ
∗
−i, zi, z−i) form a mixed strategy Nash

equilibrium MSNE (MSNE) or simply NE iff

Ui(σ
∗
i , σ
∗
−i, zi) ≥ Ui(σi, σ

∗
−i, zi) ∀i ∈ [n], σi ∈ 4(A) .

(3)
It is easy to show that our game has at least one MSNE.
For τ > 0, our best response function is continuous, and
maps each strategy profile from product simplex (compact
space) to a unique point in itself. The Nash equilibrium
is therefore guaranteed to exist by Brouwer’s fixed point
theorem. For τ = 0, the mapping may be set-valued, but
the Nash equilibrium is still guaranteed to exist by Nash’s
theorem (Nash, 1951) via Kakutani’s fixed point argument.

We say that MSNE is strict (SNE) when (3) is strict for all
i ∈ [n], σi ∈ ∆(A)\{σ∗i }, completely mixed (CMNE) when
σ∗i (ai) > 0 for all i ∈ [n], ai ∈ A, and pure (PSNE) when
for all i ∈ [n] there exists an ai ∈ A such that σ∗i (ai) = 1.

It remains to specify how an equilibrium is reached, i.e.,
the game dynamics. To begin with, players observe context
x, and evaluate types zi. The types, in turn, give rise to
initial strategies σ0

i = ψ(zi), where ψ : Ti → ∆(A) (e.g.
softmax). The best response dynamics from this point on
depends on the details of the aggregator and whether the
dynamics is defined over strategies or actions directly. We
provide details on general game dynamics for two different
aggregators along with associated convergence guarantees
in section 6. In our empirical analysis, we adopt a k-step
dynamics as described in the following section. Once a
(near) equilibrium is reached, a sample action profile y ∈
Y ⊆ An is drawn from player strategies.

We emphasize that our setting dispenses with the restric-
tive assumption made by Bayesian games (Harsanyi, 1967;

Kalai, 2004; Jiang and Leyton-Brown, 2010) that the condi-
tional distribution P (z−i|zi) is known to player i.

3. Parameter estimation
We learn our games from data as structured prediction meth-
ods. Specifically, given a dataset D = {(x(m), y(m))} ∈
X × Y,m ∈ [M ]} linking contexts to sampled action pro-
files, our objective is to estimate the type parameters θi and
the influences of neighbors wi , (wij)j 6=i, i ∈ [n].

Each pair (x(m), y(m)) is treated as follows. A linear
transformation θ̂ = (θ̂1, . . . , θ̂n) maps the context x(m)

to the types ẑ(x(m)) , (ẑ
(m)
1 , . . . , ẑ

(m)
n ) that result in ini-

tial strategies σ̂0
i (x(m)) = ζ(ẑ

(m)
i ) of the players i ∈ [n],

where ζ is the softmax nonlinearity. The aggregators Âi
evaluate weighted sums, and are parametrized by weights
ŵi = (ŵij)j 6=i. A sequence of k update steps

σ̂t+1
i (x(m)) = ζ(ν(σ̂ti) + α(Âi(σ̂t−i)− ẑ

(m)
i )), (4)

t ∈ {0, 1, . . . , k− 1} is then followed: k and α are hyperpa-
rameters, and ν defines the type of update. Several choices
of ν are possible; e.g., ν(σ̂ti) = 0 pertains to best response
β

1/α
i (Âi(σ̂t−i), ẑ

(m)
i ) defined in (2), the identity mapping

ν(σ̂ti) = σ̂ti defines a gradient step, and ν(σ̂ti) = log σ̂ti
corresponds to a proximal update based on KL-divergence:
we define σ̂t+1

i as

arg max
σi

σ>i (Âi(σ̂
t
−i)− ẑ

(m)
i ) + (1/α)KL(σi||σ̂ti) .

Note that we can use functions other than softmax for our
strategy updates. For instance, we can take a gradient step
and then project on the probability simplex. One attractive
feature of softmax is that it is differentiable and its gradient
can be computed in a closed form, so it can be readily back-
propagated through in a neural model. On the other hand,
projection on the probability simplex typically requires spe-
cialized optimization algorithms such as (Duchi et al., 2008)
or (Condat, 2016).

Our estimation criterion for the game is to minimize ex-
pected cross-entropy loss E[`(σ̂k(x(m)), y(m)] between the
predicted mixed strategies and the observed profiles, where
the expectation is with respect to the empirical distribution
over pairs (x(m), y(m)), ` is the cross entropy loss, and
σ̂k(x(m)) , (σ̂ki (x(m)))i∈[n]. We use standard backprop-
agation to evaluate gradients through the k-step strategy
updates efficiently.

Note that since we do not assume that the observed config-
urations y(m) correspond to pure strategy Nash equilibria,
we naturally avoid having to enforce specific consistency
constraints. Instead, we can measure a degree of agreement
that is amenable to more complex parameterizations such as
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neural networks. Our estimation procedure also scales better
than methods that rely on PSNEs, e.g., (Garg and Jaakkola,
2016; 2017). The overall dependence of our approach is lin-
ear in number of observed game outcomes and the number
of update steps, and quadratic in number of players.

4. Transferable strategic prediction
Here we generalize SAP models to permit different players
from one game to another. Unlike in section 2, we can no
longer assume a fixed interaction structure across games. In-
stead, the neighbor influences are determined by context and
player feature vectors. Specifically, we construct a feature
vector bi ∈ B for each player i ∈ [n]. Such information is
often available, e.g., education and gender of judges; human
development indicators of countries, etc. This enables us to
predict the behavior of new players in new contexts.

Each game is played with a different subset of players I ⊆
[n], and is unrolled as follows. A context x ∈ X is mapped
to latent (more general) player types using a parametric
function fz : X × B → Z , taking each pair (x, bv), v ∈ I
as input, and mapping it to zx,v ∈ Z . These types define
initial strategies as before σ0

x,v = φ(Γzx,v), where Γ is
a transformation matrix that yields a vector in R|A|, and
φ (e.g., softmax) maps the result to a distribution in the
simplex ∆(A). Unlike before, the (asymmetric) influences
between players are now calculated parametrically from
the types: wx,v,v′ = fw(zx,v, zx,v′) using a parametric
mapping fw : Z ×Z → R. Each player v still responds to
other players v′ ∈ I \ {v} through its aggregator

Ax,v,I(σx,−v) ,
∑

v′∈I:v′ 6=v

wx,v,v′σx,v′ .

We can extend the definition of the payoffs slightly to incor-
porate the more general types:

Uv,I(σx,v, σx,−v, zx,v) = σ>v (Ax,v,I(σx,−v))− Γzx,v) .

where Γ is an additional parameter matrix to be learned.
The game dynamics dictates the course of play in the same
fashion as the basic strategic setting. We learn the model,
now parameterized by fz , fw, and Γ, by minimizing the
loss between predicted k-step strategies and observed action
profiles.

5. Identifiability of the games
We now characterize the conditions under which the strate-
gic interactions in our games become identifiable. We focus
on the one-shot setting (i.e., k = 1) with the gradient up-
date so that the observed outcome is sampled from player
strategies after one round of communication. We also use
binary actions to simplify the exposition. Specifically, we
estimate from data D the support Si or the set of neighbors

of i defined with respect to the unknown influences w∗ij 6= 0.
We also recover the correct sign of these influences.

Our recovery procedure is a novel adaptation of the primal-
dual witness method (Wainwright, 2009) for structure esti-
mation in games. The method has previously been applied
in several non-strategic settings such as Lasso (Wainwright,
2009) and Ising models (Ravikumar et al., 2010). In con-
trast to Lasso and Ising models, our setting poses some new
challenges. Unlike these models, the nodes of our games are
players that actively communicate with others, and refine
their strategies toward maximizing their individual utilities.
Moreover, context and dynamics play no part in Ising mod-
els. In our setting, each outcome is sampled from a separate
joint strategy profile following one step of dynamics initi-
ated under a different context.

(Ghoshal and Honorio, 2017) employed the witness method
to recover the entire set of PSNE from data consisting of
a subset of PSNE, and a small fraction of non-equilibrium
outcomes assumed to be sampled under their noise models in
the setting of linear influence games. However, the problem
of structure recovery is significantly harder: it is known
(Honorio and Ortiz, 2015; Ghoshal and Honorio, 2017)
that the problem becomes non-identifiable in the setting of
PSNE, since multiple game structures may pertain to the
same of PSNE. We leverage the dynamics to circumvent
these issues, and characterize the conditions when we can
provably recover the structure of our games.

Our analysis on recovering the influences makes the sim-
plifying assumption that the type parameters θ are known.
We denote by φ(m)

j the probability assigned by the initial
strategy σ0

j (x(m)) to action 1 for player j on example m.
Let `i(wi;D) be the average cross-entropy loss between
one-step strategies under candidate weights wi , (wij)j 6=i
and the observed actions for player i, and λ > 0 be a reg-
ularization parameter. We solve the following problem for
each player i ∈ [n]:

arg min
wi∈Rn−1

`i(wi;D) + λ||wi||1 , (5)

Let HM
i be the sample Hessian ∇2`i(wi;D) under wi, and

H∗Mi pertain to true weights w∗i . Let Λmin(·) and Λmax(·)
denote the minimum and the maximum eigenvalues. The
following assumptions serve as our analogues of the condi-
tions for support recovery in Lasso (Wainwright, 2009) and
Ising models (Ravikumar et al., 2010):

Λmin

(
H∗Mi,SS

)
≥ α2Cmin (6)

Λmax

(
1

M

M∑
m=1

Φ
(m)
−i Φ

(m)>

−i

)
≤ Cmax (7)

|||H∗Mi,ScS(H∗Mi,SS)−1|||∞ ≤ 1− γ , (8)

where Φ
(m)
−i , (φ

(m)
j )j 6=i, Cmin > 0, Cmax < ∞,
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γ ∈ (0, 1]; |||A|||∞ is the maximum over L1-norm of rows
inA; H∗Mi,SS is the submatrix obtained by restrictingH∗Mi to
rows and columns corresponding to neighbors, i.e., players
in Si, and H∗Mi,SSc is restricted to rows pertaining to Si and
columns to Sci (non-neighbors). Let the number of neigh-
bors for any player be at most d ≤ n − 1. We have the
following result.

Theorem 1. LetM >
802C2

max

C4
min

(
2− γ
γ

)4

d2 log(n), and

λM ≥
8α(2− γ)

γ

√
log(n)

M
. Suppose the sample satisfies

assumptions (6), (7), and (8).

Define Cα,γ =
γ2

32α2(2− γ)2
. Consider any player i ∈

[n]. The following results hold with probability at least
1− 2 exp(−Cα,γλ2

MM)→ 1 for i.

1. The corresponding `1-regularized optimization prob-
lem has a unique solution, i.e., a unique set of neigh-
bors for i.

2. The set of predicted neighbors of i is a subset of the
true neighbors. Additionally, the predicted set contains

all true neighbors j for which |w∗ij | ≥
10

α2Cmin

√
dλM .

In particular, the set of true neighbors of i is exactly
recovered if

min
j∈Si

|w∗ij | ≥
10

α2Cmin

√
dλM .

Note that taking a union bound over players, our results
imply that we recover the true signed neighborhoods for all
players in our game with high probability. Our analysis can
possibly be extended to include unknown type parameters
θ by computing the gradient and the Hessian of loss with
respect to θ, similarly to influences. However, additional
assumptions may be needed to establish recovery.

6. General game dynamics and convergence
We now give an overview of general game dynamics along
with associated convergence guarantees. The aggregator
acts as a privacy preserving component, hiding specific
neighbor actions or strategies, only offering aggregate statis-
tics. We design dynamics under two different kinds of
feedback from the aggregator. In our active aggregator
(AA) setting, the players get a prediction about the antici-
pated aggregate of their neighbors. In contrast, a passive
aggregator (PA) only provides the aggregate of empirical
frequencies used by the neighbors, and changes in the ag-
gregate are estimated by the player. Intuitively, AA reveals
more information about the neighbors’ strategy evolution.

Note that the payoff received by player i when she samples
a pure action ai ∈ A according to σi (denoted by ai ∼ σi),
and others sample actions a−i according to σ−i is

Ui(eai , ea−i
, zi) = e>ai

(
Ai(ea−i

)− zi
)

+ τH(σi),

where eai ∈ 4(A) is the strategy corresponding to pure
action ai, and ea−i , {eaj : j 6= i}.

We devise two new protocols that may be viewed as deriva-
tive action adaptations (Shamma and Arslan, 2005) of
smooth fictitious play (FP) and gradient play (GP) (Brown,
1951; Robinson, 1951; Fudenberg and Kreps, 1993; Shap-
ley, 1964) in an aggregative game setting. The protocols
differ by how players respond to the (predicted) aggregate:
one can play the best response or adapt the strategy via a
gradient update. Formally, in our protocols, player i samples
an action aki ∼ σki at time k > 0 based on

qki = qk−1
i + (eak−1

i
− qk−1

i )/k ∈ ∆(A)

σki = gi(Ai(h−i(qk−i)), zi) , (9)

where qki is the empirical frequency of actions played by i
till time k, and gi : R|A| × R|A| → ∆(A) and hi : R|A| →
R|A| are appropriately defined Lipschitz mappings possibly
involving small input noise. We let qk−1

−i , {qk−1
j |j 6= i},

and h−i(qk−1
−i ) , {hj(qk−1

j )|j 6= i}. We also define the
base case q0

i = σ0
i = φ(zi). Note that player i communi-

cates only with Ai. We define a passive aggregator (PA) by
letting hi be the identity mapping, i.e. hi(vi) = vi. Alter-
natively, when hi(vi) = vi + γ∇ṽi for some γ > 0 and a
difference approximation∇ṽi of a temporal derivative∇vi,
we obtain an active aggregator (AA). Intuitively, AA views
each qj as discretization of a continuous signal qj(t) so that
when∇q̃j(t) ≈ ∇qj(t), for neighbors j of i, we have

hj(qj(t)) ≈ qj(t) + γ∇qj(t) ≈ qj(t+ γ)

=⇒ Ai(h−i(q−i(t))) ≈ Ai(q−i(t+ γ)),

and therefore Ai offers a predicted aggregate to player i.
We consider two forms of best response dynamics encoded
in gi, SAP-FP and SAP-GP, based on derivative FP and
derivative GP, respectively. In SAP-FP we set τ > 0 in the
utility functions. This lets us have a unique best response:

(SAP-FP)

AA yields uk : gi(u
k, zi) = βτi (uk, zi),

PA yields uk : gi(u
k, zi) = βτi (uk + γ∇ûk, zi),

where the AA case differs from PA in terms of where the
difference approximation happens. In AA, it happens prior
to aggregation thus gi is defined directly in terms of the out-
put of AA or ūk which absorbs any temporal approximation
error. In PA case, the player constructs a temporal prediction
of the aggregate, and the approximation is (∇uk −∇ûk).



Predicting deliberative outcomes

(SAP-FP/AA) q̇i = βτi (Ai(q−i + γṙ−i), zi)− qi, ṙi = λ(qi − ri) (10)
(SAP-FP/ PA) q̇i = βτi (Ai(q−i) + γṙi, zi)− qi, ṙi = λ(Ai(q−i)− ri) (11)
(SAP-GP/AA) q̇i = Π∆[qi +Ai(q−i + γṙ−i)− zi]− qi, ṙi = λ(qi − ri) (12)
(SAP-GP/PA) q̇i = Π∆[qi +Ai(q−i) + γṙi − zi]− qi, ṙi = λ(Ai(q−i)− ri) (13)

In SAP-GP, we set τ = 0, and player i takes a gradient
step to maximize the anticipated payoff followed by a Eu-
clidean projection to get a unique mapping gi (since any
such projection on a closed convex set is unique):

(SAP-GP)

AA yields uk : gi(u
k, zi) = Π∆(qi + uk − zi),

PA yields uk : gi(u
k, zi) = Π∆(qki + uk + γ∇ûk − zi),

where Π∆(q) , argminq̃∈4(A) ||q̃ − q||2 .

Thus under both protocols, players take actions stochasti-
cally according to σki and the best response mapping gi is
unique for each k. For analysis, we associate an ODE sys-
tem to characterize the evolution of player strategies, and
specify conditions when the fixed points of this ODE are
locally asymptotic stable (l.a.s.). An equilibrium point s is
said to be l.a.s. if every ODE trajectory that starts at a point
in a small neighborhood of s remains forever in that neigh-
borhood and eventually converges to s. As a consequence,
our discrete updates would converge to a Nash equilibrium
with positive probability (Shamma and Arslan, 2005). Our
updates in (9) lead to the implicit ODEs (39)-(42) for SAP-
FP and SAP-GP under AA and PA settings, where λ > 0,
ṙi is an estimate for q̇i, and ṙ−i , {ṙj |j 6= i, wij 6= 0}. We
will call a matrix stable if all its eigenvalues have strictly
negative real parts. Let I denote the identity matrix. We
now state results that characterize conditions under which
different dynamics lead to asymptotically stable equilibria.

We state and prove our convergence results as theorems in
the Supplementary (see Table 1 for a summary). Specifi-
cally, we prove the convergence of player strategies to SNE
via carefully crafted Lyapunov functions that are locally pos-
itive definite and have a locally negative semidefinite time
derivative. The other proofs track the evolution of game dy-
namics around an equilibrium: we analyze conditions under
which the Jacobian matrix of the linearization of ODE is
Hurwitz stable, i.e., all the eigenvalues have negative real
roots, and exploit the fact that the behavior of the ODE near
equilibrium is same as its linear approximation when all
eigenvalues have non-zero real parts.

Our results have several important implications. (Garg and
Jaakkola, 2016; 2017) enforced margin constraints on the
payoff functions in their discriminative PSNE setup, with-
out establishing SNE that guarantees the players would be
strictly worse off by a unilateral switch to another strategy.
In contrast, Theorems 5 and 7 specify exactly the conditions

Table 1: Convergence results (details in the Supplementary)

Setting Converges to Conditions

SAP-FP/AA NE Theorem 2
SAP-FP/PA NE Theorem 3
SAP-GP/AA CMNE Theorem 4
SAP-GP/AA SNE Theorem 5
SAP-GP/PA CMNE Theorem 6
SAP-GP/PA SNE Theorem 7

for SNE, which under additional assumptions, may be sam-
pled to get a PSNE (Azrieli and Shmaya, 2013) if desired.
It is known that classic FP fails to converge in some simple
games, e.g. (Shapley, 1964), that have a unique CMNE.
Theorems 4 and 6 specify conditions that circumvent such
negative results. Our stability conditions can be simplified
further when λ is sufficiently large, whence the behavior
may be understood solely in terms of γ.

7. Experiments
We now describe the results of our experiments on two real
datasets that provide insights into some important aspects of
our games. We first show that our SAP model qualitatively
recovers the known strategic behavior of the Justices from
US Supreme Court data. We also provide quantitative evi-
dence in terms of two measures: (a) the fraction of correct
edges recovered, and (b) coherence of groups in terms of
cut-size, to show that SAP game outperforms prior methods
on two different measures. We then show that the structure
estimated by SAP game on the UN General Assembly data
(Voeten et al., 2009) is meaningful, and helps unravel the
subtle behavior of member countries. Finally, we demon-
strate that SAP games incur a lower cross-entropy loss than
our baseline, so can be effectively transferred to predict
strategies in new settings with different sets of players.

Experimental setup

We found that SAP games performed well over a wide range
of hyperparameters. We implemented the models in sections
3 and 4 with L1 regularization for structure estimation as
described in section 5. Our models performed well for a
wide range of α, λ, and k. We report the results with k = 5,
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Figure 1: Supreme Court structure recovery with our SAP model: (a) and (b) show, respectively, justices with the most
positive and the most negative influence, quantified by ŵij , on each Justice i. The estimated connections are consistent with
the known jurisprudence of the Court. In particular, (a) shows coherence between the conservatives (red), that between
the liberals (blue), and the separation of these ideologies from the moderates (green). Likewise, (b) shows all the negative
connections are between the blocs. Determining influences by heuristics such as ordering by pairwise vote agreements does
not work; e.g, that would imply K had a strong positive influence on R, since R agreed with K more than with anyone else.
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(c) Tree Structured Potential Game

Figure 2: Quantitative comparison with prior methods: (a), (b), and (c) show the structures estimated by SAP, local AG,
and tree structured potential game on US Supreme Court data. We evaluate the different methods using size of the cut, i.e.,
minimum number of edges to be removed to decompose the structure into its three components (reds, blues, and greens). A
low value of cut quantifies high coherence within each component, and thus pertains to a good structure. The cut size for
SAP game (3) is much lower than other methods (6 each).

α = 0.1, and λ = 0.1 for all our experiments, except the
transferable setting where we set α = 0.01 and λ = 0. We
set ν to be the identity function in (4). We trained our models
in batches of size 200, with default settings of the RMSprop
optimizer in PyTorch. To account for effect of randomness
in neural training toward structure estimation, we averaged
the parameters of each model across 5 independent runs.
We characterize the influence of other players j on player
i in terms of the ordering of the corresponding estimated
average weight values from most positive to most negative.

We did not impose L1 penalty in the transferable setting
since the interactions are learned for new individuals, i.e.,
they are not specific to any fixed set of players, unlike the
basic setting.

7.1. US Supreme Court Data

We included all the cases from the Rehnquist Court, during
the period 1994-2005 that had votes documented for all the

9 Justices.1 Justices Rehnquist (R), Scalia (Sc), and Thomas
(T) represented the conservative side; Justices Stevens (St),
Souter (So), Ginsburg (G), and Breyer (B) formed the liberal
bloc; and Justices Kennedy (K) and O’Connor (O), often
called swing votes, followed a moderate ideology. Each
Justice is treated as a player in our game. Our contexts
comprise of 32 binary attributes about the specifics of the
appeal, e.g., the disposition of lower court. Our observation
outcome y(m) for each context x(m) pertains to the corre-
sponding votes of the Justices. The votes belong to one of
the three categories: yes, no, or complex.

Structure recovery from Supreme Court data

Fig. 1 describes in detail how our method yields a structure
that is qualitatively consistent with the known jurisprudence
of the Rehnquist Court. Specifically, the conservatives and
the liberals form two separate coherent, strongly-connected
blocs that are well-segregated from each other.

1data available at: http://scdb.wustl.edu/data.php
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(a) Positive influence (b) Negative influence

Figure 3: UNGA structure recovery with SAP games: Incoming arrows show (a) 2 countries with the most positive
influence (black edges), and (b) 2 countries with the most negative influence (magenta edges), quantified by ŵij , on each
country i. The estimated links are largely consistent with the expected alignments. In particular, (a) shows the two blocs (in
yellow and green) are well segregated from each other. More interesting alignments are revealed, e.g., (1) strong affinity
between NATO members on one side, and Syria, Iran, Venezuela etc. on the other, (2) link from Germany and Korea to
Russia hinting at the trade influence despite their differences, and (3) geographical influence of Russia and Ukraine on
Belarus. Additionally, (b) reveals that a significant fraction of negative connections emanate from or end at Israel and USA
on one side, and some yellow node on the other.

Comparison with previous works

In order to position our work with respect to prior work
on structure recovery, we also quantitatively compare SAP
games with the PSNE based Potential Game (Garg and
Jaakkola, 2016) and Local Aggregative Game (Garg and
Jaakkola, 2017) methods.

Fig. 2 provides a detailed quantitative comparison that
reveals how SAP compared favorably with these measures in
terms of size of the cut, i.e., minimum number of edges to be
removed in order to decompose the recovered structure into
the constituent blocs. Note that a low value of cut indicates
coherence within each component, and thus quantifies a
good structure.

7.2. United Nations General Assembly (UNGA) Data

Our second dataset consists of the roll call votes of the
member countries on the resolutions considered in the UN
General Assembly. Each resolution is a textual description
that provides a context while the votes of the countries
on the resolution pertain to the observed outcome. We
compiled data on all resolutions in UNGA during 1992-
2017 to understand the interactions of member nations since
the dissolution of Soviet Union.

We considered 25 countries that have dominated the United

States (USA) politics, and are generally known to be-
long to one of the two blocs: pro-USA, namely, Aus-
tralia (AUS), Canada (CAN), France (FRA), Germany
(GER), Israel (ISR), Italy (ITA), Japan (JPN), South Ko-
rea (KOR), Norway (NOR), Ukraine (UKR); and others,
namely, Afghanistan (AFG), Belarus (BLR), China (CHN),
Cuba (CUB), Iran (IRN), Iraq (IRQ), Mexico (MEX), Pak-
istan (PAK), Philippines (PHL), North Korea (PRK), Kaza-
khstan (KAZ), Russia (RUS), Syria (SYR), Venezuela
(VEN) and Vietnam (VNM). Each country is viewed as
a player in our game.

We used pretrained GLoVe embeddings to represent each
resolution as a 50-dimensional context vector x(m) obtained
by taking the mean embedding of the words in its resolution.
Each vote was interpreted to take one of the three values: 1
(yes), 2 (absent/abstain), or 3 (no), and we represented y(m)

as a 26-dimensional vector.

Structure and type recovery from UNGA data

Fig. 3 shows the structure estimated by our method, i.e.,
the weights ŵi learned for each country i. The weights
ŵij , j 6= i have a natural interpretation in terms of influence:
the more positive wij is, the more positive the influence
of j on i. A similar connotation holds for the negative
weights. To aid visualization, we disentangle the positive
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(a) Type similarity (b) Transfer performance

Figure 4: (Left: UNGA type recovery) Incoming arrows show 2 countries with the highest cosine similarity
θ̂>i θ̂j/(||θ̂i|| ||θ̂j ||) for each country i. Type vectors were reasonably well aligned for members in the same bloc. (Right:
transfer performance) SAP models were more effective in predicting strategies for new players as quantified by a lower
transfer loss than that incurred by the baseline strategy.

and the negative connections, and depict only the most
influential connections for either case. Fig. 3 describes how
our method estimated a meaningful structure, and unraveled
subtle influences beyond the prominent two-bloc structure.
The learned type parameters θ̂i were also found to be similar
for members in the same bloc (Fig. 4).

Prediction and transfer results

Our final set of experiments focused on transferring SAP
games. Besides UNGA data, we compiled a 73-dimensional
feature vector for each country from its HDI Indicators
(UN2, 2007) that span various spheres including health,
education, trade, and social-economic sustainability.

We kept aside three-fourths of the data to set up games over
small sets of players by randomly sampling 5 countries inde-
pendently for each context. The left-out players from these
contexts were then sampled independently to get another
set of 5 countries per context. We call these two sets A and
B respectively. We formed a third set C of 5 countries per
game from the untouched data (i.e. the one-fourth fraction).
Thus, A and B were defined on the same contexts, that were
disjoint from C. We averaged our results over 10 such inde-
pendent triplets (A, B, C) to mitigate sampling effects. We
trained a model for A using the procedure in section 4, and
computed the loss on B. Our baseline, train empirical, used
the empirical distribution of actions for each player i over
the games it participated in A as its predicted strategy for
the games in B and C.

The cross-entropy loss of SAP games (0.852) turned out

to be lower than the baseline (0.865) on C. Moreover, as
Fig. 4 shows, the loss of SAP games (0.696) was found
to be significantly lower than the baseline (0.720) on B
even though HDI does not fully reflect complex country
characteristics. Thus, our results clearly underscore the
benefits of using SAP games for strategic prediction.

Conclusion
We extended structured prediction to strategic settings, and
specified conditions under which our games are identifiable
from data, and when strategies converge to an equilibrium.
Empirical results demonstrate effectiveness of our models in
uncovering meaningful strategic interactions from data, pre-
dicting player strategies on new contexts, and transferring
knowledge to predict strategies for new players.

We sidestepped the issue of rate of convergence to equilib-
rium in our analysis. Since there might be multiple mixed
strategy equilibria in a game, convergence rate to an equilib-
rium depends on the proximity of the initial joint strategy
profile, and the spectrum of Jacobian matrix resulting from
linearization of the associated ODE.
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Supplementary material

We now provide a detailed analysis on two fundamental aspects of our games: convergence and identifiability. That is, we
characterize conditions under which players converge to an equilibrium, and when the game parameters can be provably
recovered from observed outcomes.

A. Identifiability of our games
We begin with the results on provably recovering the structure of our one-shot games from data. Specifically, we characterize
the conditions under which our games with one step of dynamics become identifiable, and provide an algorithm to recover
the structure of the game, i.e., the neighbors for each player i ∈ [n] with the signs (positive or negative) of their respective
influences.

Our recovery procedure adapts the primal-dual witness method (Wainwright, 2009) for structure estimation in games. The
method has previously been applied in several non-strategic settings such as Lasso (Wainwright, 2009) and Ising models
(Ravikumar et al., 2010). Recently, (Ghoshal and Honorio, 2017) employed this method to recover a set of pure strategy
Nash equilibria (PSNE) from data consisting of a subset of PSNE, and a small fraction of non-equilibrium outcomes assumed
to be sampled under their noise models in the setting of linear influence games. However, the problem of structure recovery
is significantly harder: it is known (Honorio and Ortiz, 2015; Ghoshal and Honorio, 2017) that the problem becomes
non-identifiable in the setting of PSNE, since multiple game structures may pertain to the same of PSNE. We leverage
dynamics to fill this gap by characterizing conditions under which our one-shot games become identifiable.

Our approach follows the general proof structure of primal-dual witness method in the context of model selection for Ising
models (Ravikumar et al., 2010). However, our setting is significantly different from the setting in (Ravikumar et al., 2010)
where context and dynamics play no part, and all the observed data is assumed to be sampled from a common (global)
distribution expressible in a closed form. In contrast, each observed outcome in our setting is sampled from a separate joint
strategy profile following one-step of dynamics initiated under a different context.

Specifically, in the one-shot setting, consider a dataset D = {(x(m), a(m)) ∈ X × Y,m ∈ [M ]} where a(m) is the action
profile (i.e. observed outcome) sampled from the joint player strategies after one round of communication. Assume that the
type parameters θ = (θ1, . . . , θn) are known. Then, since types for any context are determined by the parameters θ, we
have access to the player types z(m)(x(m)) = (z

(m)
1 , . . . , z

(m)
n ), which in turn determine determine the initial strategies for

all the examples m ∈ [M ]. We focus on binary actions here since they let us simplify the exposition while conveying the
essential ideas. Specifically, each player i ∈ [n] initially plays action 1 with probability

φ
(m)
i = ξ(z

(m)
i ) ,

1

1 + exp(−z(m)
i )

,

and the action 0 with probability 1− φ(m)
i . We define φ(m) = (φ

(m)
1 , . . . , φ

(m)
n ), and Φ

(m)
−i = (φ

(m)
j )j 6=i. We focus on

the gradient update setting where after one round of communication, player i responds to its neighbors with its updated
strategy (σ

∗(m)
i , 1− σ∗(m)

i ), where

σ
∗(m)
i , ξ

φ(m)
i + α(

∑
j 6=i

w∗ijφ
(m)
j − z(m)

i )

 ,

such that α > 0, and w∗ij ∈ R is the true influence (i.e. interaction weight) of player j ∈ [n] \ {i} on i. Recall that we call

player j a neighbor of i if |w∗ij | > 0. Finally, action a(m)
i is sampled from the updated strategy, and we obtain the joint

profile a(m) = {a(m)
i , i ∈ [n]} as the observed outcome. Our goal is to estimate, from D and α, the support Si, or the set of

neighbors j for i, i.e., the players that have influence w∗ij 6= 0. We can thus separate the influence of neighbors of i from the
non-neighbors by defining the set of non-zero weights w∗i,S = {w∗ij |j ∈ Si}. We denote the complement of a set A by Ac.
Thus, w∗ij = 0 for j ∈ Sci . We equivalently write w∗i,Sc = 0. We are interested in recovering not only the support of each
player i, but also the correct sign of influence (i.e. positive or negative) of each neighbor j on i.
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We consider the average cross-entropy loss between the strategy under wi and the observed outcome.

`i(wi;D) =
1

M

M∑
m=1

−
(
a

(m)
i log(σ

(m)
i ) + (1− a(m)

i ) log(1− σ(m)
i )

)
. (14)

We compute the gradient and the Hessian of the sample loss:

∇`i(wi;D) =
α

M

M∑
m=1

(σ
(m)
i − a(m)

i ) Φ
(m)
−i , (15)

HM
i , ∇2`i(wi;D) =

α2

M

M∑
m=1

σ
(m)
i (1− σ(m)

i ) Φ
(m)
−i Φ

(m)>

−i . (16)

We will often use the variance function ηi(wi;m) , α2σ
(m)
i (1− σ(m)

i ) as a shorthand, and write

HM
i =

1

M

M∑
m=1

ηi(wi;m) Φ
(m)
−i Φ

(m)>

−i . (17)

We denote by H∗Mi,SS the submatrix obtained by restricting the Hessian H∗Mi , pertaining to true weights, to rows and columns
corresponding to neighbors, i.e., players in Si. Likewise, H∗Mi,SSc denotes the submatrix restricted to rows pertaining to Si
(neighbors) and columns to Sci (non-neighbors).

We will provide detailed analysis under sample Fisher matrix assumptions. We will omit the analysis for the population
setting that can be derived by imposing analogous assumptions directly on the population matrices, and making concentration
arguments that show these assumptions hold in the sampled setting with high probability. Recall from the main text that we
make the following assumptions that are reminiscent of those for support recovery under Lasso (Wainwright, 2009), and
model selection in Ising models (Ravikumar et al., 2010). We first recall our assumptions from the main text.

Assumptions.
Λmin

(
H∗Mi,SS

)
≥ α2Cmin . (18)

Λmax

(
1

M

M∑
m=1

Φ
(m)
−i Φ

(m)>

−i

)
≤ Cmax . (19)

|||H∗Mi,ScS(H∗Mi,SS)−1|||∞ ≤ 1− γ , (20)

such that Cmin > 0, Cmax < ∞, and γ ∈ (0, 1]. In our notation, |||A|||∞ denotes the maximum `1 norm across rows
of matrix A, and |||A|||2 denotes the spectral norm (i.e. maximum singular value) of A. Λmin(A) and Λmax(A) refer
respectively to the minimum and the maximum eigenvalue of a square matrix A.

Analysis. We propose to solve the following regularized problem for each player i ∈ [n] separately.

arg min
wi∈Rn−1

`i(wi;D) + λM,n,d||wi||1 , (21)

where λM,n,d > 0 is a regularization parameter that depends on the sample size M , the number of players n, and the
maximum degree (i.e. number of neighbors) d of any player. For brevity, we will omit the dependence of this parameter on
n and d, and simply write λM . This problem is convex but not differentiable everywhere because of the `1 penalty. Note
that since the problem is not strictly convex, it might have multiple minimizing solutions. For any such optimal solution ŵi,
we must have by KKT conditions,

∇`i(ŵi;D) + λM κ̂i = 0 , (22)

where the subgradient κ̂i ∈ Rn−1 is such that

κ̂ij = sign(ŵij) ∈ {±1} if ŵij 6= 0, and |κ̂ij | ≤ 1 otherwise. (23)
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We would like to ensure the following conditions in order to recover the signed neighborhood for i.

sign(κ̂ij) = sign(w∗ij), ∀j ∈ Si (24)
ŵij = 0, ∀j ∈ Sci . (25)

Our analysis is built on the primal-dual witness (PDW) method (Wainwright, 2009). This method has the following steps.
First, only for the sake of analysis, we presuppose that some Oracle provides the true neighbors Si. Therefore, we solve the
following problem to recover the signs of true neighbors.

ŵi,S = arg min
(wi,S ,0)∈Rn−1

`i(wi;D) + λM ||wi,S ||1 , (26)

We then set the components of the dual vector κi that pertain to neighbors of i to the sign of corresponding components in
ŵi,S . That is, κ̂i,j = sign(ŵi,j), ∀j ∈ Si. We next set ŵi,Sc = 0, and thus (25) is satisfied. We then solve for κ̂i,Sc by
plugging ŵi,S , κ̂i,S , and ŵi,Sc in (22). Thus, we are left to show that (23) and (24) are satisfied. We impose conditions on
M , n, and d under which these conditions are satisfied with high probability. In fact, we prove a stronger result for (23),
namely, strict dual feasibility for non-neighbors, i.e., |κ̂i,j | < 1 for all j ∈ Sci .

We argue that our construction yields a unique optimal primal solution ŵi. Specifically, we invoke Lemma 1 from (Ravikumar
et al., 2010) that states that so long as ||κ̂i,Sc ||∞ < 1, any optimal primal solution w̃i satisfies w̃i,Sc = 0. This is established
by our construction above. Moreover, Lemma 1 asserts that ŵi is the unique solution to (21) if Λmin(ĤM

i,SS) > 0, i.e., if
the sample Hessian under ŵi is positive definite when restricted to the rows and columns in the true support Si. We show

that assumption (18) implies Λmin

(
ĤM
i,SS

)
≥ α2Cmin

2
> 0, and this guarantees that we correctly recover the signed

neighborhood of i.

To proceed, we define GMi = −∇`i(w∗i ;D) and rewrite (22) as

∇`i(ŵi;D)−∇`i(w∗i ;D) = GMi − λM κ̂i . (27)

Applying the mean value theorem component-wise, we can write (27) as

∇2`i(w
∗
i ;D)(ŵi − w∗i ) = GMi − λM κ̂i − RMi , (28)

where
RMi,j =

(
∇2`i(w

(j)
i ;D)−∇2`i(w

∗
i ;D)

)>
j

(ŵi − w∗i ) ,

for some vector w(j)
i = tjŵi + (1− tj)w∗i , tj ∈ [0, 1]. Here, (A)>j denotes row j of matrix A.

We will now prove some auxiliary results that we will use in the proof of Theorem 2.

Lemma 1. We have that

P
(
||GMi ||∞ ≥

λM
4

γ

2− γ

)
≤ 2 exp

(
− γ2λ2

M

32α2(2− γ)2
M + log(n)

)
,

which converges to zero at rate exp(−Cα,γλ2
MM) (where constant Cα,γ depends on α and γ) whenever

λM ≥
8α(2− γ)

γ

√
log(n)

M
.

Proof. We note that

GMi = −∇`i(w∗i ;D) =
1

M

M∑
m=1

−α(σ
∗(m)
i − a∗(m)

i ) Φ
(m)
−i︸ ︷︷ ︸

Zi,m

,

where |Zui,m| ≤ α for each component Zmi,u of random vector Zmi . Moreover, E(Zmi,u) = 0 under w∗i , and Z1
i,u, . . . , Z

M
i,u

are independent. Invoking the Hoeffding’s inequality, we have that for any δ > 0,

P(|GMi,u| ≥ δ) ≤ 2 exp

(
−Mδ2

2α2

)
,
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where GMi,u denotes the component at index u of vector GMi . Setting δ =
γλM

4(2− γ)
, we get

P
(
|GMi,u| ≥

γλM
4(2− γ)

)
≤ 2 exp

(
− M

2α2

γ2λ2
M

16(2− γ)2

)
.

Then, applying a union bound over indices u ∈ [n− 1], we get

P
(
||GMi ||∞ ≥

γλM
4(2− γ)

)
≤ 2(n− 1) exp

(
− M

2α2

γ2λ2
M

16(2− γ)2

)
< 2 exp

(
− M

2α2

γ2λ2
M

16(2− γ)2
+ log(n)

)
.

Lemma 2. Let λMd ≤
αC2

min

10Cmax
and ||GMi ||∞ ≤

λM
4

. Then,

||ŵi,S − w∗i,S ||2 ≤
5

α2Cmin
λM
√
d .

Proof. We define a function F : Rd → R that quantifies the change in optimization objective at a distance ∆i,S from the
true parameters w∗i,S . Specifically,

F (∆i,S) , `i(w
∗
i,S + ∆i,S ;D)− `i(w∗i,S ;D) + λM (||w∗i,S + ∆i,S ||1 − ||w∗i,S ||1) .

Note that F is convex and F (0) = 0. Moreover, F is minimized for ∆̂i,S = ŵi,S − w∗i,S . Therefore, F (∆̂i,S) ≤ 0. We
show that the function F is strictly positive on the surface of a Euclidean ball of radius B for some B > 0. Then, the vector
∆̂i,S lies inside the ball, i.e.,

||ŵi,S − w∗i,S ||2 ≤ B .

This follows since otherwise, the convex combination t∆̂i,S + (1− t)0 would lie on boundary of the ball for some t ∈ (0, 1),
which would imply the contradiction

F (t∆̂i,S + (1− t)0) ≤ tF (∆̂i,S) + (1− t)F (0) ≤ 0.

Therefore, let ∆ ∈ Rd be an arbitrary vector such that ||∆||2 = B. We then have from Taylor’s series

F (∆) = ∇`i(w∗i,S ;D)>∆ + ∆>∇2`(w∗i,S + θ∆;D)∆ + λM (||w∗i,S + ∆||1 − ||w∗i,S ||1) , (29)

for some θ ∈ [0, 1]. We lower bound F (∆) by bounding each term on the right side of (29).

We let B = OλM
√
d where we will choose O > 0 later. From Cauchy-Schwartz inequality,

∇`i(w∗i,S ;D)>∆ ≥ −||∇`i(w∗i,S ;D)||∞||∆||1 (30)

≥ −||∇`i(w∗i,S ;D)||∞
√
d||∆||2 (31)

≥ −(λM
√
d)2O

4
, (32)

where in the last inequality we have used ||∆||2 = B = OλM
√
d, and

−||∇`i(w∗i,S ;D)||∞ ≥ −||∇`i(w∗i ;D)||∞ = − || − ∇`i(w∗i ;D)||∞ = − ||GMi ||∞ ≥ − λM
4

by our assumption on ||GMi ||∞ in the lemma statement. Next, by triangle inequality, we have

λM (||w∗i,S + ∆||1 − ||w∗i,S ||1) ≥ − λM ||∆||1 ≥ − λM
√
d||∆||2 ≥ − (λM

√
d)2O . (33)
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We now bound the quantity ∆>∇2`(w∗i,S + θ∆;D)∆. We note that

∆>∇2`(w∗i,S + θ∆;D)∆ ≥ min
||∆̃||2=B

∆̃>∇2`(w∗i,S + θ∆;D)∆̃

≥ min
θ̃∈[0,1]

B2Λmin(∇2`(w∗i,S + θ̃∆;D))

= B2 min
θ̃∈[0,1]

Λmin

(
1

M

M∑
m=1

ηi(w
∗
i,S + θ̃∆;m) Φ

(m)
−i Φ

(m)>

−i

)
.

Applying Taylor’s series expansion, we note that ∆>∇2`(w∗i,S + θ∆;D)∆

≥ B2Λmin

(
1

M

M∑
m=1

ηi(w
∗
i,S ;m)Φ

(m)
−i Φ

(m)>

−i

)

− B2 max
θ̃∈[0,1]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
m=1

η′i(w
∗
i,S + θ∆;m)(Φ

(m)>

−i θ̃∆) Φ
(m)
−i Φ

(m)>

−i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= B2Λmin(H∗Mi,SS)−B2 max
θ̃∈[0,1]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
m=1

η′i(w
∗
i,S + θ∆;m)(Φ

(m)>

−i θ̃∆) Φ
(m)
−i Φ

(m)>

−i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= B2α2Cmin −B2 max
θ̃∈[0,1]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
m=1

η′i(w
∗
i,S + θ∆;m)(Φ

(m)>

−i θ̃∆) Φ
(m)
−i Φ

(m)>

−i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

.

Now, a simple calculation shows that |η′i(·)| ≤ α3. Moreover, we note for θ̃ ∈ [0, 1],

|Φ(m)>

−i θ̃∆| ≤ ||Φ(m)
−i ||∞||θ̃∆||1 ≤ ||Φ

(m)
−i ||∞||∆||1 ≤ ||∆||1 ≤

√
d||∆||2 = OλMd .

Putting all these facts together, along with our assumption (19), we get

∆>∇2`(w∗i,S + θ∆;D)∆ ≥ B2α2Cmin −B2α3(OλMd)Cmax ≥ B2α2Cmin

2
(34)

when λM ≤
Cmin

2αCmaxOd
. Therefore, plugging the lower bounds from (30), (33), and (34) in (29),

F (∆) ≥ λ2
Md

(
−O

4
−O +

O2α2Cmin

2

)
> 0 ,

for O =
5

α2Cmin
. Thus, for λM ≤ Cmin

2αCmaxOd
=

αC2
min

10Cmaxd
, we must have

||ŵi,S − w∗i,S ||2 ≤ B = OλM
√
d =

5

α2Cmin
λM
√
d .

Lemma 3. Let λMd ≤
αC2

min

100Cmax

γ

2− γ
and ||GMi ||∞ ≤

λM
4

. Then,

||RMi ||∞
λM

≤ 25Cmax

αC2
min

λMd ≤
1

4

(
γ

2− γ

)
≤ γ

4
.
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Proof. We have for j ∈ [n] \ {i} and some w(j)
i = tjŵi + (1− tj)w∗i , tj ∈ [0, 1],

RMi,j =
(
∇2`i(w

(j)
i ;D)−∇2`i(w

∗
i ;D)

)>
j

(ŵi − w∗i )

=
1

M

M∑
m=1

((
ηi(w

(j)
i ;m)− ηi(w∗i ;m)

)
Φ

(m)
−i Φ

(m)>

−i

)>
j

(ŵi − w∗i )

=
1

M

M∑
m=1

(
η′i(w

(j)
i ;m)

(
Φ

(m)>

−i (w
(j)
i − w

∗
i )
)

Φ
(m)
−i Φ

(m)>

−i

)>
j

(ŵi − w∗i ) ,

where w(j)
i is a point on the line between w(j)

i and w∗i , by the mean value theorem. We note that(
Φ

(m)
−i Φ

(m)>

−i

)>
j

= φ
(m)
j Φ

(m)>

−i .

We thus write

RMi,j =
1

M

M∑
m=1

η′i(w
(j)
i ;m)φ

(m)
j

(
(w

(j)
i − w

∗
i )>Φ

(m)
−i

)
Φ

(m)>

−i (ŵi − w∗i )

=
1

M

M∑
m=1

η′i(w
(j)
i ;m)φ

(m)
j

(
(w

(j)
i − w

∗
i )>Φ

(m)
−i Φ

(m)>

−i (ŵi − w∗i )
)

=
1

M

M∑
m=1

η′i(w
(j)
i ;m)φ

(m)
j︸ ︷︷ ︸

p(m)

(
tj(ŵi − w∗i )>Φ

(m)
−i Φ

(m)>

−i (ŵi − w∗i )
)

︸ ︷︷ ︸
q(m)

,

which is of the form
1

M
p>q, where p, q ∈ RM . Thus, we have by Cauchy-Schwartz inequality,

|RMi,j | =
1

M
|p>q| ≤ 1

M
||p||∞||q||1 .

It can be shown that p(m) = α3σ
(m)
i (1− σ(m)

i )(1− 2σ
(m)
i ), whereby ||p||∞ ≤ α3.

Finally, we see that q(m) = tj

∣∣∣∣∣∣Φ(m)>

−i (ŵi − w∗i )
∣∣∣∣∣∣2

2
≥ 0 since tj ∈ [0, 1]. Therefore ||q||1 = q>1, where 1 ∈ RM is a

vector of all ones. Moreover, since ŵi,Sc = w∗i,Sc = 0, we note that

1

M
||q||1 = tj(ŵi − w∗i )>

(
1

M

M∑
m=1

Φ
(m)
−i Φ

(m)>

−i

)
(ŵi − w∗i )

= tj(ŵi,S − w∗i,S)>

(
1

M

M∑
m=1

Φ
(m)
−i,SΦ

(m)>

−i,S

)
(ŵi,S − w∗i,S)

≤ Cmax

∣∣∣∣ŵi,S − w∗i,S∣∣∣∣22 .
Since γ ∈ (0, 1], so

λMd ≤
αC2

min

100Cmax

γ

2− γ
≤ αC2

min

100Cmax
≤ αC2

min

10Cmax
.

Therefore, we can invoke Lemma 2 when ||GMi ||∞ ≤
λM
4

. Specifically, we then have for each j,

|RMi,j | ≤ α3Cmax

∣∣∣∣ŵi,S − w∗i,S∣∣∣∣22 ≤ α3Cmax

(
5

α2Cmin
λM
√
d

)2

=
25Cmax

αC2
min

λ2
Md .

This immediately yields
||RMi ||∞
λM

≤ 25Cmax

αC2
min

λMd .
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We are now ready to prove our main result.

Theorem 1. Let M >
802C2

max

C4
min

(
2− γ
γ

)4

d2 log(n), and λM ≥
8α(2− γ)

γ

√
log(n)

M
. Suppose the sample satisfies

assumptions (18), (19), and (20). Define Cα,γ =
γ2

32α2(2− γ)2
. Consider any player i ∈ [n]. The following results hold

with probability at least 1− 2 exp(−Cα,γλ2
MM)→ 1 for i.

1. The corresponding `1-regularized optimization problem has a unique solution, i.e., a unique set of neighbors for i.

2. The set of predicted neighbors of i is a subset of the true neighbors. Additionally, the predicted set contains all true

neighbors j for which |w∗ij | ≥
10

α2Cmin

√
dλM . In particular, the set of true neighbors of i is exactly recovered if

min
j∈Si

|w∗ij | ≥
10

α2Cmin

√
dλM .

Taking a union bound over players, our results imply that we recover the true signed neighborhoods for all players in the
game with probability at least 1− 2n exp(−Cα,γλ2

MM) .

Proof. Since λM ≥
8α(2− γ)

γ

√
log(n)

M
, Lemma 1 holds. Thus, with high probability (as stated in the theorem statement),

we obtain
||GMi ||∞ ≤

λM
4

γ

2− γ
≤ γλM

4
≤ λ

4
, (35)

since γ ∈ (0, 1]. Moreover, for the specified lower bound on sample size M , a simple computation shows

λMd ≤
αC2

min

10Cmax

γ

2− γ
. (36)

Thus the conditions required for both Lemma 2 and Lemma 3 are satisfied. By our primal-dual construction, ŵi,Sc = 0.
Furthermore, using (18), Λmin(H∗Mi,SS) > 0, and so H∗Mi,SS is invertible. Separating the rows in the support of i and others,
we write (28) as

H∗Mi,ScS(ŵiS − w∗iS) = GMi,Sc − λM κ̂i,Sc −RMi,Sc

H∗Mi,SS(ŵiS − w∗iS) = GMi,S − λM κ̂i,S −RMi,S .

These two equations can be combined into one as

H∗Mi,ScS(H∗Mi,SS)−1
(
GMi,S − λM κ̂i,S −RMi,S

)
= GMi,Sc − λM κ̂i,Sc −RMi,Sc .

Recalling that ||κ̂i,S ||∞ < 1, we immediately get that λM ||κ̂i,Sc ||∞

≤
∣∣∣∣∣∣H∗Mi,ScS(H∗Mi,SS)−1

∣∣∣∣∣∣
∞

(
||GMi,S ||∞ + ||RMi,S ||∞ + λM

)
+ ||GMi,Sc ||∞ + ||RMi,Sc ||∞

≤ (1− γ)
(
||GMi,S ||∞ + ||RMi,S ||∞ + λM

)
+ ||GMi,Sc ||∞ + ||RMi,Sc ||∞

≤ (1− γ)λM + ||GMi ||∞ + ||RMi ||∞
≤ λM

(
1− γ +

γ

4
+
γ

4

)
= λM

(
1− γ

2

)
.

Since γ ∈ (0, 1] and λM > 0, we immediately get ||κ̂i,Sc ||∞ < 1. Therefore, strict dual feasibility is established and (23)
is verified. Then, using Lemma 1 of (Ravikumar et al., 2010), we note that any optimal solution w̃i of (21) must have
w̃i,Sc = 0. In particular, we have ŵi,Sc = 0 as desired. Thus, we can focus on ŵi,S . We now prove uniqueness of ŵi by

showing that Λmin

(
ĤM
i,SS

)
> 0. Let ∆ = ŵi,S − w∗i,S ∈ Rd. Then, using Lemma 2, we have

||∆||2 ≤
5

α2Cmin
λM
√
d .
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Note that

Λmin

(
ĤM
i,SS

)
= Λmin

(
1

M

M∑
m=1

ηi(ŵi;m) Φ
(m)
−i,SΦ

(m)>

−i,S

)

= Λmin

(
1

M

M∑
m=1

ηi(ŵi,S ;m) Φ
(m)
−i,SΦ

(m)>

−i,S

)

= Λmin

(
1

M

M∑
m=1

ηi(w
∗
i,S + ∆;m) Φ

(m)
−i,SΦ

(m)>

−i,S

)
.

Performing a Taylor expansion around w∗i,S , and making arguments similar to the proof segment between (33) and (34) in
Lemma 2, we can show that

Λmin

(
ĤM
i,SS

)
≥ α2Cmin − α3

√
d||∆||2Cmax

≥ α2Cmin −
(

5αCmax

Cmin

)
λMd

≥ α2Cmin − α2Cmin

2

γ

2− γ

≥ α2Cmin

2
,

which is greater than 0. Therefore, ĤM
i,SS is positive definite, and Lemma 1 of (Ravikumar et al., 2010) guarantees that ŵi is

the unique optimal primal solution for (21).

We finally argue about the only remaining condition (24). In order for neighbor j to be correctly recovered with sign, i.e.,
sign(ŵij) = sign(w∗ij), it suffices to have

|ŵij − w∗ij | ≤
|w∗ij |

2
. (37)

Moreover to recover the neighborhood of i exactly, it is sufficient to show

min
j∈Si

|w∗ij | ≥ 2||ŵi,S − w∗i,S ||∞ , (38)

which implies (37). We note that

||ŵi,S − w∗i,S ||∞ ≤ ||ŵi,S − w∗i,S ||2 ≤
5

α2Cmin
λM
√
d .

Using (38), it immediately follows that the neighborhood of i is recovered with correct sign if

min
j∈Si

|w∗ij | ≥
10

α2Cmin
λM
√
d .

B. General game dynamics and convergence
In this section we provide an in-depth look at the game dynamics along with associated convergence guarantees.

Recall that in of our protocols, players take actions stochastically according to σki and the best response mapping gi is unique
for each k. Assuming that the error sequence in updating {σki } is a martingale, our updates satisfy the conditions outlined in
(section 2.1 of (Borkar, 2008)) and we can analyze the stochastic evolution of each setting as a noisy discretization of a
limiting ordinary differential equation (ODE). In particular, Lipschitz condition is satisfied since gi and hi are both Lipschitz
continuous, step size condition is fulfilled since the sequence bk−1 = 1/k satisfies

∑
k b

k−1 =∞ and
∑
k(bk−1)2 <∞,
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(SAP-FP/AA) q̇i = βτi (Ai(q−i + γṙ−i), zi)− qi, ṙi = λ(qi − ri) (39)
(SAP-FP/ PA) q̇i = βτi (Ai(q−i) + γṙi, zi)− qi, ṙi = λ(Ai(q−i)− ri) (40)
(SAP-GP/AA) q̇i = Π∆[qi +Ai(q−i + γṙ−i)− zi]− qi, ṙi = λ(qi − ri) (41)
(SAP-GP/PA) q̇i = Π∆[qi +Ai(q−i) + γṙi − zi]− qi, ṙi = λ(Ai(q−i)− ri) (42)

and our iterates remain bounded since they remain confined to ∆(A). Thus, we can investigate the conditions under which
the fixed points of the limiting ODE are locally asymptotically stable (l.a.s.), and as a consequence, our discrete updates
would converge to a Nash equilibrium with positive probability (Shamma and Arslan, 2005). An equilibrium point s is said
to be l.a.s. if every ODE trajectory that starts at a point in a small neighborhood of s remains forever in that neighborhood
and eventually converges to s.

Our updates in (9) lead to the implicit ODEs (39)-(42) for SAP-FP and SAP-GP under AA and PA settings, where λ > 0, ṙi
is an estimate for q̇i, and ṙ−i , {ṙj |j 6= i, wij 6= 0}. We will call a matrix stable if all its eigenvalues have strictly negative
real parts. Let I denote the identity matrix. We now state results that characterize conditions under which different dynamics
lead to asymptotically stable equilibria.

Theorem 2. (SAP-FP/AA convergence to NE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a NE under the dynamics in (39). There

exists a matrix D such that the linearization of (39) with γ > 0 is l.a.s. for λ > 0 if and only if the following matrix is stable[
−I + (1 + γλ)D −γλD

λI −λI

]
.

Theorem 3. (SAP-FP/PA convergence to NE) Let the weight matrix W be stochastic. Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a

NE under the dynamics in (40). There exists a matrix D1 with zero diagonal, and a block diagonal matrix D2 such that the
linearization of (40) with γ > 0 is l.a.s. for λ > 0 if and only if if the following matrix is stable[

−I + (1 + γλ)D1 −γλD2

λW −λI

]
.

Theorem 4. (SAP-GP/AA convergence to CMNE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a completely mixed NE under the

dynamics in (41). Then the linearization of (41) with γ > 0 is l.a.s. for λ > 0 if and only if the following matrix is stable[
(1 + γλ)W −γλW

λI −λI

]
.

Theorem 5. (SAP-GP/AA convergence to SNE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a strict NE under the dynamics in (41).

The associated equilibrium point (qi = q∗i , q−i = q∗−i, ri = q∗i , r−i = q∗−i) is l.a.s. for any γ > 0 and λ > 0.

Theorem 6. (SAP-GP/PA convergence to CMNE) Let the weight matrix W be stochastic. Let (q∗1 , . . . , q
∗
n, z1, . . . , zn)

be a completely mixed NE under the dynamics in (42). Then the linearization of (42) with γ > 0 is l.a.s. for λ > 0 if and
only if the following matrix is stable [

(1 + γλ)W −γλW
λW −λI

]
.

Theorem 7. (SAP-GP/PA convergence to SNE) Let the weight matrixW be doubly stochastic. Let (q∗1 , . . . , q
∗
n, z1, . . . , zn)

be a strict NE under the dynamics in (42). The equilibrium point (qi = q∗i , ri = Ai(q
∗
−i))i∈[n] is l.a.s. for sufficiently small

γλ, where γ > 0 and λ > 0.

We now provide some insight into our proof techniques. We follow the general proof structure of (Shamma and Arslan,
2005). Specifically, we prove convergence to SNE via carefully crafted Lyapunov functions V that are locally positive
definite and have a locally negative semidefinite time derivative, and thus satisfy the Lyapunov stability criterion. The other
proofs track the evolution of game dynamics around an equilibrium, where q̇i = 0 and ṙi = 0. Specifically, we analyze
conditions under which the Jacobian matrix of the linearization is Hurwitz stable, i.e., all the eigenvalues have negative
real roots, and exploit the fact that the behavior of the ODE near equilibrium is same as its linear approximation when the
real parts of all eigenvalues are non-zero. Our discrete updates would then converge to a Nash equilibrium with positive
probability (Shamma and Arslan, 2005).
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Recall that AA reveals more information about the evolution of neighbors’ strategy. As a result, the PA settings, i.e. (40) and
(42), require additional subtle reasoning since at equilibrium r∗i converges only to Ai(q∗−i) and not to q∗i . Since qi evolves
within ∆(A), stochasticity assumptions are required to ensure ri stays within the probability simplex as well. Note that the
SAP-FP updates to strategies are smooth due to the entropy term (since τ > 0), unlike SAP-GP. Consequently, the results
for SAP-GP require a separate treatment of completely mixed NE and strict NE, unlike SAP-FP where they can be analyzed
without distinction. Note that τ > 0 ensures that best response is a singleton set and therefore we could leverage the ODE
formulations. Differential inclusions (Benaïm et al., 2005; 2006) could possibly be used to handle τ = 0.

We now provide detailed proofs on convergence of dynamics. We restructure the theorem statements to have the results for
the active aggregator setting precede those for the passive aggregator setting. We use AA1, AA2 etc. to indicate that the
result pertains to convergence in an active aggregator setting. Likewise, we will use PA1 etc. for the passive aggregator
setting. We start with the active aggregator.

Theorem AA1. (Convergence under SAP-FP/AA to NE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a NE under the dynamics in

(39). There exists a matrix D such that the linearization of (39) with γ > 0 is locally asymptotically stable for λ > 0 if and
only if the following matrix is stable [

−I + (1 + γλ)D −γλD
λI −λI

]
.

Proof. Since τ > 0, best response is a singleton set, and the unique best response σ∗i can be obtained by setting the gradients
of the payoff functions to 0. In particular, we have the best response

βτi (Ai(σ−i), zi) = ζ

(∑
j 6=i wijσj − zi

τ

)
= ζ

(
Ai(σ−i)− zi

τ

)
, (43)

where ζ is the softmax function with output coordinate ` given by

(ζ(x))` = exp(x`)

/∑
k

exp(xk).

Now recall from (39) that we have the following ODE:

q̇i = βτi (Ai(q−i + γṙ−i), z
∗
i )− qi︸ ︷︷ ︸

,Fi(qi,q−i,r−i)

(44)

ṙi = λ(qi − ri). (45)

Since βτi maps it input to the simplex ∆(A), we note that the right side of (44) is a difference between two probability
distributions. Therefore this difference must sum to zero. Moreover, since |A| = m, we have m− 1 degrees of freedom that
can be used to express this difference. Therefore, we can investigate the evolution of qi via a matrix N ∈ Rm×(m−1) of
(m− 1) orthonormal columns such that

N>N = Im−1, and 1>mN = 0m−1,

where Im−1 is the identity matrix of order m− 1, and 1m and 0m are m-dimensional vectors with all coordinates set to 1
and 0 respectively. We will sometimes omit the subscripts for Im, 1m, and 0m when the size will be clear from the context.
The equilibrium (q∗i , q

∗
−i) corresponds to a point (qi(t) = q∗i , q−i(t) = q∗−i, ri(t) = q∗i , r−i(t) = q∗−i) of the dynamics. It

will be convenient to investigate the dynamics as the evolution of deviations around this point. Since qi is confined to ∆(A),
we can express

qi(t) = q∗i +Nδxqi(t),

where δxqi(t) ∈ Rm−1 is uniquely specified, and likewise ri = q∗i + δxri(t) for some δxri(t). Thus, we can define a block
diagonal matrix N ∈ R2nm×2n(m−1), with each diagonal block set to N and all other elements set to 0, such that

(q1(t)− q∗1 , . . . , qn(t)− q∗n, r1(t)− q∗1 , . . . , rn(t)− q∗n)> = N δx(t) , (46)

where
δx(t) = (δxq1(t), . . . , δxqn(t), δxr1(t), . . . , δxrn(t))> ∈ R2n(m−1)
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is formed by stacking together the deviations at time t in a column vector. Then, the following is immediate from (46):

N>(q1(t)− q∗1 , . . . , qn(t)− q∗n, r1(t)− q∗1 , . . . , rn(t)− q∗n)> = N>N δx(t) = δx(t). (47)

Denote the Jacobian matrix obtained by taking derivatives of vector y with respect to vector x by Jxy. We will linearize
q̇i = Fi(qi, q−i, r−i) in (44) around , (q∗1 , q

∗
−1, q

∗
1 , q
∗
−1) using first order Taylor series. Then, since q̇∗i = 0, we note from

(44) and (47) that
δ̇xqi = N>(q̇i − q̇∗i ) = N>q̇i(t) = N>Fi(qi, q−i, r−i). (48)

Now, at equilibrium, we have q̇i = 0 for all i ∈ [n], and therefore we have from (44) that

Fi(q
∗
i , q
∗
−i, r

∗
−i) = 0m.

Let diag(b) be a diagonal matrix with vector b on the diagonal and all other elements set to 0. Ignoring the second order and
higher terms, we therefore have by the Taylor series approximation that

Fi(qi, q−i, r−i)

≈
n∑
k=1

JqkFi(qk, q
∗
−k, q

∗
−k)

∣∣∣∣
qk=q∗k

(qk − q∗k) +
∑
k 6=i

JrkFi(q
∗
k, q
∗
−k, q

∗
−ki, rk)

∣∣∣∣
rk=q∗k

(rk − q∗k)

=

n∑
k=1

JqkFi(qk, q
∗
−k, q

∗
−k)

∣∣∣∣
qk=q∗k

Nδxqk +
∑
k 6=i

JrkFi(q
∗
k, q
∗
−k, q

∗
−ki, rk)

∣∣∣∣
rk=q∗k

Nδxrk

= −Nδxqi +
∑
k 6=i

JqkFi(qk, q
∗
−k, q

∗
−k)

∣∣∣∣
qk=q∗k

Nδxqk +
∑
k 6=i

JrkFi(q
∗
k, q
∗
−k, q

∗
−ki, rk)

∣∣∣∣
rk=q∗k

Nδxrk

= −Nδxqi + (1 + γλ)
∑
k 6=i

D̃ikNδxqk − γλ
∑
k 6=i

D̃ikNδxrk ,

where D̃ik ,
wik
τ
∇ζ
(
Ai(q

∗
−i)− zi
τ

)
, and ∇ζ(b) , diag(ζ(b))− ζ(b)ζ>(b) .

Define Dik = N>D̃ikN . Since N>N = Im−1, it follows immediately from (48) that

δ̇xqi = −δxqi + (1 + γλ)
∑
k 6=i

Dikδxqk − γλ
∑
k 6=i

Dikδxrk . (49)

Linearizing (45), we see that the Taylor approximation results in

δ̇xri = λ(δxqi − δxri). (50)

We define

D =


0 D12 D13 . . . D1n

D21 0 D23 . . . D2n

...
...

...
. . .

...
Dn1 Dn2 Dn3 . . . 0

 .
Combining (49) and (50) together, we can write

δ̇x =

[
−I + (1 + γλ)D −γλD

λI −λI

]
δx.

The statement of the theorem now follows immediately from the Hurwitz stability criterion.
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Theorem AA2. (Convergence under SAP-GP/AA to CMNE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a completely mixed NE

under the dynamics in (41). Then the linearization of (41) with γ > 0 is locally asymptotically stable for λ > 0 if and only
if the following matrix is stable [

(1 + γλ)W −γλW
λI −λI

]
.

Proof. Recall the ODE from (41):

q̇i = Π∆[qi +Ai(q−i + γṙ−i)− zi]− qi (51)
ṙi = λ(qi − ri). (52)

At equilibrium (q∗1 , . . . , q
∗
n, z1, . . . , zn), q̇i = 0 and ṙi = 0. Therefore, using (56), we have:

q∗i = Π∆[q∗i +Ai(q∗−i)− zi].

Since the equilibrium is completely mixed, q∗i is in the interior of ∆(A). We invoke Lemma 4.1 in (Shamma and Arslan,
2005) to get the following:

NN>(Ai(q∗−i)− zi) = 0 (53)

Π∆[q∗i +Ai(q∗−i)− zi + δy]− q∗i = NN>
(
Ai(q∗−i) − zi + δy

)
,

for δy sufficiently small, and N as defined in the proof of Theorem AA1. Then, for a sufficiently small deviation δx, where
δx is as defined in Theorem 1, we get the following dynamics:

q̇i = NN>[Ai(q−i + γṙ−i)− zi] (54)
ṙi = λ(qi − ri). (55)

Linearizing these equations and noting that N>N = I , we get

δ̇xqi = N>

NN>(1 + γλ)
∑
k 6=i

wikNδxqk

 − N>

NN>γλ∑
k 6=i

wikNδxrk


= (1 + γλ)N>

∑
k 6=i

wikNδxqk − γλN>
∑
k 6=i

wikNδxrk

= (1 + γλ)
∑
k 6=i

wikδxqk − γλ
∑
k 6=i

wikδxrk ,

and
δ̇xri = λ(δxqi − δxri).

It follows immediately that

δ̇x =

[
(1 + γλ)W −γλW

λI −λI

]
δx,

where the weight matrix

W =


0 w12 w13 . . . w1n

w21 0 w23 . . . w2n

...
...

...
. . .

...
wn1 wn2 wn3 . . . 0

 .

Theorem AA3. (Convergence under SAP-GP/AA to SNE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a strict NE under the dynamics

in (41). The associated equilibrium point (qi = q∗i , q−i = q∗−i, ri = q∗i , r−i = q∗−i) is locally asymptotically stable for any
γ > 0 and λ > 0.
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Proof. Recall the ODE from (41):

q̇i = Π∆[qi +Ai(q−i + γṙ−i)− zi]− qi (56)
ṙi = λ(qi − ri). (57)

To prove the local asymptotic stability of the ODE dynamics, we will define a Lyapunov function V that is locally positive
definite and has locally negative semi-definite time derivative. Consider

V(qi, q−i, ri, r−i)

,
1

2

n∑
i=1

(
(qi − q∗i )>(qi − q∗i ) + λ(ri − qi)>(ri − qi)

)
. (58)

We define the shorthand di , qi +Ai(q−i + γṙ−i)− zi. Applying the chain rule, we see that the time derivative of V ,

V̇ =

n∑
i=1

(
∂V
∂qi

)>
q̇i +

n∑
i=1

(
∂V
∂ri

)>
ṙi

=

n∑
i=1

[(qi − q∗i ) + λ(qi − ri)]> q̇i − λ2
n∑
i=1

(ri − qi)>(ri − qi)

=

n∑
i=1

(qi − q∗i )>q̇i + λ

n∑
i=1

(qi − ri)>q̇i − λ2
n∑
i=1

||ri − qi||2

=

n∑
i=1

(qi − q∗i )>Π∆(di)−
n∑
i=1

(qi − q∗i )>qi + λ

n∑
i=1

(qi − ri)>q̇i − λ2
n∑
i=1

||ri − qi||2.

Also, we note that

n∑
i=1

||q̇i||2 =

n∑
i=1

||Π∆(di)− qi||2

=

n∑
i=1

||Π∆(di)||2 +

n∑
i=1

q>i qi − 2

n∑
i=1

q>i Π∆(di).

This immediately implies

V̇ +

n∑
i=1

||q̇i||2 =

n∑
i=1

(Π∆(di)− q∗i )
>

(Π∆(di)− qi)︸ ︷︷ ︸
(B)

+ λ

n∑
i=1

(qi − ri)>q̇i − λ2
n∑
i=1

||ri − qi||2. (59)

Consider (B) = (Π∆(di)− q∗i )
>

(Π∆(di)− qi). Since ∆(A) is a convex set, the projection property implies

[Π∆(di)]
> (Π∆(di)− qi) ≤ d>i (Π∆(di)− qi) ,

whence we note

(B) = (Π∆(di)− q∗i )
>

(Π∆(di)− qi)
= [Π∆(di)]

> (Π∆(di)− qi)− (Π∆(di)− qi)> q∗i
≤ d>i (Π∆(di)− qi)− (Π∆(di)− qi)> q∗i
= (di − q∗i )> (Π∆(di)− qi)
= (qi +Ai(q−i + γṙ−i)− zi − q∗i )> (Π∆(di)− qi) .
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Now, we note from the definition of V in (58) that by decreasing the distances (qi − ri) and (qi − q∗i ), we can make
V(qi, q−i, ri, r−i) arbitrarily close to 0 from the right. In other words, we can consider a sufficiently small neighborhood
around the equilibrium such that as ri, qi → q∗i , (B) tends to

(q∗i +Ai(q∗−i + δy)− zi − q∗i )> (Π∆(di)− q∗i )

= (Ai(q∗−i + δy)− zi)> (Π∆(di)− q∗i ) ,

= (Π∆(di)− q∗i )
> ∂Ui(qi, q

∗
−i + δy, zi)

∂qi

∣∣∣∣
qi=q∗i

< 0

for some sufficiently small δy and Π∆(di) 6= q∗i . The last inequality follows since (q∗1 , . . . , q
∗
n, z1, . . . , zn) is a strict Nash

equilibrium, whereby (a) (q∗i , q
∗
−i) is a pure strategy Nash equilibrium (since Ai(·) is a linear transformation and the payoff

maximization happens at the vertex), and (b) q∗i is a (strictly) best response to q∗−i and nearby strategies. Therefore, we see
from (59) that for a sufficiently small neighborhood around the equilibrium point,

V̇ ≤ −
n∑
i=1

||q̇i||2 + λ

n∑
i=1

(qi − ri)>q̇i − λ2
n∑
i=1

||ri − qi||2

= −
n∑
i=1

(
||q̇i||2 + λ2||ri − qi||2

)
+ λ

n∑
i=1

(qi − ri)>q̇i

≤ −
n∑
i=1

(
||q̇i||2 + λ2||ri − qi||2

)
+

1

2

n∑
i=1

(
||q̇i||2 + λ2||ri − qi||2

)
= − 1

2

n∑
i=1

(
||q̇i||2 + λ2||ri − qi||2

)
,

where we have invoked the Cauchy-Schwarz inequality in the penultimate line. Since this quantity is non-positive, we
see that V̇ is locally negative semi-definite. Finally, it is clear from (58) that V(qi, q−i, ri, r−i) > 0 in the neighborhood
(qi, q−i, ri, r−i) of the equilibrium point (qi = q∗i , q−i = q∗−i, ri = q∗i , r−i = q∗−i), and V(q∗i , q

∗
−i, q

∗
i , q
∗
−i) = 0. Thus, V is

locally positive definite, and the statement of the theorem follows.

We will now characterize conditions for convergence in the passive aggregator setting.
Theorem PA1. (Convergence under SAP-FP/PA to NE) Let the weight matrix W be stochastic. Let
(q∗1 , . . . , q

∗
n, z1, . . . , zn) be a NE under the dynamics in (40). There exists a matrix D1 with zero diagonal, and a block

diagonal matrix D2 such that the linearization of (40) with γ > 0 is locally asymptotically stable for λ > 0 if and only if if
the following matrix is stable [

−I + (1 + γλ)D1 −γλD2

λW −λI

]
.

Proof. We reproduce the ODE from (40):

q̇i = βτi (Ai(q−i) + γṙi), zi)− qi (60)
ṙi = λ(Ai(q−i)− ri). (61)

Note that at equilibrium ṙi = 0, but unlike Theorem AA1, ri does not converge to q∗i . Specifically, we note that the
equilibrium (q∗i , q

∗
−i) corresponds to a point (qi(t) = q∗i , q−i(t) = q∗−i, ri(t) = Ai(q∗−i)), i ∈ [n], of the dynamics.

Therefore, we will instead linearize around this point. Since the weight matrix W is stochastic, we must have Ai(q∗−i) ∈
∆(A). Therefore, we can investigate the deviation of ri around Ai(q∗−i) with the help of matrix N defined in Theorem AA1.
In particular, we can express the deviation vector δx = (δxq1 , . . . , δxqn , δxr1 , . . . , δxrn)> as:(

q1(t)− q∗1 , . . . , qn(t)− q∗n, r1(t)−A1(q∗−1), . . . , rn(t)−An(q∗−n)

)>
= N δx(t), (62)

where the block diagonal matrixN is as defined in Theorem AA1. Linearizing around our equilibrium point and proceeding
similarly to Theorem AA1, we get

δ̇xqi = −δxqi + (1 + γλ)
∑
k 6=i

Dikδxqk − γλCiδxri . (63)
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where

Dik ,
wik
τ
N>∇ζ

(
Ai(q

∗
−i)− zi
τ

)
N,

Ci ,
1

τ
N>∇ζ

(
Ai(q

∗
−i)− zi
τ

)
N,

and
∇ζ(b) , diag(ζ(b))− ζ(b)ζ>(b),

with ζ(b) the same as in Theorem AA1. Additionally, we have

δ̇xri = λ
∑
k 6=i

wikδxqi − λδxri . (64)

Recall that the weight matrix

W =


0 w12 w13 . . . w1n

w21 0 w23 . . . w2n

...
...

...
. . .

...
wn1 wn2 wn3 . . . 0

 .
Define

D1 ,


0 D12 D13 . . . D1n

D21 0 D23 . . . D2n

...
...

...
. . .

...
Dn1 Dn2 Dn3 . . . 0

 , and

D2 ,


C1 0 0 . . . 0
0 C2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Cn

 .
Then, the proof follows by combining (63) and (64), since we can express the deviations as

δ̇x =

[
−I + (1 + γλ)D1 −γλD2

λW −λI

]
δx.

Theorem PA2. (Convergence under SAP-GP/PA to CMNE) Let the weight matrix W be stochastic. Let
(q∗1 , . . . , q

∗
n, z1, . . . , zn) be a completely mixed NE under the dynamics in (42). Then the linearization of (42) with γ > 0 is

locally asymptotically stable for λ > 0 if and only if the following matrix is stable[
(1 + γλ)W −γλW

λW −λI

]
.

Proof. Recall the ODE from (42):

q̇i = Π∆[qi +Ai(q−i) + γṙi − zi]− qi (65)
ṙi = λ(Ai(q−i)− ri). (66)

At equilibrium (q∗1 , . . . , q
∗
n, z1, . . . , zn), q̇i = 0 and ṙi = 0. Therefore, using (65), we have:

q∗i = Π∆[q∗i +Ai(q∗−i)− zi].

Proceeding along the lines of proof of Theorem AA2, for a sufficiently small deviation δx as defined in Theorem PA1, we
can equivalently analyze the following dynamics:

q̇i = NN>[Ai(q−i) + γṙ−i − zi]
ṙi = λ(qi − ri).
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Linearizing these equations and noting N>N = I , we get

δ̇xqi = N>

NN>(1 + γλ)
∑
k 6=i

wikNδxqk

 − N>

NN>γλ∑
k 6=i

Nδxrk


= (1 + γλ)N>

∑
k 6=i

wikNδxqk − γλN>
∑
k 6=i

wikNδxrk

= (1 + γλ)
∑
k 6=i

wikδxqk − γλ
∑
k 6=i

wikδxrk ,

and
δ̇xri = λ

∑
k 6=i

wikδxqi − λδxri .

It follows immediately that

δ̇x =

[
(1 + γλ)W −γλW

λW −λI

]
δx,

where the weight matrix

W =


0 w12 w13 . . . w1n

w21 0 w23 . . . w2n

...
...

...
. . .

...
wn1 wn2 wn3 . . . 0

 .

Theorem PA3. (Convergence under SAP-GP/PA to SNE) Let the weight matrix W be doubly stochastic. Let
(q∗1 , . . . , q

∗
n, z1, . . . , zn) be a strict NE under the dynamics in (42). The associated equilibrium point (qi = q∗i , ri =

Ai(q
∗
−i))i∈[n] is locally asymptotically stable for sufficiently small γλ, where γ > 0 and λ > 0.

Proof. Recall the ODE from (42):

q̇i = Π∆[qi +Ai(q−i) + γṙi − zi]− qi
ṙi = λ(Ai(q−i)− ri).

We will prove local asymptotic stability via a Lyapunov function V that is locally positive definite and has locally negative
semi-definite time derivative. Consider

V(qi, q−i, ri, r−i) ,
1

2

n∑
i=1

(
(qi − q∗i )>(qi − q∗i ) + λ (ri −Ai(q−i))> (ri −Ai(q−i))

)
. (67)

We define the shorthand d̃i , qi +Ai(q−i) + γṙi − zi. Applying the chain rule, we see that the time derivative of V ,

V̇ =

n∑
i=1

(
∂V
∂qi

)>
q̇i +

n∑
i=1

(
∂V
∂ri

)>
ṙi

=

n∑
i=1

(qi − q∗i )− λ
∑
k 6=i

wki(rk −Ak (q−k))

> q̇i − λ2
n∑
i=1

(ri −Ai(q−i))> (ri −Ai(q−i)))

=

n∑
i=1

(qi − q∗i )>q̇i − λ2
n∑
i=1

||ri −Ai(q−i)||2 − λ

n∑
i=1

∑
k 6=i

wki(rk −Ak (q−k))

> q̇i .
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Also, we note that

n∑
i=1

||q̇i||2 =

n∑
i=1

||Π∆(d̃i)− qi||2

=

n∑
i=1

||Π∆(d̃i)||2 +

n∑
i=1

q>i qi − 2

n∑
i=1

q>i Π∆(d̃i).

It can be shown that

(qi − q∗i )>q̇i + ||q̇i||2 = (Π∆(d̃i)− q∗i )>(Π∆(d̃i)− qi)
≤ (d̃i − q∗i )>(Π∆(d̃i)− qi)
= (qi +Ai(q−i) + γṙi − zi − q∗i )>(Π∆(d̃i)− qi) .

As ri, qi → q∗i , this quantity tends to(
q∗i +Ai(q∗−i) + γλ(Ai(q∗−i)− q∗i )− zi − q∗i

)> (
Π∆(d̃i)− q∗i

)
=

(
Ai(q∗−i) + γλ(Ai(q∗−i)− q∗i )− zi

)> (
Π∆(d̃i)− q∗i

)
=

(
(1 + γλ)Ai(q∗−i)− γλq∗i − zi

)> (
Π∆(d̃i)− q∗i

)
=

(
Ai((1 + γλ)q∗−i)− γλq∗i − zi

)> (
Π∆(d̃i)− q∗i

)
which can be expressed in the form(

Π∆(d̃i)− q∗i
)> ∂Ui(qi, q∗−i + δy, zi)

∂qi

∣∣∣∣
qi=q∗i

< 0

when γλ is sufficiently small and Π∆(d̃i) 6= q∗i , by arguing along the lines of proof for Theorem AA3. Therefore,

V̇ ≤ −
n∑
i=1

||q̇i||2 + λ

n∑
i=1

∑
k 6=i

wki(Ak (q−k)− rk)

> q̇i − λ2
n∑
i=1

||ri −Ai(q−i)||2

= −
n∑
i=1

(
||q̇i||2 + λ2||ri −Ai(q−i)||2

)
+

n∑
i=1

∑
k 6=i

wki

(
λ(Ak (q−k)− rk)

>
q̇i

)
≤ −

n∑
i=1

(
||q̇i||2 + λ2||ri −Ai(q−i)||2

)
+

1

2

n∑
i=1

∑
k 6=i

wki
(
λ2||rk −Ak(q−k)||2 + ||q̇i||2

)
by noting that wki ≥ 0 for all i ∈ [n], k 6= i and invoking Cauchy-Schwarz. Furthermore, since W is doubly stochastic, we
have

∑
k 6=i wki = 1 and

∑
k 6=i wik = 1 for all i ∈ [n]. Thus, we may decompose the second term on the right in the last

equation as

1

2

n∑
i=1

∑
k 6=i

wki
(
λ2||rk −Ak(q−k)||2 + ||q̇i||2

)
=

λ2

2

n∑
i=1

∑
k 6=i

wki||rk −Ak(q−k)||2 +
1

2

n∑
i=1

||q̇i||2
∑
k 6=i

wki

=
λ2

2

n∑
i=1

∑
k 6=i

wki||rk −Ak(q−k)||2 +
1

2

n∑
i=1

||q̇i||2.



Predicting deliberative outcomes

The first term in the last equation may be interpreted as a weighted outgoing flow from player i to player k 6= i. Now
viewing this from the equivalent perspective of total incoming flow, we have

V̇ ≤ −
n∑
i=1

(
||q̇i||2 + λ2||ri −Ai(q−i)||2

)
+

λ2

2

n∑
i=1

∑
k 6=i

wik||ri −Ai(q−i)||2 +
1

2

n∑
i=1

||q̇i||2

= −
n∑
i=1

(
||q̇i||2 + λ2||ri −Ai(q−i)||2

)
+

λ2

2

n∑
i=1

||ri −Ai(q−i)||2
∑
k 6=i

wik +
1

2

n∑
i=1

||q̇i||2

= −
n∑
i=1

(
||q̇i||2 + λ2||ri −Ai(q−i)||2

)
+

1

2

n∑
i=1

(
λ2||ri −Ai(q−i)||2 + ||q̇i||2

)
= −1

2

n∑
i=1

(
λ2||ri −Ai(q−i)||2 + ||q̇i||2

)
≤ 0,

which implies that V̇ is locally negative semi-definite. The local positive definiteness of V may be argued similarly to the
proof of Theorem AA3 and we are done.


	Introduction
	Basic strategic prediction model
	Parameter estimation
	Transferable strategic prediction
	Identifiability of the games
	General game dynamics and convergence
	Experiments
	US Supreme Court Data
	United Nations General Assembly (UNGA) Data

	Identifiability of our games
	General game dynamics and convergence

