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On Learned Sketches for Randomized Numerical Linear Algebra

Simin Liu∗ Tianrui Liu† Ali Vakilian‡ Yulin Wan§ David P. Woodruff¶

Abstract

We study “learning-based” sketching approaches for diverse tasks in numerical linear algebra:
least-squares regression, ℓp regression, Huber regression, low-rank approximation (LRA), and k-
means clustering. Sketching methods are used to quickly and approximately compute properties
of large matrices. Linear maps called “sketches” are applied to compress data, and these concise
representations are used to compute the desired properties. Specifically, we consider sparse
sketches (such as CountSketch).

Recent works have dealt with optimizing sketches for data distributions to perform better
than their random counterparts. We extend this theme to several important and ubiquitous
tasks, each of which requires a new analysis and novel practical methods. Specifically, our
contributions are:

• For all tasks, we introduce fast algorithms using learned sketches with worst-case guar-
antees. We give a simple task-agnostic method for retaining the worst-case guarantees of
randomized sketching, which yields time-optimal algorithms for LRA and least-squares re-
gression. Also, for k-means clustering, we give a faster alternative for retaining worst-case
guarantees.

• We show empirically that learned sketches are reliable in improving approximation accu-
racy, with comparison against “non-learned” sketching baselines.

• We introduce a greedy algorithm for optimizing the location of the nonzero entries of
a sparse sketch and prove guarantees for certain distributions on the LRA task. Previ-
ous work only looked at optimizing the values rather than the locations. Also, we show
empirically that it further improves learned sketch performance.

1 Introduction

Sketching is a powerful approach to dimensionality reduction which guarantees that important
properties of the data are preserved. There is much work on designing sketches with approx-
imation guarantees for numerical linear algebra (NLA) tasks including linear regression [Sar06,
CW09, CW17, NN13, MM13, Coh16], robust regression [MM13, ACW16], low-rank approxima-
tion [WLRT08, HMT11, CW09, CW17, NN13, MM13, CEM+15, Coh16, CW14], and cluster-
ing [CEM+15, MMR19]. Also, see the surveys [Mah11, Woo14].

In the basic sketching scheme, we first construct a sketch S, which is typically a random matrix
with a very small number of rows. Then, we apply S to an input matrix A by computing SA. Here,
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we note that we only consider sparse sketches, for which SA can be computed in O(nnz(A)) time,
where nnz(A) denotes the number of non-zero entries of A. Finally, we approximately compute
the desired property of A by computing it more quickly on the much smaller SA. The form of S
guarantees that SA will be a good proxy for A with respect to the task at hand.

In a recent work, [IVY19] proposed a learning-based method on top of the existing sketching-
based framework. While most existing sketches are constructed randomly, [IVY19] showed that
learning a sketch for a data distribution can lead to significantly improved performance. They
focused on the single task of low rank approximation (LRA), using a time-suboptimal sketching
algorithm from [Sar06, CW09]. Using gradient descent, they optimized the values of a sparse sketch.

It remained an open question as to whether such learning-based methods could be applied to
a wider range of randomized NLA problems. In this paper, we consider the best-known random
sketching algorithms for a wide variety of tasks and design more efficient learned sketches for each
of them. In particular, we study learned sketches for least squares regression (single and multiple
response), robust regression in the form of Huber and ℓp-regression, low rank approximation, and
k-means clustering.

Related work on learning based methods. In the last few years, there has been a large
body of work on leveraging machine learning to improve the performance of classical algorithms,
and we only mention a few here. This includes data-dependent dimensionality reduction, such as
approaches for pair-wise/multi-wise similarity preservation for indexing big data [WZSS17] and for
general applications [HSYB15]. Machine learning has also been integrated into other related areas
such as streaming algorithms [HIKV19, AIV19, JLL+20, CGP20] and compressive sensing [MPB15,
BLS+16, BJPD17, MMB17].

2 Preliminaries

Most of the work presented here is based on the following special type of sketching matrix.

Definition 2.1 (CountSketch (CS), sparsity pattern). The CountSketch matrix, S ∈ R
m×n,

is constructed as follows: for each of the n columns, we uniformly randomly pick a row (p(i) ∈ [m])
and a value (v(i) ∈ {−1, 1}) for its single non-zero entry. We call p(i) (sometimes denoted ~p ∈ Z

n
m)

the “sparsity pattern” of S, since it represents the positions of its non-zero entries. Likewise, v(i)
(sometimes ~v ∈ R

n) represents the values of the non-zero entries.

Notation. We write the singular value decomposition (SVD) of A ∈ R
n×d as A = UΣV ⊤, with U ,

V having orthonormal columns, and Σ diagonal with non-negative entries. We write A+ = V Σ+U⊤

to denote A’s Moore-Penrose pseudoinverse, where Σ+ is formed from Σ by reciprocating each of the
non-zero diagonal entries, leaving the zeros in place, and transposing. Also, we let Ak = UkΣkV

⊤
k

denote the optimal rank-k approximation of A, where Uk ∈ R
n×k,Σk ∈ R

k×k, Vk ∈ R
d×k are the

truncated versions of U,Σ, V that just include the top k singular vectors/values.

3 Fast Learning-Based Least Squares Regression

We consider a generalized version of the ℓ2 regression problem known as multiple-response regression
(MRR). Given a matrix of observations, A ∈ R

n×d, and a matrix of corresponding values, B ∈

2



R
n×d′ , the goal of approximate MRR is to compute X̂ ∈ R

d×d′ such that
∥

∥

∥
AX̂ −B

∥

∥

∥

2

F
≤ (1 +

ε)minX∈Rd×d′ ‖AX −B‖2F .

Learning-free sketching algorithm. The learning-free sketching algorithm (1) is simply to
sketch A,B with S, a random CS, and compute the closed-form solution on the resulting small
matrices.

Algorithm 1 Sketch-Regression [Sar06, CW17]

Require: A ∈ R
n×d, B ∈ R

n×d′ , S ∈ R
m×n

1: return: X̂ = (SA)+(SB)

Lemma 3.1 ([Sar06, CW17]). Suppose that S ∈ R
poly(d/ε)×n is a sparse sketching matrix (such

as CountSketch) and an affine ε-embedding for A,B. Then, Sketch-Regression(A,B, S) returns
a (1 + ε)-approximation in time O(nnz(A) + nnz(B) + poly(dd

′

ε )).

Learned sketching algorithm. We optimize our learned sparse sketch (SL) using gradient
descent (Algorithm 2), where L(S,A) = ‖A(SA)+(SB)−B‖2F is the regression objective. Next,
we provide a way to retain the worst-case guarantees of random CS while taking advantage of SL

when possible (Algorithm 3). To do so, we efficiently compare the quality of the solution using
random CS (SR) with the one using SL and choose the better.

Algorithm 2 Learn-Sketch: gradient-descent algorithm for optimizing sketch values

Require: Atrain = {A1, ..., ANtrain
} where Ai ∈ R

n×d, learning rate α
1: Initialize ~p,~v (defined in 2.1) randomly or use Alg. 6 for ~p
2: for i = 1 to num grad steps do
3: form S using ~v, ~p
4: sample batch Abatch from Atrain

5: ~v ← ~v − α∂L(S,Abatch)
∂~v

6: end for

Algorithm 3 Learned-Regression

Require: A ∈ R
n×d, B ∈ R

n×d′ , SL ∈ R
poly(d

ε
)×n

1: {SL is a learned affine β-embedding matrix of A,B}
2: SR ← CS(poly(dε )× d) {CountSketch}
3: XL ← Sketch-Regression(A,B, SL), XR ← Sketch-Regression(A,B, SR)
4: S ← CS( 1

β2 × n), R← CS( 1
β2 × d′)

5: ∆L ←
∥

∥S(AXL −B)R⊤
∥

∥

2

F
, ∆R ←

∥

∥S(AXR −B)R⊤
∥

∥

2

F
6: if ∆L ≤ ∆R then
7: return XL

8: end if
9: return XR

3



Theorem 3.2 (Learned sketching with guarantees for MRR). Suppose there exists a learned,
sparse, affine matrix SL computed over Atrain with poly(dε ) rows that attains a β-approximation

over Atest. Then, there exists an algorithm that runs in time O(nnz(A)+nnz(B)+ poly(dd
′

ε )+ d
β4 )

that outputs a (1 + min(β, ε))-approximation to the MRR problem.

Note that when β < ε, SL gives a better approximation error than SR for the same sketching
algorithm runtime. Equivalently, SL can achieve the same approximation error as SR with a faster
runtime. To see this formally, observe that the non-learned sketching algorithm gives a (1 + β)-
approximation in O(nnz(A)+nnz(B)+poly(dd

′

β )) time, versus O(nnz(A)+nnz(B)+poly(dd
′

ε )+ d
β4 )

time with a learned sketch. Now 1
ε < 1

β , so poly(dd
′

ε ) + d
β4 < poly(dd

′

β ). In section 8, we show that
SL is reliably better than SR on natural data sets, so we can solve more quickly than with random
CS.

4 Fast Learning-Based Robust Regression

We introduce two extensions of the basic ℓ2 regression paradigm. Given A ∈ R
n×d, b ∈ R

n, the
objective is to find a (1 + ε)-approximation for x∗ = argminx∈Rd ‖Ax− b‖G, where G is either a
p-norm or the Huber loss, denoted H. Given parameter τ > 0 and an input y ∈ R

n, the Huber loss

is defined as: ‖y‖H =
∑

i∈[n]H(yi), where H(yi) =
y2i
2τ if |yi| < τ and H(yi) = |yi| − τ

2 otherwise.
The Huber loss is popular in robust regression because it combines the advantages of the ℓ1 and ℓ2
norms.

Learning-free sketching algorithm. [CW14] shows that sketching with a sparse “M -sketch”
gives an O(1)-approximation to the optimal ℓp and Huber regressors. We describe the construction
of an M -sketch: S ∈ R

O(poly(k logn)×n is formed by vertically stacking l ∈ O(log(n)) submatrices,
S0, . . . , Sl. S0 ∈ R

poly(k logn)×n is a CS matrix and each following Si retains only O(1/2i) columns
of S0 and scales them by O(2i).

Learned sketching algorithm. To train a learned sketch, we initialize a random M -sketch and
optimize its non-zero values using gradient descent on the objective function (Algorithm 2). With
no closed-form solution, we turn to the Iteratively Reweighted Least Squares (IRLS) algorithm
([HW77]) to compute the optimal regressor. IRLS is a standard heuristic for robust regression
that is empirically fast. Its speed is key: the fewer iterations until convergence, the faster it is to
calculate an accurate analytic gradient through backpropagation.

5 Fast Learning-Based Low Rank Approximation

Given an input matrix A ∈ R
n×d and desired rank k, the goal of approximate LRA is to find a

rank-k matrix B such that ‖B −A‖2F ≤ (1 + ε) ‖A−Ak‖2F .

Learning-free sketching algorithm. We consider the time-optimal (up to what are typically
considered low order terms) random sketching algorithm by [Sar06, CW17, ACW16] (Algorithm 4).

4



Algorithm 4 Sketch-lowrank [Sar06, CW17, ACW16].

Require: A ∈ R
n×d, S ∈ R

mS×n, R ∈ R
mR×d

1: S2 ← CS( k
2

β2 × n), R2 ← CS( k
2

β2 × d) {CountSketch}

2: UC

[

TC T
′

C

]

← S2AR
⊤,

[

T⊤
D

T
′⊤
D

]

U⊤
D ← SAR⊤

2 with UC , UD orthogonal

3: G← S2AR
⊤
2

4: Z
′

LZ
′

R ← [U⊤
CGUD]k

5: ZL =
[

Z
′

LT
−⊤
D 0

]

, ZR =

[

T−1
C Z

′

R

0

]

6: Z = ZLZR

7: return: AR⊤ZSA in form Pn×k, Qk×d

Lemma 5.1. Given CS matrices S ∈ R
poly(k/ε)×d and R ∈ R

poly(k/ε)×d, Algorithm 4 runs in
O(nnz(A) + (n + d) poly(k/ε)) time and with constant probability returns a (1 + ε)-approximate
rank-k approximation of A.

Learned sketching algorithm. As before, we optimize our sketches (S,R, S2, R2) using gradient
descent (Algorithm 2) and use a comparison method to retain the worst-case guarantees of random
sketching (similar to Algorithm 3. Our algorithm is the first learning-based algorithm to achieve
an optimal running time; the previous algorithm of [IVY19] does not.

Theorem 5.2 (Low-Rank Approximation). Suppose that there exists a learned, sparse, affine
matrix SL computed over Atrain with poly(kε ) rows which attains a (1 + β)-approximation over

Atest. Then, there is an algorithm A that runs in time O(nnz(A) + (n+ d) poly(kε ) +
k4

β4 · poly(kε ))
that outputs a (1 + min(β, ε))-approximate rank-k approximation of A.

6 Fast Learning-Based k-means Clustering

Let A ∈ R
n×d represent a set of n points, A1, . . . , An ∈ R

d. In approximate k-means clustering,
the goal is to find a partition of A1, ..., An into k clusters Ĉ = {Ĉ1, . . . , Ĉk} such that cost(Ĉ) ≤
(1+ε)cost(C∗) := minC

∑k
i=1minµi∈Rd

∑

j∈Ci
‖Aj − µi‖22, where µi denotes the center of cluster Ci.

Specifically, each cluster Ci consists of the indices of the points assigned to it.

Learning-free sketching algorithm. Our algorithm is simply to right-sketch A using CS
R ∈ R

O(k2/ε2)×d, compressing the n points to a smaller dimension. Then, we use any existing
approximation algorithm for k-means. In our experiments, we chose k-means++ with Lloyd’s
algorithm ([AV07], [Llo82]).
Cohen et al. [CEM+15] showed that the cost of any clustering on AR⊤ is a (1+ε)-approximation of
its cost on A; hence, the approximation guarantee of any k-means algorithm (including k-means++)
increases by a factor of (1 + ε).

Learned sketching algorithm. To train a learned sketch, we use Algorithm 2 with L(S,A) as
the LRA objective. Suppose that R ∈ R

m×d, with m ∈ poly(k/ε), is optimized so that there is a
good rank-m approximation to A in col(AR⊤). This suggests that col(AR⊤) and col(Um) (where
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A = UΣV ⊤) are similar subspaces. Cohen et al. [CEM+15] showed that sketching by transforming
A to an approximate top singular vector space yields a good solution to k-means.
Next, we give an algorithm for approximate k-means using the learned sketch while retaining the
worst-case guarantees of the random sketch (5). The idea is to concatenate a random sketch (R1)
to our learned sketch (R2).

Algorithm 5 Learned-Sketch-k-means

Require: A ∈ R
n×d,Atrain = {A1, ..., ANtrain

}, k ∈ Z
+

1: R1 ← Learn-Sketch(Atrain)
2: R2 ← CS(poly(kε × d) {CountSketch}
3: UΣV T ← A

[

R1 R2

]

4: return: k-means++(AV, k)

In the following, we show that this concatenated sketch performs at least as well as the random
sketch alone. In other words, the sketching matrices for k-means clustering satisfy a so-called
“sketch monotonicity” property introduced in [IVY19].
Next, we use the following notation. Given a matrix U with orthogonal columns, let πU (A) =
AUU⊤, which is the projection of the rows of A onto col(U). Let CU be the optimal k-means
clustering of πU (A).

Theorem 6.1 (Sketch monotonicity property for k-means). Assume we have A ∈ R
n×d.

We also have random CountSketch S ∈ R
O(poly(k/ε))×n and define U ∈ R

d×O(poly(k/ε)) with or-
thogonal columns such that col(U) = row(SA). Then, any extension of S to S

′
(for example,

concatenation with a learned CountSketch SL) yields a better approximate k-means approximation.
Specifically, define W with orthogonal columns such that col(W ) = row(S

′
A). Let C∗ denote the

optimal partition of A, CU denote the optimal partition of πU (A), and CW denote the optimal
partition of πW (A). Then

cost(CW ) ≤ (1 + ε)cost(CU ) ≤ (1 +O(ε))cost(C∗)

7 Greedy initialization

Previous work on learned sparse sketches only optimized the values of a sketch’s non-zero entries
and not their placement, which was randomized ([IVY19]). Empirically, we find that it is better
to optimize both the locations (a sketch’s “sparsity pattern”) and the values (Tables 8.1, 8.6). We
also give examples of data distributions where this greedy initialization is guaranteed to be better
than random for the LRA task.
Algorithm. We apply Algorithm 6 to optimize the sparsity pattern before optimizing values
(Algorithm 2), during which the sparsity pattern is fixed. Applying a CS matrix (SA,S ∈ R

m×n)
can be viewed as weighting each row of A and hashing it to one of m bins, where the rows are
summed. The greedy algorithm is simple: we iterate over row indices in some order and for each,
we evaluate the task objective (L(S,A)) for all possible (weight, bin) assignments. Then, we add
a new entry to the sketch for the best option. In Algorithm 6, Dw is the set of candidate weights,
which we set to 10 samples in [−2, 2]. An advantage of this method is that it is task-agnostic,
requiring only the ability to evaluate the task objective function.
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Algorithm 6 Greedy-Init

Require: Atrain = {A1, ..., ANtrain
} where Ai ∈ R

n×d

1: initialize ~p = 0n, ~v = 0n

2: sample Abatch from Atrain

3: for i = 1 to n do
4: form S using ~p,~v
5: w∗, j∗ = argminw∈Dw,j∈[m]

∑

Ai∈Abatch
L(Sw,j, Ai) where Sw,j = S + w(~ej ~ei

⊤)
6: ~v[i]← w∗, ~p[i]← j∗

7: end for

Guarantees on natural distributions. We present two natural distributions and show that for
both, greedy-initialized CS produces a better approximate low-rank approximation than CS with
a random sparsity pattern.
1. Spiked Covariance Model. In this model which is is introduced by Johnstone [Joh01],
each matrix has covariance diag(ℓ1, · · · , ℓr, 1, · · · , 1) with r small. That is, each matrix has a few
eigenvalues that are significantly larger than the rest. This distribution closely models certain types
of data in speech recognition [HBT95, Joh01], wireless communication [Tel99, CH12], mathematical
finance [PGR+02, LCPB00, MS04] and statistical learning [HR04a, HR04b, BS06, Pau07, WF17].

We consider A ∈ R
n×d from a spiked covariance distribution Asp(s, ℓ), where s = O(k) is the

number of “heavy” rows with norm ℓ and the remaining rows are of norm 1. Also, we assume the
direction of each row is picked uniformly at random.

Theorem 7.1. Consider a matrix A ∈ Asp(s, ℓ). Let Sg denote a CS constructed using Algo-
rithm 6 that visits the rows of A in order of non-increasing row norm. Let Sr denote a ran-
dom CS. Then, there exists a fixed constant η such that minrank-kX∈rowsp(SgA) ‖X −A‖2F ≤ (1 −
η)minrank-kX∈rowsp(SrA) ‖X −A‖2F .

2. Heavy Tailed (Zipfian) Random Matrices. This model consists of matrices with Zipfian-
distributed squared row norms. Real data also often follows this model [AG08, BP09, AGZ10,
Ver10, BJ11, AT16].

We consider symmetric matrices A ∈ R
n×n with “Zipfian squared” row norms where ∀i ∈

O(log n), there are 2 × 2i rows of squared norm n2/4i. We assume the direction of each row is
picked uniformly at random.

Theorem 7.2. Consider a symmetric (random) matrix A ∈ R
n×n with Zipfian squared norms.

Let Sg denote the CS constructed using Algorithm 6 that visits the rows of A in order of non-
increasing row norm. Let Sr denote a random CS. Then, there exists a fixed constant η such that
minrank-kX∈rowsp(SgA) ‖X −A‖2F ≤ (1− η)minrank-kX∈rowsp(SrA) ‖X −A‖2F .

Remark 7.3. Though our analysis shows that the greedy algorithm with non-increasing row norm
ordering gives a better sketch than the standard approach in certain cases, in other cases, the
converse may be true. See the appendix for an example where greedy with random ordering yields
a cost that is a constant factor better than the non-increasing row norm ordering.
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8 Experiments

See the appendix for additional experimental details (Section D). Our code is available publicly.1

8.1 Datasets

We use assorted real-world data sets to verify the broad effectiveness of our algorithms.
For the regression family of tasks (MMR, Huber, ℓp):

• Gas: time series of measured and simulated greenhouse gas concentrations in California’s
atmosphere. Each (A,B) corresponds to a different measurement location. A’s columns
are consecutive measurements and B’s are consecutive simulated values. |(A,B)train| =
400, |(A,B)test| = 100, A ∈ R

327×15, B ∈ R
327×1.2

• Tunnel: time series of gas concentrations measured by eight sensors in a wind tunnel. Each
(A,B) corresponds to a different data collection trial. A’s columns are consecutive mea-
surements of temperature, relative humidity, and time, as well as values from two sensors;
B’s columns are values from the other six sensors. |(A,B)train| = 144, |(A,B)test| = 36, A ∈
R
13530×5, B ∈ R

13530×6.3

• Electric: residential electric load measurements. Each (A,B) corresponds to a different
residence. Matrix columns are consecutive measurements from different days. |(A,B)train| =
250, |(A,B)test| = 63, A ∈ R

950×50, B ∈ R
950×50.4

For the low-rank approximation family of tasks (LRA, k-means):

• Videos - Logo, Friends, Eagle: frames from YouTube videos of a logo being painted, a
scene from the TV show Friends, and the feed from an eagle’s nest camera. Each A is formed
by flattening a 1920 × 1080 × 3 RGB array. A ∈ R

5760×1080, |Atrain| = 400, |Atest| = 100.5

• Hyper: hyperspectral images depicting outdoor scenes. A ∈ R
1024×768, |Atrain| = 400, |Atest| =

100.6

Some matrices in these aforementioned data sets have much larger singular values than others. To
keep the approximation errors at the same magnitude, we normalized the matrices to have the same
largest singular value.

For the section on greedy sensitivity analysis:

• Synthetic spiked covariance: given LRA parameter k, each A ∈ R
n×d has random vectors

with norm O(
√

n
k ) for its first O(k) rows. The rest of the rows are random unit vectors.

A ∈ R
290×5000, |Atrain| = 160, |Atrain| = 40.

1https://github.com/sliu2019/learned_sketch
2https://archive.ics.uci.edu/ml/datasets/Greenhouse+Gas+Observing+Network
3https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+exposed+to+turbulent+gas+mixtures
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5http://youtu.be/L5HQoFIaT4I, http://youtu.be/xmLZsEfXEgE, http://youtu.be/ufnf_q_3Ofg6
6https://github.com/gistairc/HS-SOD
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8.2 Baselines

We describe the sketches used in the algorithms we compare:

• Random: random CS

• Learned (random pattern): a sparse sketch with learned values, random positions for
non-zero entries

• Learned (greedy pattern): a sparse sketch where both values and positions of non-zero
entries are learned.

We also consider additional baselines with non-oblivious (matrix-dependent) sketches for LRA
and k-means clustering:

• Exact SVD: Randomly sample Ai ∈ Atrain, compute Ai = UΣV T and sketch as AVm.

• Column sampling: sketch as AR, where R is computed from randomly sampled Ai ∈ Atrain.
R selects columns of Ai with probability proportional to squared column norm and scales by
its inverse.

8.3 Results

The following tables contain average values and standard deviations computed over 3 trials. Ex-
perimental parameters (i.e., learning rate for gradient descent) can be found in the appendix.

Regression family of tasks. For MRR (Table 8.1), learned (random pattern) gives a 20 − 50%
improvement over random. Also, learned (greedy pattern) is either comparable to learned (random
pattern) or attains up to 10% improvement. For ℓp (p = 1.5) and Huber regression, we observe
that the learned sketch almost always yields better performance than the random one. For ℓ1.5
(Table 8.2), there is up to 15% improvement; for Huber (Table 8.3), there is 30−95% improvement.

Table 8.1: Test errors for MRR

m, Sketch Gas Tunnel Electric

10, random 106.038 0.236 14.942

10, learned (random pattern) 78.357 0.177 11.041

10, learned (greedy pattern) 87.2379 0.1559 10.842

20, random 44.180 0.0949 10.663

20, learned (random pattern) 30.3709 0.0580 8.822

20, learned (greedy pattern) 36.7858 0.0596 7.9203

30, random 18.2751 0.0476 9.173

30, learned (random pattern) 12.5393 0.0368 7.497

30, learned (greedy pattern) 14.3316 0.03200 6.8032

LRA family of tasks. For the time-optimal approximate LRA algorithm (Algorithm 4), learned
(random pattern) gives a 35 − 75% improvement over random (Table 8.6). The work [IVY19]
learns sketches for a different approximation algorithm involving just one sketch (their Algorithm
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Table 8.2: Test errors for ℓ1.5 regression

m, Sketch Gas Tunnel Electric

20, random 16.100757 0.905101 139.079274

20, learned (random pattern) 15.662183 0.767999 131.755758

30, random 14.955649 0.639754 57.653981

30, learned (random pattern) 14.858939 0.505537 48.685349

40, random 14.329586 0.425036 48.733799

40, learned (random pattern) 14.305626 0.345803 44.492352

Table 8.3: Test errors for Huber regression

m, Sketch Gas Tunnel Electric

20, random 0.058685 0.001115 0.288651

20, learned (random pattern) 0.042292 0.001091 0.275271

30, random 0.045003 0.001279 0.108427

30, learned (random pattern) 0.020599 0.000987 0.106119

40, random 0.043164 0.001006 0.073449

40, learned (random pattern) 0.009170 0.000918 0.071874

1), as opposed to four. Though the use of more sketches increases approximation error (compare
Table 8.4 to Table 8.6), it is much faster (see Table 8.5). Now, the desired trade-off between speed
and accuracy varies depending on the application, so we leave it to the reader to decide which
algorithm is more advantageous.

In Table 8.6, we compare our approach, learned (greedy pattern), with several baselines on LRA.
Our approach is always better or comparable to learned (random pattern) from [IVY19], showing
improvements of 10 − 40%. It also beats all baselines, except on the Eagle data set, where exact
SVD is best. However, our approach has better time complexity than exact SVD, since our sketch
is sparse and can be applied in input sparsity time (see Table D.5).

For approximate k-means clustering (Table 8.7), we note that learned (random pattern) is always
better than random. It is also always the best or a close second to exact SVD. However, as we
mentioned above, the solution using exact SVD has the disadvantage of being slower to compute
(see Table D.5).

Table 8.4: Test errors for LRA (using Algorithm 4 with four sketches)

k,m, Sketch Logo Eagle Friends Hyper

20, 20, random 6.389263 ± 0.117776 12.782090 ± 0.472347 11.442603 ± 0.641905 14.133427 ± 0.601569
20, 20, learned (random pattern) 1.874400 ± 0.018637 3.126370 ± 0.030783 3.026187 ± 0.036555 8.059653 ± 0.063467

20, 40, random 2.329610 ± 0.064810 8.437103 ± 0.195867 4.100357 ± 0.172226 6.939890 ± 0.211195
20, 40, learned (random pattern) 0.918453 ± 0.011491 2.084160 ± 0.048539 1.392333 ± 0.019683 4.455760 ± 0.036090

30, 30, random 4.713050 ± 0.099571 12.535033 ± 0.074421 8.794927 ± 0.173146 12.328263 ± 0.079653
30, 30, learned (random pattern) 2.119253 ± 0.031725 4.286367 ± 0.037845 3.574900 ± 0.034765 8.252257 ± 0.008888

30, 60, random 1.649640 ± 0.020364 7.921303 ± 0.104303 2.752303 ± 0.041925 5.855720 ± 0.058504
30, 60, learned (random pattern) 0.916483 ± 0.006059 2.636563 ± 0.045209 1.397930 ± 0.006837 4.240370 ± 0.012680

Sensitivity analysis of the greedy algorithm. We explore how sensitive the performance of
learned (greedy pattern) is to row ordering. We consider five orderings: random, by decreasing row
norm, by decreasing row leverage score, backwards (largest row indices first), and forwards. We
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Table 8.5: Timing comparison for two approximate LRA algorithms

n, d 1-sketch time (sec) 4-sketch time (sec)

5000, 4000 0.18944 ± 0.11338 0.03369 ± 0.00436

2500, 2000 0.07076 ± 0.07540 0.02097 ± 0.00445

1250, 1000 0.04645 ± 0.03839 0.01437 ± 0.00401

Table 8.6: Test errors for LRA (using Algorithm 1 from [IVY19] with one sketch)

k,m, Sketch Logo Eagle Friends Hyper

20, 20, random 3.251 5.97 5.615 6.949
20, 20, exact SVD 1.331 0.3027 1.7139 29.1169
20, 20, learned (random pattern) 0.712 0.468 1.928 2.91
20, 20, learned (greedy pattern) 0.7121 0.3977 1.5233 2.6812

20, 40, random 0.930 3.36 1.542 2.971
20, 40, exact SVD 0.5580 0.1458 0.5658 23.7912
20, 40, learned (random pattern) 0.255 0.344 0.723 1.273
20, 40, learned (greedy pattern) 0.1961 0.2287 0.4066 0.7841

30, 30, random 2.366 5.84 4.476 6.115
30, 30, exact SVD 1.2435 0.3290 1.8100 27.1428
30, 30, learned (random pattern) 0.857 0.762 2.212 3.116
30, 30, learned (greedy pattern) 0.7552 0.5326 1.6814 2.3989

30, 60, random 0.650 3.08 1.0575 2.315
30, 60, exact SVD 0.4925 0.1402 0.5086 23.7702
30, 60, learned (random pattern) 0.290 0.485 0.713 1.274
30, 60, learned (greedy pattern) 0.1978 0.3340 0.4064 0.7174

Table 8.7: Test errors for k-means clustering

k,m, Sketch Logo Eagle Friends Hyper

3, 20, random 0.591470 ± 0.003440 1.070480 ± 0.003670 0.975360 ± 0.005860 1.070570 ± 0.003100
3, 20, column sampling 0.602550 ± 0.013000 1.096580 ± 0.007790 1.034400 ± 0.050050 1.079490 ± 0.001800
3, 20, exact SVD 0.581520 ± 0.000210 1.052440 ± 0.000680 0.979120 ± 0.001280 1.058340 ± 0.003350
3, 20, learned (random pattern) 0.583310 ± 0.000600 1.048180 ± 0.000080 0.975170 ± 0.006990 1.058340 ± 0.000630

6, 40, random 0.453670 ± 0.000440 0.998330 ± 0.002930 0.785100 ± 0.004010 0.864000 ± 0.004150
6, 40, column sampling 0.473200 ± 0.004230 1.010780 ± 0.015490 0.801710 ± 0.004370 0.881960 ± 0.005430
6, 40, exact SVD 0.451430 ± 0.000600 0.991750 ± 0.000210 0.787060 ± 0.000580 0.854410 ± 0.002290
6, 40, learned (random pattern) 0.452130 ± 0.000970 0.984460 ± 0.000930 0.777650 ± 0.000540 0.855280 ± 0.001150

10, 70, random 0.353370 ± 0.000720 0.934050 ± 0.002240 0.635600 ± 0.000910 0.733080 ± 0.001470
10, 70, column sampling 0.375130 ± 0.010740 0.939450 ± 0.002650 0.667460 ± 0.018620 0.757350 ± 0.025370
10, 70, exact SVD 0.351280 ± 0.000480 0.932540 ± 0.000890 0.637190 ± 0.002200 0.727370 ± 0.001240
10, 70, learned (random pattern) 0.351130 ± 0.000290 0.927560 ± 0.000610 0.633310 ± 0.000310 0.728620 ± 0.000420

find that on some data sets (Logo), the random ordering is best, while on others (Friends), the
decreasing row norm ordering is better. We also show that for the spiked covariance distribution
of section 7, the empirical results corroborate the theory, which states that decreasing row norm is
better than random.

9 Conclusions

In this work, we developed methods and principles for learning sketches on a variety of numerical
linear algebra tasks, including least-squares, ℓp, and Huber regression, low-rank approximation,
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Table 8.8: Test errors for learned (greedy pattern) with different row orders

Row ordering Logo Friends Synthetic spiked covariance

random 0.712100 ± 0.013720 1.523310 ± 0.057720 2.548000 ± 0.696460

decreasing row norm 0.764400 ± 0.042230 1.372240 ± 0.087160 0.589950 ± 0.441570

decreasing leverage score 0.726540 ± 0.019410 1.539450 ± 0.147030 1.409430 ± 0.147600

backwards 0.838640 ± 0.038600 1.543980 ± 0.177190 2.039050 ± 0.410570

forwards 0.939110 ± 0.098140 1.748210 ± 0.148670 0.199500 ± 0.025460

and k-means clustering. For least-squares regression and low rank approximation, the proposed
algorithms are time-optimal. For all tasks, we provided a simple means to retain the worst-case
guarantees of classical sketching algorithms. We also showed that a learned sketch is reliably
(and sometimes significantly) better than classical random sketches on several types of data sets.
Further, we provided a method for optimizing the nonzero entry placement in our sparse sketches
and showed for low rank approximation that this empirically and provably yields additional gains.
Possible directions for future research include devising alternate algorithms for optimizing sketches
over distributions and also extending these methods to other linear algebra problems where sketch-
ing has proven useful (e.g., regularized regression, kernel regression, and tensor decomposition).
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A Missing Proofs

A.1 Missing Proofs in Section 3

Definition A.1 (Affine Embedding). Given a pair of matrices A and B each with n rows,
a matrix S is an affine ε-embedding if for all X of appropriate shape, ‖S(AX −B)‖2F = (1 ±
ε) ‖AX −B‖2F .

The following result is shown in [CW17] and sharpened with [NN13, MM13].

Lemma A.2. Given matrices A,B with n rows, a sparse embedding matrix (i.e., CS) with O(rank(A)2/ε2)
rows is an affine ε-embedding matrix with constant probability. Moreover, the matrix product S ·A
can be computed in O(nnz(A)) time, where nnz(A) denotes the number of non-zero entries of matrix
A. We also define two sets of matrices, Atrain and Atest. Only Atrain is made available at the time
of sketch optimization.

Lemma A.3 ([CW17]; Lemma 40). Let A be an n × d matrix and let S ∈ R
O( 1

ε2
)×n be a

randomly chosen sparse embedding matrix (i.e., CS). Then with constant probability, ‖SA‖2F =
(1± ε) ‖A‖2F .

Proof of Lemma 3.1. Since S is an affine ε-embedding matrix of A,B, then

‖SAX − SB‖2F = (1± ε) ‖AX −B‖2F

Next, by the normal equations, (SA)+(SB) is a minimizer of minX ‖SAX − SB‖2F .
To bound the runtime, note that since S is a sparse sketching matrix (i.e., CountSketch) we

can compute SA and SB in time O(nnz(A) + nnz(B)) and reduce the problem to an instance of
multiple-response regression with m rows. Then, we can solve the reduced size problem in time
O(d · d′ ·m2): O(d ·m2) to compute (SA)+ and O(d · d′ ·m2) to compute (SA)+(SB). �

Proof of Theorem 3.2. By Lemma A.2, a CountSketch SO with poly(dε ) rows is an affine ε-
embedding matrix of A,B with constant probability.

Next, let XL and XO be respectively the solutions returned by Sketch-Regression(A,B, SL)
and Sketch-Regression(A,B, SO). By Lemma 3.1, with constant probability, the following hold:

min(‖AXL −B‖2F , ‖AXO −B‖2F ) ≤







(1 + β)minX ‖AX −B‖2F if (A,B) ∈ D

(1 + ε)minX ‖AX −B‖2F otherwise

(A.1)

Hence, it only remains to compute the minimum of ‖AXL −B‖2F and ‖AXO −B‖2F efficiently.
Note that it takes Ω(n · d · d′) to compute these values. However, for our purpose it suffices to
compare (1 + β)-estimates of these values and return the minimum of the estimates. To achieve

this, we use two applications of Lemma A.3 with R⊤ ∈ R
O( 1

β2 )×d′
, S ∈ R

O( 1
β2 )×n

. For any X ′ (in
particular, both XO and XL), with constant probability,

∥

∥S(AX ′ −B)R
∥

∥

2

F
=

∥

∥

∥
R⊤(AX ′ −B)⊤S⊤

∥

∥

∥

2

F
= (1± β)

∥

∥(AX ′ −B)
∥

∥

2

F
(A.2)
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Let ∆L and ∆O respectively denote ‖S(AXL −B)R‖2F and ‖S(AXO −B)R‖2F . By Eq. (A.2) and
union bound over of XO and XL, with constant probability,

min(∆L,∆O) ≤ (1 +O(β)) ·min(‖AXL −B‖2F , ‖AXO −B‖2F )

≤







(1 +O(β))minX ‖AX −B‖2F if (A,B) ∈ D

(1 +O(ε))minX ‖AX −B‖2F otherwise

The last inequality holds by Eq. (A.1) and β < ε.

Runtime Analysis. By Lemma 3.1, XO an XL can be computed in nnz(A)+nnz(B)+poly(dd
′

ε )
time. Next, the time to compute ∆L and ∆O is

O(nnz(A) + nnz(XR) + nnz(B) +
d

β4
) = O(nnz(A) + nnz(B) + dd′ +

d

β4
),

where X is either XO or XL and we use that fact that nnz(X) ≤ d · d′ (i.e., the total number of
cells in X).

Thus, the total runtime of Algorithm 3 is O(nnz(A) + nnz(B) + poly(dd
′

ε ) + d
β4 ). �

Corollary A.4 (Regression). Suppose that there exists a learned sparse affine β-approximation
matrix SL with poly(dε ) rows for the matrices in family D where β < ε. Then, there exists an

algorithm A that runs in time O(nnz(A) + nnz(B) + poly(dε ) +
d
β2 ) such that,

1. Improved bound: if (A, b) ∈ D, then A outputs a (1 + β)-approximation of the regression
problem.

2. Worst-case bound: otherwise, A outputs a (1+ε)-approximation of the regression problem.

Proof: The proof is similar to the proof of Theorem 3.2 but here the sketching matrix S suffices.
This improves the dependence in the runtime on β to β−2. Moreover, here d′ = 1. �

A.2 Missing Proofs in Section 5

Lemma A.5. Suppose that S ∈ R
mS×n and R ∈ R

mR×d are sparse affine ε-embedding matrices
for (A⊤, A) and ((SA)⊤, A⊤). Then,

min
rank-kX

∥

∥

∥
AR⊤XSA−A

∥

∥

∥

2

F
≤ (1 + ε) ‖Ak −A‖2F

Proof: Consider the following multiple-response regression problem:

min
rank-kX

‖AkX −A‖2F . (A.3)

Note that since X = Ik is a feasible solution to Eq. (A.3), minrank-k X ‖AkX −A‖2F = ‖Ak −A‖2F .
Let S ∈ R

mS×n be a sketching matrix that satisfies the condition of Lemma A.7 for A := Ak and
B := A. By the normal equations, the rank-k minimizer of ‖SAkX − SA‖2F is (SAk)

+SA. Hence,

∥

∥Ak(SAk)
+SA−A

∥

∥

2

F
≤ (1 + ε) ‖Ak −A‖2F , (A.4)

17



which in particular shows that a (1 + ε) rank-k approximation of A exists in the row space of SA.
In other words,

min
rank-kX

‖XSA−A‖2F ≤ (1 + ε) ‖Ak −A‖2F . (A.5)

Next, let R ∈ R
mR×d be a sketching matrix that satisfies the condition of Lemma A.7 for A :=

(SA)⊤ and B := A⊤. Let Y denote the rank-k minimizer of
∥

∥R(SA)⊤X⊤ −RA⊤
∥

∥

2

F
. Hence,

∥

∥

∥
(SA)⊤Y ⊤ −A⊤

∥

∥

∥

2

F
≤ (1 + ε) min

rank-k X
‖XSA−A‖2F ⊲ Lemma A.7

≤ (1 +O(ε)) ‖Ak −A‖2F ⊲ Eq. (A.5) (A.6)

Note that by the normal equations, again rowsp(Y ⊤) ⊆ rowsp(RA⊤) and we can write Y = AR⊤Z
where rank(Z) = k. Thus,

min
rank-kX

∥

∥

∥
AR⊤XSA−A

∥

∥

∥

2

F
≤

∥

∥

∥
AR⊤ZSA−A

∥

∥

∥

2

F

=
∥

∥

∥
(SA)⊤Y ⊤ −A⊤

∥

∥

∥

2

F
⊲ Y = AR⊤Z

≤ (1 +O(ε)) ‖Ak −A‖2F ⊲ Eq. (A.6) �

Lemma A.6 ([ACW16]; Lemma 27). For C ∈ R
p×m′

,D ∈ R
m×p′ , G ∈ R

p×p′, the following
problem

min
rank-k Z

‖CZD −G‖2F (A.7)

can be solved in O(pm′rC + p′mrD + pp′(rD + rC)) time, where rC = rank(C) ≤ min{m′, p} and
rD = rank(D) ≤ min{m, p′}.

Proof: Let UC and U⊤
D be orthogonal bases for colsp(C) and rowsp(D), respectively, so that for each

Z, CZD = UCZ
′U⊤

D for some Z ′. Let PC and PD be the projection matrices onto the subspaces
spanned by the rows of C⊤ and D⊤, respectively: PC = UCU

⊤
C and PD = UDU

⊤
D . Then by the

Pythagorean theorem,

‖CZD −G‖2F =
∥

∥

∥
PCUCZ

′U⊤
DPD −G

∥

∥

∥

2

F

=
∥

∥

∥
PCUCZ

′U⊤
DPD − PCGPD

∥

∥

∥

2

F
+ ‖PCG(I − PD)‖2F + ‖(I − PC)G‖2F ,

where the first equality holds since PCUC = UC and U⊤
DPD = U⊤

D and the second equality follows
from the Pythagorean theorem. Hence,

argminrank-k Z ‖CZD −G‖2F = argminrank-k Z

∥

∥

∥
PCUCZU⊤

DPD − PCGPD

∥

∥

∥

2

F
.

Moreover,

∥

∥

∥
PCUCZU⊤

DPD − PCGPD

∥

∥

∥

2

F
=

∥

∥

∥
UCZU⊤

D − UCU
⊤
CGUDU

⊤
D

∥

∥

∥

2

F
=

∥

∥

∥
Z − U⊤

CGUD

∥

∥

∥

2

F
,
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where the first equality holds since U⊤
C UC = I and U⊤

DUD = I, and the second equality holds since
UC and U⊤

D are orthonormal. Hence,

argminrank-k Z ‖CZD −G‖2F = argminrank-k Z

∥

∥

∥
Z − U⊤

C GUD

∥

∥

∥

2

F
.

Next, we can find Z = [U⊤
CGUD]k by computing the SVD of U⊤

CGUD.
Runtime analysis. We can compute UC and UD by the Gram-Schmidt process in time O(pm′rC+
p′mrD), and U⊤

CGUD in time O(min{rCp′(p + rD), rDp(p
′ + rC)}). Finally, the time to compute

Z (i.e., an SVD computation of U⊤
CGUD) is O(rCrD · min{rC , rD}). Since rC ≤ min{p,m′} and

rD ≤ min{p′,m}, the total runtime to minimize Z in Eq. (A.7) is O(pm′rC+p′mrD+pp′(rC+rD)).�

Proof of Lemma 5.1 It first computes C = S2AR
⊤,D = SAR⊤

2 , G = S2AR
⊤
2 which can be done

in time O(nnz(A)). As an example, we bound the time to compute C = S2AR. Note that since
S2 is a sparse sketching matrix (i.e., CountSketch), S2A can be computed in O(nnz(A)) time and
the number of non-zero entries in the resulting matrix is at most nnz(A). Hence, since R is a
sparse sketching matrix as well, C can be computed in time O(nnz(A) + nnz(S2A)) = O(nnz(A)).

Then, it takes an extra poly(k/ε) · k2

β2 time to store C,D and G in matrix form. Next, as we

showed in Lemma A.6, the time to compute Z in Algorithm 4 is O( k
4

β4 · poly(k/ε)). Finally, it

takes (n + d) poly(k/ε) time to return the solution in the form of Pn×kQk×d. Hence, the total

runtime is O(nnz(A) + (n+ d) poly(k/ε) + k4

β4 · poly(k/ε)). The exact analysis goes through for the
approximation guarantee and we omit it here. �

Lemma A.7 ([ACW16]; Lemma 25). Suppose that A ∈ R
n×d and B ∈ R

n×d′. Moreover, let S
be an oblivious sparse affine ε-embedding matrix (i.e., a CountSketch matrix) with (rank(A)2/ε2)
rows. Then with constant probability,

X̃ = argminrank-k X ‖SAX − SB‖2F ,

satisfies

∥

∥

∥
AX̃ −B

∥

∥

∥

2

F
≤ (1 + ε) min

rank-k X
‖AX −B‖2F .

In other words, in O(nnz(A)+nnz(B))+ (d+ d′)(rank(A)2/ε2) time, we can reduce the problem to
a smaller (multi-response regression) problem with (rank(A)2/ε2) rows whose solution is a (1 + ε)-
approximate solution to the original problem.

Proof of Theorem 5.2. Let SO and RO be CountSketch matrices of size poly(k/ε) × n and
poly(k/ε) × d. Note that since rank(Ak) = k and rank((SOA)

⊤) ≤ poly(k/ε), SO and RO are
respectively affine ε-embedding matrices of (Ak, A) and ((SOA)

⊤, A⊤). Then, by an application of
Lemma A.5

min
rank-kX

∥

∥

∥
AR⊤

OXSOA−A
∥

∥

∥

2

F
≤ (1 +O(ε)) ‖Ak −A‖2F (A.8)

Similarly, by the properties mentioned for SL and RL and an application of Lemma A.5 if (Ak, A) ∈
D and ((SLA)

⊤, A⊤) ∈ D′, then

min
rank-kX

∥

∥

∥
AR⊤

LXSLA−A
∥

∥

∥

2

F
≤ (1 +O(β)) ‖Ak −A‖2F (A.9)
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Next, by applications of Lemma A.2, we multiply Eq. (A.9) from both sides by oblivious sparse
affine β-embedding matrices (i.e., CountSketch) S2, R2 with O(k2/β2) rows,

min
rank-kX

∥

∥

∥
S2(AR

⊤
LXSLA)R

⊤
2 − S2AR

⊤
2

∥

∥

∥

2

F
= (1±O(β)) min

rank-k X

∥

∥

∥
S2AR

⊤
LXSLA− S2A

∥

∥

∥

2

F

(A.10)

where the first inequality follows since R2 is an affine β-embedding for (SA)⊤ which is of rank
poly(k/ε) and the second inequality follows since S2 is an affine β-embedding for AR⊤ which is of
rank poly(k/ε). By a similar argument,

min
rank-kX

∥

∥

∥
S2(AR

⊤
OXSOA)R

⊤
2 − S2AR

⊤
2

∥

∥

∥

2

F
= (1 +O(ε)) min

rank-k X
‖Ak −A‖2F , (A.11)

Next, let (PL, QL) and (PO, QO) be respectively the rank-k approximations of A in factored form
using (SL, RL) and (SO, RO) (see Algorithm 4). Then, Eq. (A.10) together with Eq. (A.11) implies
that

min(‖PLQL −A‖2F , ‖POQO −A‖2F ) =







(1±O(β)) ‖Ak −A‖2F if (Ak, A) ∈ D,
and (A⊤S⊤, A⊤) ∈ D′

(1±O(ε)) ‖Ak −A‖2F otherwise

(A.12)

Hence, it only remains to compute the minimum of ‖PLQL −A‖2F and ‖POQO −A‖2F efficiently
and we proceed similarly to the proof of Theorem 3.2. We use two applications of Lemma A.3 with

R⊤ ∈ R
O( 1

β2 )×d
, S ∈ R

O( 1
β2 )×n

: ∆L := ‖S(PLQL −A)R‖2F and ∆O := ‖S(POQO −A)R‖2F . Hence,

min(∆L,∆O) ≤ (1 +O(β)) ·min(‖PLQL −A‖2F , ‖POQO −A‖2F )

≤







(1 +O(β)) ‖Ak −A‖2F if (Ak, A) ∈ D,
and (A⊤S⊤, A⊤) ∈ D′

(1 +O(ε)) ‖Ak −A‖2F otherwise

The last inequality follows from Eq. (A.12) and β < ε.
Runtime analysis. By Lemma 5.1, Algorithm 4 computes PL, QL and PO, QO in O(nnz(A) +

(n+ d) poly(kε ) + ( k
4

β4 ) · poly(kε )).
Next, it takes O(nnz(A) + (n+ d) · k + k

β4 ) to compute ∆L and ∆O. As an example, we bound
the amount of time required to compute SPLQLR−SAR corresponding to ∆L. Since S and R are
sparse sketching matrices, SPL, QLR and SAR can be computed in nnz(SPL)+nnz(QLR)+nnz(A).
Since SPL and QLR are respectively of size 1

β2 × k and k × 1
β2 , in total it takes O(nnz(A) + k

β2 )

to compute these three matrices. Then, we can compute SPLQLR and ‖SPLQLRSAR‖F in time
O( k

β4 ).

Hence, the total runtime of Algorithm 4 is O(nnz(A) + (n+ d) · poly(kε ) + ( k
4

β4 ) · poly(kε )). �

A.3 Missing Proofs in Section 6

We restate notation and the main result below for ease of reference.
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Notation. We define Am as the optimal m-rank approximation of A formed by truncated SVD:
Am = UmΣmV ⊤

m .
Given a matrix U with orthogonal columns, let πU (A) = AUU⊤, which is the projection of the
rows of A onto col(U). Let CU be the optimal k-means partition of πU(A). Further, we let µCU,i

denote the i-th cluster’s center in the optimal k-means clustering on πU (A).
We denote dist2(A,µ) as the k-means loss given cluster centers (and their corresponding partition):

dist2(A,µ) =
∑

i∈[k]

∑

j∈Ci

‖Aj − µi‖22

Likewise, cost(C) is the k-means loss given a partition:

cost(C) =
∑

i∈[k]

min
µi

∑

j∈Ci

‖Aj − µi‖22

Definition A.8 (Projection-cost preserving sketch). Ã is a projection-cost preserving sketch
of A if for any low rank projection matrix P and c not dependent on P :

(1− ε) ‖A− PA‖2F ≤
∥

∥

∥
Ã− PÃ

∥

∥

∥

2

F
+ c ≤ (1 + ε) ‖A− PA‖2F

Theorem (6.1: Sketch monotonicity property for k-means). Assume we have A ∈ R
n×d.

We also have random CountSketch S ∈ R
O(poly(k/ε))×n and define U ∈ R

d×O(poly(k/ε)) with or-
thogonal columns such that colsp(U) = rowsp(SA). Then, any extension of S to S′ (for example,
concatenation with a learned CountSketch SL) yields a better approximate k-means approximation.
Specifically, define W with orthogonal columns such that col(W ) = row(S′A). Let C∗ denote the
optimal partition of A, CU denote the optimal partition of πU (A), and CW denote the optimal
partition of πW (A). Then

cost(CW ) ≤ (1 +O(ε))cost(CU ) ≤ (1 +O(ε))cost(C∗)

Proof:

cost(CW ) =
∑

i∈[k]

min
µi

∑

j∈CW,i

‖Aj − µi‖2

≤
∑

i∈[k]

∑

j∈CW,i

∥

∥Aj − µCW,i

∥

∥

2

=
∑

i∈[k]

∑

j∈CW,i

‖Aj − πW (Aj)‖2 +
∥

∥πW (Aj)− µCW,i

∥

∥

2
(A.13)

≤
∑

i∈[k]

∑

j∈CU,i

‖Aj − πW (Aj)‖2 +
∥

∥πW (Aj)− µCU,i

∥

∥

2
(A.14)

=
∑

i∈[k]

∑

j∈CU,i

∥

∥Aj − µCU,i

∥

∥

2
(A.15)

≤ (1 + ε)
∑

i∈k

min
µi

∑

j∈CU,i

‖Aj − µi‖2 (A.16)

= (1 + ε)cost(CU )

≤ (1 +O(ε))cost(C∗) �
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(A.13): µCW
∈ colsp(W ) so we can apply the Pythagorean Theorem.

(A.14): (µCW
, CW ) is an optimal k-means clustering of the projected points πW (A).

(A.15): µCU
∈ colsp(U) ⊂ colsp(W ), so we can apply the Pythagorean Theorem.

(A.16): We apply Corollary A.12.

Remark A.9. Our result shows that the “sketch monotonicity” property holds for sketching ma-
trices that provide strong coresets for k-means clustering. Besides strong coresets, an alternate
approach to showing that the clustering objective is approximately preserved on sketched inputs
is to show a weaker property: the clustering cost is preserved for all possible partitions of the
points into k groups [MMR19]. While the dimension reduction mappings satisfying strong coresets
require poly(k/ε) dimensions, [MMR19] shows that O(log k/ε2) dimensions suffice to satisfy this
“partition” guarantee. An interesting question for further research is if the sketch monotonicity
guarantee also applies to the construction of [MMR19].

Corollary A.10. Assume we have A ∈ R
n×d, j ∈ Z

+, ε > 0. Define m = min(O(poly(j/ε)), d).
Let Ãm be a (1 + ε)-approximation to Am of the form Ãm = AV V ⊤ where SA = UΣV ⊤ for
CountSketch S ∈ R

m×n. Let X ∈ R
d×j be a matrix whose columns are orthonormal, and let

Y ∈ R
d×(d−j) be a matrix with orthonormal columns that spans the orthogonal complement of

colsp(X). Then

∥

∥

∥
AXX⊤ − ÃmXX⊤

∥

∥

∥

2

F
≤ ε · ‖AY ‖2F .

Proof:

∥

∥

∥
AXX⊤ − ÃmXX⊤

∥

∥

∥

2

F
=

∥

∥

∥
A(I − V V ⊤)XX⊤

∥

∥

∥

2

F

≤ j
∥

∥

∥
A(I − V V ⊤)XX⊤

∥

∥

∥

2

2
(A.17)

≤ j
∥

∥

∥
A(I − V V ⊤)

∥

∥

∥

2

2
(A.18)

≤ j ·O(
ε

j
) ‖A−Aj‖2F (A.19)

= O(ε)

min(n,d)
∑

i=j

σ2
i (A.20)

≤ O(ε) ‖AY ‖2F (A.21)

�

(A.17) Note that rank(X) = j, so rank(A(I − V V ⊤)XX⊤) = j. We use this fact to bound the
Frobenius norm by the operator norm.
(A.18) Using the fact that XX⊤ is a projection.
(A.19) Using Lemma 18 from [CEM+15], where Aj is the optimal rank-j approximation to A.
We can apply this lemma because CountSketch is one of the eligible types of random projection
matrices.
(A.20) Letting σi be the singular values of A.

(A.21)
∑min(n,d)

i=j σ2
i = minY ‖AY ‖2F for Y ∈ R

d×(d−j) with orthonormal columns.
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Theorem A.11. Assume we have A ∈ R
n×d, j ∈ Z

+, ε ∈ (0, 1]. Define m = min(O(poly(j/ε)), d).
Let Ãm be a (1 + ε)-approximation to Am of the form Ãm = AV V ⊤ where SA = UΣV ⊤ for
CountSketch S ∈ R

m×n. Then, for any non-empty set µ contained in a j-dimensional subspace, we
have:

∣

∣

∣

∣

dist2(Ãm, µ) +
∥

∥

∥
Ãm −A

∥

∥

∥

2

F
− dist2(A,µ)

∣

∣

∣

∣

≤ εdist2(A,µ)

Proof: We follow the proof of Theorem 22 in [FSS13], but substitute different analyses in place of
Corollaries 16 and 20. The result of [FSS13] involves the best rank-m approximation of A, Am; we
will show it for the approximate rank-m approximation, Ãm.
Define X ∈ R

d×j with orthonormal columns such that colsp(X) = span(µ). Likewise, define
Y ∈ R

d×(d−j) with orthonormal columns such that colsp(Y ) = span(µ)⊥. By the Pythagorean
theorem:

dist2(Ãm, µ) = ‖ÃmY ‖2F + dist2(ÃmXXT , µ)

and
dist2(A,µ) = ‖AY ‖2F + dist2(AXXT , µ). (A.22)

Hence,
∣

∣

∣

∣

(

dist2(Ãm, µ) +
∥

∥

∥
A− Ãm

∥

∥

∥

2

F

)

− dist2(A,µ)

∣

∣

∣

∣

=

∣

∣

∣

∣

‖ÃmY ‖2F + dist2(ÃmXXT , µ) +
∥

∥

∥
A− Ãm

∥

∥

∥

2

F
−

(

‖AY ‖2F + dist2(AXXT , µ)
)

∣

∣

∣

∣

≤
∣

∣

∣
‖ÃmY ‖2F + ‖A− Ãm‖2F − ‖AY ‖2F

∣

∣

∣
+

∣

∣

∣
dist2(ÃmXXT , µ)− dist2(AXXT , µ)

∣

∣

∣
(A.23)

≤ε2

8
· ‖AY ‖2F +

∣

∣

∣
dist2(ÃmXXT , µ)− dist2(AXXT , µ)

∣

∣

∣
(A.24)

≤ε2

8
· dist2(A,µ) +

∣

∣

∣
dist2(ÃmXXT , µ)− dist2(AXXT , µ)

∣

∣

∣
⊲Used (A.22) (A.25)

(A.23) Triangle inequality.
(A.24) Take ǫ in Theorem 16 from [CEM+15] as ε2/8. This theorem implies that Ãm is a

projection-cost preserving sketch with the c term as
∥

∥

∥
A− Ãm

∥

∥

∥

2

F
. Specifically, it says AV is a

project-cost preserving sketch, which means Ãm = AV V ⊤ is too: V has orthonormal columns so

‖(I − P )AV ‖2F =
∥

∥(I − P )AV V ⊤
∥

∥

2

F
.

By Corollary A.10,
∥

∥

∥
ÃmXXT −AXXT

∥

∥

∥

2

F
≤ ε2

8
· ‖AY ‖2F .

Since µ ∈ rowsp(X), we have ‖AY ‖2F ≤ dist2(A,µ). Using Corollary 21 from [FSS13] while taking
ε as ε/4, A as ÃmXXT , and B as AXXT yields

|dist2(ÃmXXT , µ)− dist2(AXXT , µ)| ≤ ε

4
· dist2(AXXT , µ) + (1 +

4

ε
) ·

∥

∥

∥
ÃmXXT −AXXT

∥

∥

∥

2

F

By A.22, dist2(AXXT , µ) ≤ dist2(A,µ). Finally, we combining the last two inequalities with (A.25):
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∣

∣

∣

∣

(

dist2(Ãm, µ) +
∥

∥

∥
A− Ãm

∥

∥

∥

2

F

)

− dist2(A,µ)

∣

∣

∣

∣

≤ ε2

8
· dist2(A,µ) + ε

4
· dist2(A,µ) + ε2

8
· (1 + 4

ε
) · dist2(A,µ)

≤ ε · dist2(A,µ),

where in the last inequality we used the assumption ε ≤ 1. �

Corollary A.12. Assume we have A ∈ R
n×d and CountSketch S ∈ R

O(poly(k/ε))×n. Then, define
U ∈ R

d×O(poly(k/ε)) with orthogonal columns spanning row(SA). Also define AU = πU (A) and
µU as the set of optimal cluster centers found on AU . Now, assume ε ∈ (0, 1/3]. Then, µU is a
(1 + ε)-approximation to the optimal k-means clustering of A. That is, defining µ∗

U as the cluster
centers which minimize the cost of partition CU on A, we have:

dist2(A,µU ) ≤ (1 + ε) dist2(A,µ∗
U )

Proof: By using ε
3 in Theorem A.11 with j as k,

∣

∣

∣
dist2(AU , µU ) +

∥

∥A−AU
∥

∥

2

F
− dist2(A,µU )

∣

∣

∣
≤ ε

3
dist2(A,µU )

which implies that

(1− ε

3
) dist2(A,µU ) ≤ dist2(AU , µU ) +

∥

∥A−AU
∥

∥

2

F
(A.26)

Likewise, by Theorem A.11 on AU and µ∗
U (and taking j as k),

∣

∣

∣
dist2(AU , µ∗

U ) +
∥

∥A−AU
∥

∥

2

F
− dist2(A,µ∗

U )
∣

∣

∣
≤ ε

3
dist2(A,µ∗

U )

which implies that

dist2(AU , µ∗
U ) +

∥

∥A−AU
∥

∥

2

F
≤ (1 +

ε

3
) dist2(A,µ∗

U ) (A.27)

By (A.26) and (A.27) together, we have:

(1− ε

3
) dist2(A,µU ) ≤ dist2(AU , µU ) +

∥

∥A−AU
∥

∥

2

F

≤ dist2(AU , µ∗
U ) +

∥

∥A−AU
∥

∥

2

F

≤ (1 +
ε

3
) dist2(A,µ∗

U )

Now, 1+ε/3
1−ε/3 ≤ 1 + ε, so we have dist2(A,µU ) ≤ (1 + ε) dist2(A,µ∗

U ). �
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B Spectral Norm Guarantee for Zipfian Matrices

In this section, we show that if the singular values of the input matrix A follow a Zipfian distribution
(i.e., σi ∝ i−α for a constant α), we can find a (1 + ε) rank-k approximation of A with respect to
the spectral norm. A key theorem in this section is the following.

Theorem B.1 ([CEM+15], Theorem 27). Given an input matrix A ∈ R
n×d, there exists an

algorithm that runs in O(nnz(A) + (n + d) poly(k/ε)) and returns a projection matrix P = QQ⊤

such that with constant probability the following holds:

‖AP −A‖22 ≤ (1 + ε) ‖A−Ak‖22 +O(
ε

k
) ‖A−Ak‖2F (B.1)

Next, we prove the main claim in this section. There are various ways to prove this, using, for
example, a bound on the stable rank of A; we give the following short proof for completeness.

Theorem B.2. Given a matrix A ∈ R
n×d whose singular values follow a Zipfian distribution (i.e.,

σi ∝ i−α) with a constant α ≥ 1/2, there exists an algorithm that computes a rank-k matrix B (in
factored form) such that ‖A−B‖22 ≤ (1 + ε) ‖A−Ak‖22.

Proof: Note that since the singular values of A follow a Zipfian distribution with parameter α, for
any value of k,

‖A−Ak‖2F =

rank(A)
∑

i=k+1

σ2
i = C ·

rank(A)
∑

i=k+1

i−2α
⊲ σi =

√
C/iα

≤ C ·
∫ rank(A)

k
x−2α dx

≤ k · 1

2α− 1
· (1 + 1

k
)2α · C/(k + 1)2α

= O(k · σ2
k+1)

= O(k · ‖A−Ak‖22) (B.2)

By an application of Theorem B.1, we can compute a matrix B in a factored form in time
O(nnz(A) + (n+ d) poly(k/ε)) such that with constant probability,

‖B −A‖22 ≤ (1 + ε) ‖A−Ak‖22 +O(
ε

k
) ‖A−Ak‖2F ⊲ By Eq. (B.1)

≤ (1 +O(ε)) ‖A−Ak‖22 ⊲ Eq. (B.2) �

C Greedy Initialization

In this section, we analyze the performance of the greedy algorithm on the two distributions de-
scribed in Section 7.

Preliminaries and Notation. Left-multiplying A by CountSketch S ∈ R
m×n is equivalent to

hashing the rows of A tom bins with coefficients in {−1, 1}. The greedy algorithm proceeds through
the rows of A (in some order) and decides which bin to hash to, denoting this by adding an entry
to S. We will denote the bins as bi and their summed contents as wi.
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C.1 Spiked covariance model with sparse left singular vectors.

To recap, every matrixA ∈ R
n×d from the distributionAsp(s, ℓ) has s < k “heavy” rows (Ar1 , · · · , Ars)

of norm ℓ > 1. The indices of the heavy rows can be arbitrary, but must be the same for all mem-
bers of the distribution and are unknown to the algorithm. The remaining rows (called “light”
rows) have unit norm.

In other words: let R = {r1, . . . , rs}. For all rows Ai, i ∈ [n]:

Ai =

{

ℓ · vi if i ∈ R
vi o.w.

where vi is a uniformly random unit vector.
We also assume that Sr, Sg ∈ R

k×n and non-increasing row norm ordering for the greedy
algorithm.

Proof sketch. First, we show that the greedy algorithm using a non-increasing row norm ordering
will isolate heavy rows (i.e., each is alone in a bin). Then, we conclude by showing that this yields
a better k-rank approximation error when d is sufficiently large compared to n. We begin with
some preliminary observations that will be of use later.

It is well known that a set of uniformly random vectors are ε-almost orthogonal (i.e., the
magnitudes of their pairwise inner products are at most ε).

Observation C.1. Let v1, · · · , vn ∈ R
d be a set of random unit vectors. Then with high probability

|〈vi, vj〉| ≤ 2
√

logn
d ,∀ i < j ≤ n.

We define ε = 2
√

logn
d .

Observation C.2. Let u1, · · · , ut be a set of vectors such that for each pair of i < j ≤ t,
|〈 ui

‖ui‖
,

uj

‖uj‖
〉| ≤ ε, and gi, · · · , gj ∈ {−1, 1}. Then,

t
∑

i=1

‖ui‖22 − 2ε
∑

i<j≤t

‖ui‖2 ‖uj‖2 ≤
∥

∥

∥

∥

∥

t
∑

i=1

giui

∥

∥

∥

∥

∥

2

2

≤
t

∑

i=1

‖ui‖22 + 2ε
∑

i<j≤t

‖ui‖2 ‖uj‖2 (C.1)

Next, a straightforward consequence of ε-almost orthogonality is that we can find a QR-
factorization of the matrix of such vectors where R (an upper diagonal matrix) has diagonal entries
close to 1 and entries above the diagonal are close to 0.

Lemma C.3. Let u1, · · · , ut ∈ R
d be a set of unit vectors such that for any pair of i < j ≤ t,

|〈ui, uj〉| ≤ ε where ε = O(t−2). There exists an orthonormal basis e1, · · · , et for the subspace
spanned by u1, · · · , ut such that for each i ≤ t, ui =

∑i
j=1 ai,jej where a2i,i ≥ 1 −∑i−1

j=1 j
2 · ε2 and

for each j < i, a2i,j ≤ j2ε2.

Proof: We follow the Gram-Schmidt process to construct the orthonormal basis e1, · · · , et of the
space spanned by u1, · · · , ut. by first setting e1 = u1 and then processing u2, · · · , ut, one by one.

The proof is by induction. We show that once the first j vectors u1, · · · , uj are processed the
statement of the lemma holds for these vectors. Note that the base case of the induction trivially
holds as u1 = e1. Next, suppose that the induction hypothesis holds for the first ℓ vectors u1, · · · , uℓ.
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Claim C.4. For each j ≤ ℓ, a2ℓ+1,j ≤ j2ε2.

Proof: The proof of the claim is itself by induction. Note that, for j = 1 and using the fact that
|〈u1, uℓ+1〉| ≤ ε, the statement holds and a2ℓ+1,1 ≤ ε2. Next, suppose that the statement holds for
all j ≤ i < ℓ, then by |〈ui+1, uℓ+1〉| ≤ ε,

|aℓ+1,i+1| ≤ (|〈uℓ+1, ui+1|+
i

∑

j=1

|aℓ+1,j | · |ai+1,j |)/|ai+1,i+1|

≤ (ε+

i
∑

j=1

j2ε2)/|ai+1,i+1| ⊲ by induction hypothesis on aℓ+1,j for j ≤ i

≤ (ε+

i
∑

j=1

j2ε2)/(1−
i

∑

j=1

j2 · ε2)1/2 ⊲ by induction hypothesis on ai+1,i+1

≤ (ε+

i
∑

j=1

j2ε2) · (1−
i

∑

j=1

j2 · ε2)1/2 · (1 + 2 ·
i

∑

j=1

j2ε2)

≤ (ε+

i
∑

j=1

j2ε2) · (1 + 2 ·
i

∑

j=1

j2ε2)

≤ ε((

i
∑

j=1

j2ε) · (1 + 4ε ·
i

∑

j=1

j2ε) + 1)

≤ ε(i + 1) ⊲ by ε = O(t−2) �

Finally, since ‖uℓ+1‖22 = 1, a2ℓ+1,ℓ+1 ≥ 1−∑ℓ
j=1 j

2ε2. �

Corollary C.5. Suppose that ε = O(t−2). There exists an orthonormal basis e1, · · · , et for the
space spanned by the randomly picked vectors v1, · · · , vt, of unit norm, so that for each i, vi =
∑i

j=1 ai,jej where a2i,i ≥ 1−∑i−1
j=1 j

2 · ε2 and for each j < i, a2i,j ≤ j2 · ε2.

Proof: The proof follows from Lemma C.3 and the fact that the set of vectors v1, · · · , vt are ε-almost
orthogonal (by Observation C.1). �

The first main step is to show that the greedy algorithm (with non-increasing row norm ordering)
will isolate rows into their own bins until all bins are filled. In particular, this means that the heavy
rows (the first to be processed) will all be isolated.

We note that because we set rank(SA) = k, the k-rank approximation cost is the simplified

expression
∥

∥AV V ⊤ −A
∥

∥

2

F
, where UΣV ⊤ = SA, rather than

∥

∥[AV ]kV
⊤ −A

∥

∥

2

F
. This is just the

projection cost onto row(SA). Also, we observe that minimizing this projection cost is the same
as maximizing the sum of squared projection coefficients:

min
S

∥

∥

∥
A−AV V ⊤

∥

∥

∥

2

F
∼ min

S

∑

i∈[n]

‖Ai − (〈Ai, v1〉v1 + . . . + 〈Ai, vk〉vk)‖22

∼ min
S

∑

i∈[n]

(‖Ai‖22 −
∑

j∈[k]

〈Ai, vj〉2)
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∼ max
S

∑

i∈[n]

∑

j∈[k]

〈Ai, vj〉2

In the following sections, we will prove that our greedy algorithm makes certain choices by
showing that these choices maximize the sum of squared projection coefficients.

Lemma C.6. For any matrix A or batch of matrices A, at the end of iteration k, the learned
CountSketch matrix S maps each row to an isolated bin. In particular, heavy rows are mapped to
isolated bins.

Proof: For any iteration i ≤ k, we consider the choice of assigning Ai to an empty bin versus an
occupied bin. Without loss of generality, let this occupied bin be bi−1, which already contains Ai−1.

We consider the difference in cost for empty versus occupied. We will do this cost comparison
for Aj with j ≤ i− 2, j ≥ i+ 1, and finally, j ∈ {i− 1, i}.

First, we let {e1, . . . , ei} be an orthonormal basis for {A1, . . . , Ai} such that for each r ≤
i, Ar =

∑r
j=1 ar,jej where ar,r > 0. This exists by Lemma C.3. Let {e1, . . . , ei−2, e} be an

orthonormal basis for {A1, . . . , Ai+2, Ai−1 ± Ai}. Now, e = c0ei−1 + c1ei for some c0, c1 because
(Ai−1 ± Ai)− proj{e1,...,ei−2}(Ai−1 ±Ai) ∈ span(ei−1, ei). We note that c20 + c21 = 1 because we let
e be a unit vector. We can find c0, c1 to be:

c0 =
ai−1,i−1 + ai,i−1

√

(ai−1,i−1 + ai,i−1)2 + a2i,i

, c1 =
ai,i

√

(ai−1,i−1 + ai,i−1)2 + a2i,i

1. j ≤ i− 2: The cost is zero for both cases because Aj ∈ span({e1, . . . , ei−2}).

2. j ≥ i + 1: We compare the rewards (sum of squared projection coefficients) and find that
{e1, . . . , ei−2, e} is no better than {e1, . . . , ei}.

〈Aj , e〉2 = (c0〈Aj , ei−1〉+ c1〈Aj , ei〉)2

≤ (c21 + c20)(〈Aj , ei−1〉2 + 〈Aj , ei〉2) ⊲ Cauchy-Schwarz inequality

= 〈Aj , ei−1〉2 + 〈Aj , ei〉2

3. j ∈ {i− 1, i}: We compute the sum of squared projection coefficients of Ai−1 and Ai onto e:

(
1

(ai−1,i−1 + ai,i−1)2 + a2i,i
) · (a2i−1,i−1(ai−1,i−1 + ai,i−1)

2 + (ai,i−1(ai−1,i−1 + ai,i−1) + ai,iai,i)
2)

=(
1

(ai−1,i−1 + ai,i−1)2 + a2i,i
) · ((ai−1,i−1 + ai,i−1)

2(a2i−1,i−1 + a2i,i−1) + a4i,i + 2ai,i−1a
2
i,i(ai−1,i−1 + ai,i−1))

(C.2)

On the other hand, the sum of squared projection coefficients of Ai−1 and Ai onto ei−1 ∪ ei
is:

(
(ai−1,i−1 + ai,i−1)

2 + a2i,i
(ai−1,i−1 + ai,i−1)2 + a2i,i

) · (a2i−1,i−1 + a2i,i−1 + a2i,i) (C.3)
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Hence, the difference between the sum of squared projections of Ai−1 and Ai onto e and
ei−1 ∪ ei is ((C.3) - (C.2))

a2i,i((ai−1,i−1 + ai,i−1)
2 + a2i−1,i−1 + a2i,i−1 − 2ai,i−1(ai−1,i−1 + ai,i−1))

((ai−1,i−1 + ai,i−1)2 + a2i,i)

=
2a2i,ia

2
i−1,i−1

((ai−1,i−1 + ai,i−1)2 + a2i,i)
> 0

Thus, we find that {e1, . . . , ei} is a strictly better basis than {e1, . . . , ei−2, e}. This means the
greedy algorithm will choose to place Ai in an empty bin. �

Next, we show that none of the rows left to be processed (all light rows) will be assigned to the
same bin as a heavy row. The main proof idea is to compare the cost of “colliding” with a heavy
row to the cost of “avoiding” the heavy rows. Specifically, we compare the decrease (before and
after bin assignment of a light row) in the sum of squared projection coefficients, lower-bounding
it in the former case and upper-bounding it in the latter.

We introduce some results that will be used in Lemma C.10.

Claim C.7. Let Ak+r, r ∈ [1, . . . , n − k] be a light row not yet processed by the greedy algorithm.
Let {e1, . . . , ek} be the Gram-Schmidt basis for the current {w1, . . . , wk}. Let β = O(n−1k−3) upper
bound the inner products of normalized Ak+r, w1, . . . , wk. Then, for any bin i, 〈ei, Ak+r〉2 ≤ β2 ·k2.

Proof: This is a straightforward application of Lemma C.3. From that, we have 〈Ak+r, ei〉2 ≤ i2β2,
for i ∈ [1, . . . , k], which means 〈Ak+r, ei〉2 ≤ k2β2. �

Claim C.8. Let Ak+r be a light row that has been processed by the greedy algorithm. Let {e1, . . . , ek}
be the Gram-Schmidt basis for the current {w1, . . . , wk}. If Ak+r is assigned to bin bk−1 (w.l.o.g.),
the squared projection coefficient of Ak+r onto ei, i 6= k−1 is at most 4β2 ·k2, where β = O(n−1k−3)
upper bounds the inner products of normalized Ak+r, w1, · · · , wk.

Proof: Without loss of generality, it suffices to bound the squared projection of Ak+r onto the
direction of wk that is orthogonal to the subspace spanned by w1, · · · , wk−1. Let e1, · · · , ek be an
orthonormal basis of w1, · · · , wk guaranteed by Lemma C.3. Next, we expand the orthonormal
basis to include ek+1 so that we can write the normalized vector of Ak+r as vk+r =

∑k+1
j=1 bjej .

By a similar approach to the proof of Lemma C.3, for each j ≤ k − 2, bj ≤ β2j2. Next, since
|〈wk, vk+r〉| ≤ β,

|bk| ≤
1

|〈wk, ek〉|
· (|〈wk, vk+r〉|+

k−1
∑

j=1

|bj · 〈wk, ej〉|)

≤ 1
√

1−∑k−1
j=1 β

2 · j2
· (β +

k−2
∑

j=1

β2 · j2 + (k − 1) · β) ⊲ |bk−1| ≤ 1

=
β +

∑k−2
j=1 β

2 · j2
√

1−∑k−1
j=1 β

2 · j2
+ (k − 1)β
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≤ 2(k − 1)β − β2(k − 1)2
√

1−∑k−1
j=1 β

2 · j2
⊲ similar to the proof of Lemma C.3

< 2β · k

Hence, the squared projection of Ak+r onto ek is at most 4β2 ·k2 · ‖Ak+r‖22. We assumed ‖Ak+r‖.�

Claim C.9. We assume that the absolute values of the inner products of vectors in v1, · · · , vn are
at most ε < 1/(n2

∑

Ai∈b
‖Ai‖2) and the absolute values of the inner products of the normalized

vectors of w1, · · · , wk are at most β = O(n−3k−
3
2 ). Suppose that bin b contains the row Ak+r. Then,

the squared projection of Ak+r onto the direction of w orthogonal to span({w1, · · · , wk} \ {w}) is

at most
‖Ak+r‖

4
2

‖w‖22
+O(n−2) and is at least

‖Ak+r‖
4
2

‖w‖22
−O(n−2).

Proof: Without loss of generality, we assume that Ak+r is mapped to bk; w = wk. First, we provide
an upper and a lower bound for |〈vk+r, wk〉| where for each i ≤ k, we let wi =

wi

‖wi‖2
denote the

normalized vector of wi. Recall that by definition vk+r =
Ak+r

‖Ak+r‖2
.

|〈wk, vk+r〉| ≤
‖Ak+r‖2 +

∑

Ai∈bk
ε ‖Ai‖2

‖wk‖2
≤ ‖Ak+r‖2 + n−2

‖wk‖2
⊲ by ε <

n−2

∑

Ai∈bk
‖Ai‖2

≤ ‖Ak+r‖2
‖wk‖2

+ n−2
⊲ ‖wk‖2 ≥ 1 (C.4)

|〈wk, vk+r〉| ≥
‖Ak+r‖2 −

∑

Ai∈bk
‖Ai‖2 · ε

‖wk‖2
≥ ‖Ak+r‖2
‖wk‖2

− n−2 (C.5)

Now, let {e1, · · · , ek} be an orthonormal basis for the subspace spanned by {w1, · · · , wk} guaranteed
by Lemma C.3. Next, we expand the orthonormal basis to include ek+1 so that we can write
vk+r =

∑k+1
j=1 bjej . By a similar approach to the proof of Lemma C.3, we can show that for each

j ≤ k − 1, b2j ≤ β2j2. Moreover,

|bk| ≤
1

|〈wk, ek〉|
· (|〈wk, vk+r〉|+

k−1
∑

j=1

|bj · 〈wk, ej〉|)

≤ 1
√

1−∑k−1
j=1 β

2 · j2
· (|〈wk, vk+r〉|+

k−1
∑

j=1

β2 · j2) ⊲ by Lemma C.3

≤ 1
√

1−∑k−1
j=1 β

2 · j2
· (n−2 +

‖Ak+r‖2
‖wk‖2

+

k−1
∑

j=1

β2 · j2) ⊲ by (C.4)
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< β · k +
1

√

1− β2k3
· (n−2 +

‖Ak+r‖2
‖wk‖2

) ⊲ similar to the proof of Lemma C.3

≤ O(n−2) + (1 +O(n−2))
‖Ak+r‖2
‖wk‖2

⊲ by β = O(n−3k−
3
2 )

≤ ‖Ak+r‖2
‖wk‖2

+O(n−2) ⊲
‖Ak+r‖2
‖wk‖2

≤ 1

and,

|bk| ≥
1

|〈wk, ek〉|
· (|〈wk, vk+r〉| −

k−1
∑

j=1

|bj · 〈wk, ej〉|)

≥ |〈wk, vk+r〉| −
k−1
∑

j=1

β2 · j2 ⊲ since |〈wk, ek〉| ≤ 1

≥ ‖Ak+r‖2
‖wk‖2

− n−2 −
k−1
∑

j=1

β2 · j2 ⊲ by (C.5)

≥ ‖Ak+r‖2
‖wk‖2

−O(n−2) ⊲ by β = O(n−3k−
3
2 )

Hence, the squared projection of Ak+r onto ek is at most
‖Ak+r‖

4
2

‖wk‖
2
2

+O(n−2) and is at least
‖Ak+r‖

4
2

‖wk‖
2
2

−
O(n−2). �

Now, we show that at the end of the algorithm no light row will be assigned to the bins that
contain heavy rows.

Lemma C.10. We assume that the absolute values of the inner products of vectors in v1, · · · , vn
are at most ε < min{n−2k−

5
3 , (n

∑

Ai∈w
‖Ai‖2)−1}. At each iteration k + r, the greedy algorithm

will assign the light row Ak+r to a bin that does not contain a heavy row.

Proof: The proof is by induction. Lemma C.6 implies that no light row has been mapped to a bin
that contains a heavy row for the first k iterations. Next, we assume that this holds for the first
k + r − 1 iterations and show that is also must hold for the k + rth iteration.

To this end, we compare the sum of squared projection coefficients when Ak+r avoids and
collides with a heavy row.

First, we upper bound β = maxi 6=j≤k |〈wi, wj〉|/(‖wi‖2 ‖wj‖2). Let ci and cj respectively denote
the number of rows assigned to bi and bj .

β = max
i 6=j≤k

|〈wi, wj〉|
‖wi‖2 ‖wj‖2

≤ ci · cj · ε
√

ci − 2εc2i ·
√

cj − 2εc2j

⊲ Observation C.2

≤ 16ε
√
cicj ⊲ε ≤ n−2k−5/3

≤ n−1k−
5
3 ⊲ε ≤ n−2k−5/3
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1. If Ak+r is assigned to a bin that contains c light rows and no heavy rows. In this
case, the projection loss of the heavy rows A1, · · · , As onto row(SA) remains zero. Thus, we only
need to bound the change in the sum of squared projection coefficients of the light rows before and
after iteration k + r.

Without loss of generality, let wk denote the bin that contains Ak+r. Since Sk−1 = span({w1, · · · , wk−1})
has not changed, we only need to bound the difference in cost between projecting onto the compo-
nent of wk − Ak+r orthogonal to Sk−1 and the component of wk orthogonal to Sk−1, respectively
denoted as ek and ek.

I. By Claim C.7, for the light rows that are not yet processed (i.e., Aj for j > k+r), the squared
projection of each onto ek is at most β2k2. Hence, the total decrease in the squared projection
is at most (n− k − r) · β2k2.

II. By Claim C.8, for the processed light rows that are not mapped to the last bin, the squared
projection of each onto ek is at most 4β2k2. Hence, the total decrease in the squared projection
cost is at most (r − 1) · 4β2k2.

III. For each row Ai 6= Ak+r that is mapped to the last bin, by Claim C.9 and the fact ‖Ai‖42 =

‖Ai‖22 = 1, the squared projection of Ai onto ek is at most
‖Ai‖

2
2

‖wk−Ak+r‖
2
2

+ O(n−2) and the

squared projection of Ai onto ek is at least
‖Ai‖

2
2

‖wk‖
2
2

−O(n−2).

Moreover, the squared projection of Ak+r onto ek compared to ek increases by at least

(
‖Ak+r‖

2
2

‖wk‖
2
2

−O(n−2))−O(n−2) =
‖Ak+r‖

2
2

‖wk‖
2
2

−O(n−2).

Hence, the total squared projection of the rows in the bin bk decreases by at least:

(
∑

Ai∈wk/{Ar+k}

‖Ai‖22
‖wk −Ar+k‖22

+O(n−2))− (
∑

Ai∈wk

‖Ai‖22
‖wk‖22

−O(n−2))

≤‖wk −Ar+k‖22 +O(n−1)

‖wk −Ar+k‖22
− ‖wk‖22 −O(n−1)

‖wk‖22
+O(n−1) ⊲ by Observation C.2

≤O(n−1)

Hence, summing up the bounds in items I to III above, the total decrease in the sum of squared
projection coefficients is at most O(n−1).

2. If Ak+r is assigned to a bin that contains a heavy row. Without loss of generality, we
can assume that Ak+r is mapped to bk that contains the heavy row As. In this case, the distance
of heavy rows A1, · · · , As−1 onto the space spanned by the rows of SA is zero. Next, we bound the
amount of change in the squared distance of As and light rows onto the space spanned by the rows
of SA.

Note that the (k−1)-dimensional space corresponding to w1, · · · , wk−1 has not changed. Hence,
we only need to bound the decrease in the projection distance of Ak+r onto ek compared to ek (where
ek, ek are defined similarly as in the last part).

1. For the light rows other than Ak+r, the squared projection of each onto ek is at most β2k2.
Hence, the total increase in the squared projection of light rows onto ek is at most (n − k) ·
β2k2 = O(n−1).
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2. By Claim C.9, the sum of squared projections of As and Ak+r onto ek decreases by at least

‖As‖22 − (
‖As‖42 + ‖Ak+r‖42
‖As +Ar+k‖22

+O(n−1))

≥‖As‖22 − (
‖As‖42 + ‖Ak+r‖42

‖As‖22 + ‖Ar+k‖22 − n−O(1)
+O(n−1)) ⊲ by Observation C.2

≥‖Ar+k‖22 (‖As‖22 − ‖Ak+r‖22)− ‖As‖22 ·O(n−1)

‖As‖22 + ‖Ar+k‖22 −O(n−1)
−O(n−1)

≥‖Ar+k‖22 (‖As‖22 − ‖Ak+r‖22)− ‖As‖22 ·O(n−1)

‖As‖22 + ‖Ar+k‖22
−O(n−1)

≥‖Ar+k‖22 (‖As‖22 − ‖Ak+r‖22)
‖As‖22 + ‖Ar+k‖22

−O(n−1)

≥‖Ar+k‖22 (1− (‖Ak+r‖22 / ‖As‖22))
1 + (‖Ar+k‖22 / ‖As‖22)

−O(n−1)

≥‖Ar+k‖22 (1−
‖Ak+r‖2
‖As‖2

)−O(n−1) ⊲
1− ε2

1 + ε2
≥ 1− ε

Hence, in this case, the total decrease in the squared projection is at least

‖Ar+k‖22 (1−
‖Ak+r‖2
‖As‖2

)−O(n−1) = 1− ‖Ak+r‖2
‖As‖2

)−O(n−1) ⊲ ‖Ar+k‖2 = 1

= 1− (1/
√
ℓ)−O(n−1) ⊲ ‖As‖2 =

√
ℓ

Thus, for a sufficiently large value of ℓ, the greedy algorithm will assign Ak+r to a bin that only
contains light rows. This completes the inductive proof and in particular implies that at the end
of the algorithm, heavy rows are assigned to isolated bins. �

Corollary C.11. The approximation loss of the best rank-k approximate solution in the rowspace
SgA for A ∼ Asp(s, ℓ) where A ∈ R

n×d for d = Ω(n4k4 log n) and Sg is the CountSketch constructed
by the greedy algorithm with non-increasing order is at most n− s.

Proof: First, we need to show that absolute values of the inner products of vectors in v1, · · · , vn is
at most ε < min{n−2k−2, (n

∑

Ai∈w
‖Ai‖2)−1} so that we can apply Lemma C.10. To show this,

note that by Observation C.1, ε ≤ 2
√

logn
d ≤ n−2k−2 since d = Ω(n4k4 log n). The proof follows

from Lemma C.6 and Lemma C.10. Since all heavy rows are mapped to isolated bins, the projection
loss of the light rows is at most n− s. �

Next, we bound the Frobenius norm error of the best rank-k-approximation solution constructed
by the standard CountSketch with a randomly chosen sparsity pattern.

Lemma C.12. Let s = αk where 0.7 < α < 1. The expected squared loss of the best rank-k
approximate solution in the rowspace SrA for A ∈ R

n×d ∼ Asp(s, ℓ) where d = Ω(n6ℓ2) and Sr is the
sparsity pattern of CountSketch is chosen uniformly at random is at least n+ ℓk

4e−(1+α)k−n−O(1).
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Proof: We can interpret the randomized construction of the CountSketch as a “balls and bins”
experiment. In particular, considering the heavy rows, we compute the expected number of bins
(i.e., rows in SrA) that contain a heavy row. Note that the expected number of rows in SrA that

do not contain any heavy row is k · (1 − 1
k )

s ≥ k · e− s
k−1 . Hence, the number of rows in SrA that

contain a heavy row of A is at most k(1 − e−
s

k−1 ). Thus, at least s − k(1 − e−
s

k−1 ) heavy rows
are not mapped to an isolated bin (i.e., they collide with some other heavy rows). Then, it is
straightforward to show that the squared loss of each such row is at least ℓ− n−O(1).

Claim C.13. Suppose that heavy rows Ar1 , · · · , Arc are mapped to the same bin via a CountSketch
S. Then, the total squared distances of these rows from the subspace spanned by SA is at least
(c− 1)ℓ−O(n−1).

Proof: Let b denote the bin that contains the rows Ar1 , · · · , Arc and suppose that it has c′ light
rows as well. Note that by Claim C.8 and Claim C.9, the squared projection of each row Ari onto
the subspace spanned by the k bins is at most

‖Ahi
‖42

‖w‖22
+O(n−1)

≤ ℓ2

cℓ+ c′ − 2ε(c2ℓ+ cc′
√
ℓ+ c′2)

+O(n−1)

≤ ℓ2

cℓ− n−O(1)
+ n−O(1)

⊲ by ε ≤ n−3ℓ−1

≤ ℓ2

c2ℓ2
· (cℓ+O(n−1) +O(n−1)

≤ ℓ

c
+O(n−1)

Hence, the total squared loss of these c heavy rows is at least cℓ−c·( ℓc+O(n−1)) ≥ (c−1)ℓ−O(n−1).�

Hence, the expected total squared loss of heavy rows is at least:

ℓ · (s− k(1− e−
s

k−1 ))− s · n−O(1)

≥ℓ · k(α− 1 + e−α)− ℓα− n−O(1)
⊲ s = α · (k − 1) where 0.7 < α < 1

≥ℓk

2e
− ℓ− n−O(1)

⊲ α ≥ 0.7

≥ℓk

4e
−O(n−1) ⊲ assuming k > 4e

Next, we compute a lower bound on the expected squared loss of the light rows. Note that
Claim C.8 and Claim C.9 imply that when a light row collides with other rows, its contribution
to the total squared loss (which the loss accounts for the amount it decreases from the squared
projection of the other rows in the bin as well) is at least 1 − O(n−1). Hence, the expected total
squared loss of the light rows is at least:

(n− s− k)(1 −O(n−1)) ≥ (n− (1 + α) · k)−O(n−1)
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Hence, the expected squared loss of a CountSketch whose sparsity is picked at random is at
least

ℓk

4e
−O(n−1) + n− (1 + α)k −O(n−1) ≥ n+

ℓk

4e
− (1 + α)k −O(n−1) �

Corollary C.14. Let s = α(k − 1) where 0.7 < α < 1 and let ℓ ≥ (4e+1)n
αk . Let Sg be the

CountSketch whose sparsity pattern is learned over a training set drawn from Asp via the greedy
approach. Let Sr be a CountSketch whose sparsity pattern is picked uniformly at random. Then,
for an n× d matrix A ∼ Asp where d = Ω(n6ℓ2), the expected loss of the best rank-k approximation
of A returned by Sr is worse than the approximation loss of the best rank-k approximation of A
returned by Sg by at least a constant factor.

Proof:

ESr [ min
rank-kX∈rowsp(SrA)

‖X −A‖2F ] ≥ n+
ℓk

4e
− (1 + α)k − n−O(1)

⊲ Lemma C.12

≥ (1 + 1/α)(n − s) ⊲ ℓ ≥ (4e+ 1)n

αk

= (1 + 1/α) min
rank-k X∈rowsp(SgA)

‖X −A‖2F ⊲ Corollary C.11

�

C.2 Zipfian on squared row norms.

Each matrix A ∈ R
n×d ∼ Azipf has rows which are uniformly random and orthogonal. Each A has

2i+1 rows of squared norm n2/22i for i ∈ [1, . . . ,O(log(n))]. We also assume that each row has the
same squared norm for all members of Azipf .

In this section, the s rows with largest norm are called the heavy rows and the remaining are
the light rows. For convenience, we number the heavy rows 1 − s; however, the heavy rows can
appear at any indices, as long as any row of a given index has the same norm for all members of
Azipf . Also, we assume that s ≤ k/2 and, for simplicity, s =

∑hs

i=1 2
i+1 for some hs ∈ Z

+. That
means the minimum squared norm of a heavy row is n2/22hs and the maximum squared norm of a
light row is n2/22hs+2.

The analysis of the greedy algorithm ordered by non-increasing row norms on this family of
matrices is similar to our analysis for the spiked covariance model. Here we analyze the case in
which rows are orthogonal. By continuity, if the rows are close enough to being orthogonal, all
decisions made by the greedy algorithm will be the same.

As a first step, by Lemma C.6, at the end of iteration k the first k rows are assigned to different
bins. Then, via a similar inductive proof, we show that none of the light rows are mapped to a bin
that contains one of the top s heavy rows.

Lemma C.15. At each iteration k+r, the greedy algorithm picks the position of the non-zero value
in the (k+ r)-th column of the CountSketch matrix S so that the light row Ak+r is mapped to a bin
that does not contain any of top s heavy rows.

Proof: We prove the statement by induction. The base case r = 0 trivially holds as the first k rows
are assigned to distinct bins. Next we assume that in none of the first k + r − 1 iterations a light
row is assigned to a bin that contains a heavy row. Now, we consider the following cases:
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1. If Ak+r is assigned to a bin that only contains light rows. Without loss of generality we
can assume that Ak+r is assigned to bk. Since the vectors are orthogonal, we only need to bound
the difference in the projection of Ak+r and the light rows that are assigned to bk onto the direction
of wk before and after adding Ak+r to bk. In this case, the total squared loss corresponding to rows
in bk and Ak+r before and after adding Ak+1 are respectively

before adding Ak+r to bk: ‖Ak+r‖22 +
∑

Aj∈bk

‖Aj‖22 − (

∑

Aj∈bk
‖Aj‖42

∑

Aj∈bk
‖Aj‖22

)

after adding Ak+r to bk: ‖Ak+r‖22 +
∑

Aj∈bk

‖Aj‖22 − (
‖Ak+r‖42 +

∑

Aj∈bk
‖Aj‖42

‖Ak+r‖22 +
∑

Aj∈bk
‖Aj‖22

)

Thus, the amount of increase in the squared loss is

(

∑

Aj∈bk
‖Aj‖42

∑

Aj∈bk
‖Aj‖22

)− (
‖Ak+r‖42 +

∑

Aj∈bk
‖Aj‖42

‖Ak+r‖22 +
∑

Aj∈bk
‖Aj‖22

) =
‖Ak+r‖22 ·

∑

Aj∈bk
‖Aj‖42 − ‖Ak+r‖42 ·

∑

Aj∈bk
‖Aj‖22

(
∑

Aj∈bk
‖Aj‖22)(‖Ak+r‖22 +

∑

Aj∈bk
‖Aj‖22)

= ‖Ak+r‖22 ·

∑
Aj∈bk

‖Aj‖
4
2

∑
Aj∈bk

‖Aj‖
2
2

− ‖Ak+r‖22
∑

Aj∈bk
‖Aj‖22 + ‖Ak+r‖22

≤ ‖Ak+r‖22 ·
∑

Aj∈bk
‖Aj‖22 − ‖Ak+r‖22

∑

Aj∈bk
‖Aj‖22 + ‖Ak+r‖22

(C.6)

2. If Ak+r is assigned to a bin that contains a heavy row. Without loss of generality and
by the induction hypothesis, we assume that Ak+r is assigned to a bin b that only contains a heavy
row Aj . Since the rows are orthogonal, we only need to bound the difference in the projection of
Ak+r and Aj In this case, the total squared loss corresponding to Aj and Ak+r before and after
adding Ak+1 to b are respectively

before adding Ak+r to bk: ‖Ak+r‖22

after adding Ak+r to bk: ‖Ak+r‖22 + ‖Aj‖22 − (
‖Ak+r‖42 + ‖Aj‖42
‖Ak+r‖22 + ‖Aj‖22

)

Thus, the amount of increase in the squared loss is

‖Aj‖22 − (
‖Ak+r‖42 + ‖Aj‖42
‖Ak+r‖22 + ‖Aj‖22

) = ‖Ak+r‖22 ·
‖Aj‖22 − ‖Ak+r‖22
‖Aj‖22 + ‖Ak+r‖22

(C.7)

Then (C.7) is larger than (C.6) if ‖Aj‖22 ≥
∑

Ai∈bk
‖Ai‖22. Next, we show that at every inductive

iteration, there exists a bin b which only contains light rows and whose squared norm is smaller than
the squared norm of any heavy row. For each valuem, define hm so thatm =

∑hm

i=1 2
i+1 = 2hm+2−2.

Recall that all heavy rows have squared norm at least n2

22hs
. There must be a bin b that only

contains light rows and has squared norm at most

‖w‖22 =
∑

Ai∈b

‖Ai‖22 ≤
n2

22(hs+1)
+

∑hn

i=hk+1
2i+1n2

22i

k − s
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≤ n2

22(hs+1)
+

2n2

2hk(k − s)

≤ n2

22(hs+1)
+

n2

22hk
⊲ s ≤ k/2 and k > 2hk+1

≤ n2

22hs+1
⊲ hk ≥ hs + 1

< ‖As‖22

Hence, the greedy algorithm will map Ak+r to a bin that only contains light rows. �

Corollary C.16. The squared loss of the best rank-k approximate solution in the rowspace of SgA
for A ∈ R

n×d ∼ Azipf where A ∈ R
n×d and Sg is the CountSketch constructed by the greedy

algorithm with non-increasing order, is < n2

2hk−2 .

Proof: At the end of iteration k, the total squared loss is
∑hn

i=hk+1 2
i+1 · n2

22i
. After that, in each

iteration k + r, by (C.6), the squared loss increases by at most ‖Ak+r‖22. Hence, the total squared
loss in the solution returned by Sg is at most

2(

hn
∑

i=hk+1

2i+1n2

22i
) = 4n2 ·

hn
∑

i=hk+1

1

2i

<
4n2

2hk
=

n2

2hk−2
�

Next, we bound the squared loss of the best rank-k-approximate solution constructed by the
standard CountSketch with a randomly chosen sparsity pattern.

Observation C.17. Let us assume that the orthogonal rows Ar1 , · · · , Arc are mapped to same bin
and for each i ≤ c, ‖Ar1‖22 ≥ ‖Ari‖22. Then, the total squared loss of Ar1 , · · · , Arc after projecting
onto Ar1 ± · · · ±Arc is at least ‖Ar2‖22 + · · · + ‖Arc‖22.

Proof: Note that since Ar1 , · · · , Arc are orthogonal, for each i ≤ c, the squared projection of Ari

onto Ar1 ± · · · ±Arc is ‖Ari‖42 /
∑c

j=1

∥

∥Arj

∥

∥

2

2
. Hence, the sum of squared projection coefficients of

Ar1 , · · · , Arc onto Ar1 ± · · · ±Arc is

∑c
j=1

∥

∥Arj

∥

∥

4

2
∑c

j=1

∥

∥Arj

∥

∥

2

2

≤ ‖Ar1‖22

Hence, the total projection loss of Ar1 , · · · , Arc onto Ar1 ± · · · ±Arc is at least

c
∑

j=1

∥

∥Arj

∥

∥

2

2
− ‖Ar1‖22 = ‖Ar2‖22 + · · ·+ ‖Arc‖22 . �

In particular, Observation C.17 implies that whenever two rows are mapped into a same bin, the
squared norm of the row with smaller norm fully contributes to the total squared loss of the solution.
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Lemma C.18. For k > 210 − 2, the expected squared loss of the best rank-k approximate solution
in the rowspace of SrA for An×d ∼ Azipf , where Sr is the sparsity pattern of a CountSketch chosen

uniformly at random, is at least 1.095n2

2hk−2 .

Proof: In light of Observation C.17, we need to compute the expected number of collision between
rows with “large” norm. We can interpret the randomized construction of the CountSketch as a
“balls and bins” experiment.

For each 0 ≤ j ≤ hk, let Aj denote the set of rows with squared norm n2

22(hk−j) and let A>j =
⋃

j<i≤hk
Ai. Note that for each j, |Aj| = 2hk−j+1 and |A>j| =

∑hk

i=j+1 2
hk−i+1 =

∑hk−j
i=1 2i =

2(2hk−j − 1). Moreover, note that k = 2(2hk+1 − 1). Next, for a row Ar in Aj (0 ≤ j < hk), we
compute the probability that at least one row in A>j collide with Ar.

Pr[at least one row in A>j collide with Ar] = (1− (1− 1

k
)|A>j |)

≥ (1− e−
|A>j |

k )

= (1− e
− 2hk−j−1

2hk+1−1 )

≥ (1− e−2−j−2
) ⊲ since

2hk−j − 1

2hk+1 − 1
> 2−j−2

Hence, by Observation C.17, the contribution of rows in Aj to the total squared loss is at least

(1− e−2−j−2
) · |Aj | ·

n2

22(hk−j)
=(1− e−2−j−2

) · n2

2hk−j−1

=(1− e−2−j−2
) · n2

2hk−2
· 2j−1

Thus, the contribution of rows with “large” squared norm, i.e., A>0, to the total squared loss is at
least7

n2

2hk−2
·

hk
∑

j=0

2j−1 · (1− e−2−j−2
) ≥ 1.095 · n2

2hk−2
⊲for hk > 8 �

Corollary C.19. Let Sg be a CountSketch whose sparsity pattern is learned over a training set
drawn from Asp via the greedy approach. Let Sr be a CountSketch whose sparsity pattern is picked
uniformly at random. Then, for an n× d matrix A ∼ Azipf , for a sufficiently large value of k, the
expected loss of the best rank-k approximation of A returned by Sr is worse than the approximation
loss of the best rank-k approximation of A returned by Sg by at least a constant factor.

Proof: The proof follows from Lemma C.18 and Corollary C.16. �

Remark C.20. We have provided evidence that the greedy algorithm that examines the rows
of A according to a non-increasing order of their norms (i.e., greedy with non-increasing order)
results in a better rank-k solution compared to the CountSketch whose sparsity pattern is chosen

7The numerical calculation is computed by WolframAlpha.
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at random. However, still other implementations of the greedy algorithm may result in a better
solution compared to the greedy with non-increasing order. To give an example, in the following
simple instance the greedy algorithm that check the rows of A in a random order (i.e., greedy with
random order) achieves a rank-k solution whose cost is a constant factor better than the solution
returned by the greedy with non-increasing order.

Let A be a matrix with four orthogonal rows u, u, v, w where ‖u‖2 = 1 and ‖v‖2 = ‖w‖2 = 1+ε
and suppose that the goal is to compute a rank-2 approximation of A. Note that in the greedy
with non-decreasing order, v and w will be assigned to different bins and by a simple calculation
we can show that the copies of u also will be assigned to different bins. Hence, the squared loss in

the computed rank-2 solution is 1+ (1+ε)2

2+(1+ε)2
. However, the optimal solution will assign v and w to

one bin and the two copies of u to the other bin which results in the squared loss of (1 + ε)2 which
is a constant factor smaller than the solution returned by the greedy with non-increasing order for
sufficiently small values of ε.

On the other hand, in the greedy algorithm with random order, with a constant probability
(13+

1
8 ), the computed solution is the same as the optimal solution. Otherwise, the greedy algorithm

a with random order returns the same solution as the greedy algorithm with a non-increasing order.
Hence, in expectation, the solution returned by the greedy with random order is better than the
solution returned by the greedy algorithm with non-increasing order by a constant factor.

D Experiments - Appendix

We first note that we group k-means clustering into the low rank approximation (LRA) family of
tasks because it can be considered as a constrained LRA problem (Section 2.3 in [CEM+15]).

D.1 Baselines

We comment on two of our baselines for the low-rank approximation family of tasks (LRA, k-
means):

• Exact SVD: In the canonical, learning-free sketching setting (i.e., any matrix is equally
probable), sketching using the top m singular vectors yields a (1+ ε)-approximation for both
LRA and k-means [CEM+15].

• Column sampling: In the canonical, learning-free sketching setting, sketching via column
sampling yields a (1 + ε)-approximation for k-means [CEM+15].

D.2 Evaluation metric

To evaluate the quality of a given sketch S, we first compute the task objective, L(S,A), over Atest.
We will denote this by Ltest(S). As an example, for MRR:

Ltest(S) =
1

|(A,B)test|
∑

(Ai,Bi)∈(A,B)test

∥

∥Ai(SAi)
+(SBi)−Bi

∥

∥

2

F
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Then, we compute the average optimal objective value over Atest. We call this L∗. Continuing the
MRR example, we have:

L∗ = 1

|(A,B)test|
∑

(Ai,Bi)∈(A,B)test

∥

∥

∥
Ai(A

⊤
i Ai)

−1A⊤
i Bi −Bi

∥

∥

∥

2

F

For MRR and LRA, it is easy to compute the optimal objective because we have expressions for the
optimal solutions. For ℓp and Huber regression, we use stochastic (sub)-gradient descent (SGD) or
iteratively reweighted least squares (IRLS) until convergence to iteratively find the optimal solution.
For k-means clustering, we use an approximation algorithm such as k-means++ to approximate
L∗. Finally, our evaluation metric is ∆S = Ltest(S)− L∗.

D.3 Multiple trials

We computed each value in our tables by averaging over three trials. For the tables in Section 8
that omitted standard deviations, we provide that information in Tables D.1 and D.2. For most
experiments, the standard deviation is much smaller than the difference in approximation error
between random and learned (random pattern).

Table D.1: Test errors and standard deviations for ℓ1.5 regression

m, Sketch Gas Tunnel Electric

20, random 16.100757 ± 1.878811 0.905101 ± 0.148539 139.079274 ± 7.094347

20, learned (random pattern) 15.662183 ± 1.249631 0.767999 ± 0.177185 131.755758 ± 3.352831

30, random 14.955649 ± 0.207941 0.639754 ± 0.190440 57.653981 ± 0.801098

30, learned (random pattern) 14.858939 ± 0.553371 0.505537 ± 0.057456 48.685349 ± 2.433104

40, random 14.329586 ± 0.162131 0.425036 ± 0.086589 48.733799 ± 1.633098

40, learned (random pattern) 14.305626 ± 0.138766 0.345803 ± 0.051074 44.492352 ± 3.361606

Table D.2: Test errors and standard deviations for Huber regression

m, Sketch Gas Tunnel Electric

20, random 0.058685 ± 0.029150 0.001115 ± 0.000043 0.288651 ± 0.017330

20, learned (random pattern) 0.042292 ± 0.027936 0.001091 ± 0.000054 0.275271 ± 0.014699

30, random 0.045003 ± 0.023366 0.001279 ± 0.000291 0.108427 ± 0.019368

30, learned (random pattern) 0.020599 ± 0.016536 0.000987 ± 0.000079 0.106119 ± 0.021819

40, random 0.043164 ± 0.008262 0.001006 ± 0.000057 0.073449 ± 0.011859

40, learned (random pattern) 0.009170 ± 0.015103 0.000918 ± 0.000047 0.071874 ± 0.011770

D.4 Experimental parameters

For the tables in Section 8, we describe experimental parameters. First, we provide some general
implementation details.

We implemented both the greedy (Algorithm 6) and stochastic gradient descent (Algorithm 2)
algorithms in PyTorch. In the first case, PyTorch allowed us to harness GPUs to speed up computa-
tion on large matrices. We used several Nvidia GeForce GTX 1080 Ti machines. In the second case,
PyTorch allowed us to effortlessly compute numerical gradients for each task’s objective function.
Specifically, PyTorch provides automatic differentiation, which is implemented by backpropagation
through chained differentiable operators.
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There are also two points of note in the greedy algorithm implementation. First, we noticed
that for MRR and LRA, each iteration required computing the SVD for many rank-1 updates of
the current S. Instead of computing the SVD from scratch for each of these variants, we first
computed the SVD of S and then used fast rank-1 SVD updates [Bra06]. This greatly improved
the runtime of Algorithm 6. Second, we decided to set Dw (the set of candidate row weights) to 10
samples in [−2, 2] because we noticed most weights were in this range after running Algorithm 2.

Next, we introduce some abbreviations for our experimental parameters.
For Algorithm 2:

• bs: batch size, the number of training samples used in a given iteration.

• lr: learning rate.

• num it: total number of gradient steps.

• init method: if not initializing with S produced by Algorithm 6, then this is the initialization
method for the values of the non-zero entries. These can be Rademacher (Unif(±1)) or
standard Gaussian (N (0, 1)).

For Algorithm 6:

• row order: order that the rows of the data matrices are iterated over.

• bs: batch size, the number of training samples used in a given iteration.

Table 8.1: Test errors for MRR

Parameters for Algorithm 2: bs = 20, lr = 10.0, 50.0, 30.0 for gas, tunnel, and electric respectively,
num it = 1000, init method = Unif(±1)
Parameters for Algorithm 6: row order = random, bs = 5 for gas and bs = 1 for others

Table 8.2: Test errors for ℓ1.5 regression

Parameters for Algorithm 2: init method = N (0, 1) for all, other parameters in Table D.3

Table D.3: Experimental parameters for learned (random pattern) on ℓ1.5 regression

m Gas Tunnel Electric

20 bs = 32, lr = 1e− 5, num it = 1000 bs = 64, lr = 5e− 6, num it = 1000 bs = 128, lr = 1e− 5, num it = 180

30 bs = 64, lr = 1e− 5, num it = 200 bs = 64, lr = 5e− 6, num it = 1000 bs = 64, lr = 1, num it = 90

40 bs = 32, lr = 1e− 8, num it = 180 bs = 64, lr = 5e− 6, num it = 1000 bs = 128, lr = 20, num it = 30

Table 8.3: Test errors for Huber regression

Parameters for Algorithm 2: num it = 1000 unless otherwise stated, init method = N (0, 1) for all,
other parameters in Table D.4
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Table D.4: Experimental parameters for learned (random pattern) on Huber regression

m Gas Tunnel Electric

20 bs = 64, lr = 5e− 03 bs = 64, lr = 0.5 bs = 64, lr = 1e− 6, num it = 90

30 bs = 64, lr = 5e− 03 bs = 64, lr = 50 bs = 128, lr = 1e− 5, num it = 90

40 bs = 64, lr = 5e− 03 bs = 128, lr = 50 bs = 128, lr = 1e− 6, num it = 20

Table 8.4: Test errors for LRA (using Algorithm 4 with four sketches)

For a given m, the dimensions of the four sketches were: S ∈ R
m×n, R ∈ R

m×d, S2 ∈ R
5m×n, R2 ∈

R
5m×d

Parameters for Algorithm 2: bs = 5, lr = 1.0, 10.0 for hyper and video respectively, num it =
1000, init method = Unif(±1)

Table 8.5: Timing comparison for two approximate LRA algorithms

The algorithms are timed for speed on 1 input matrix run on an Nvidia GeForce GTX 1080 Ti
GPU. The times are averaged over 10 trials.

Table 8.6: Test errors for LRA (using Algorithm 1 from [IVY19] with one sketch)

Parameters for Algorithm 2: bs = 1, 5 for learned (random pattern) and learned (greedy pattern) re-
spectively, lr = 1.0, 10.0 for hyper and video respectively, num it = 1000, init method = Unif(±1)
Parameters for Algorithm 6: row order = random, bs = 1

Table 8.7: Test errors for k-means clustering

We used the transposition of the LRA data sets and the transposition of the left-handed sketches
trained for LRA. In other words, our sketched data was A⊤S⊤, with A from an LRA data set and
S trained for LRA using Algorithm 1 from [IVY19] and the learned (random pattern) method.

Table 8.8: Test errors for learned (greedy pattern) with different row orders

Table values were computed for the LRA task with k = 20,m = 20.
We analyze row ordering performance in greater detail below.

Definition D.1 (Leverage score). Let Ai be the i-th row of A. The leverage score of Ai is

0 ≤ σi = A⊤
i (A

⊤A)+Ai ≤ 1

A row’s leverage score measures how important it is in composing row(A). If a row has a large
leverage score, that means it has components along the least well-represented row space directions
and is therefore important.

We studied three arbitrary row orderings (random, forwards, backwards), the decreasing row
norm ordering suggested by Theorems 7.1 and 7.2, and the decreasing leverage score ordering. We
included this last ordering because it was reasonable to try prioritizing rows that were “unsubsti-
tutable” in composing row(A).
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The performance of the decreasing leverage score ordering was average, perhaps because it is
better to prioritize rows that compose important (i.e., high variance) directions of row(A) than
rows that compose rare directions (i.e., rows with high leverage scores). The decreasing row norm
ordering sometimes performed very well and sometimes with a less pronounced effect. One conjec-
ture is that it excels when the natural data distribution closely matches the spiked covariance or
Zipfian models, as explained by our theory.

We note that the forward ordering performed best on the synthetic spiked covariance data set.
This is because we constructed the data set by placing the heavy-normed rows first in every matrix.
However, we can still observe that the decreasing row norm ordering is ∼ 20% better than random,
as suggested by Theorem 7.1.

Based on Table 8.8 and Tables 8.1 and 8.6 (where the random ordering was used exclusively),
we conclude that while the best row ordering depends on the application, random performs well
across various applications.

D.5 Running time

We examine the runtimes of our various sketching algorithms. In Table D.5, the times are obtained
for the LRA task with k = 30,m = 60 on the logo data set. However, similar trends should be
expected for other combinations of task, task parameters, and data sets.

We define the inference runtime as the time to apply the sketching algorithm. The training
runtime is the time to train a sketch on Atrain and only applies to learned sketches. Generally, the
long training times are not problematic because training is only done once and can be completed
offline. On the other hand, the inference runtime should be as fast as possible.

Note that inference was timed using 1 matrix from Atest on an Nvidia Geforce GTX 1080 Ti
GPU. The values were averaged over 10 trials.

We observe that sparse sketches (such as the ones used in learned (random pattern) and learned
(greedy pattern)) have much lower inference runtimes than the dense sketches of exact SVD.

Table D.5: Timing comparison of sketching algorithms for LRA (using Algorithm 1 from [IVY19])

Time (sec)

random: inference 0.0114

exact SVD: inference 0.185

learned (random pattern): training 193 (3 min)

learned (random pattern): inference 0.0114

learned (greedy pattern): training 6300 (1 h 45 min)

learned (greedy pattern): inference 0.0114
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