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1 Introduction

Clustering is a foundational problem in machine learning and data analysis, aiming to partition a
dataset into subsets (clusters) such that data points within a cluster are similar according to a given
objective. Classical clustering algorithms, such as 𝑘-means, 𝑘-median, and 𝑘-center, have found
widespread use in applications ranging from recommendation systems and market segmentation
to medical diagnostics and image analysis. However, these traditional objectives focus solely on
optimizing notions of proximity or compactness and often overlook issues of fairness, particularly in
how individuals from different demographic or social groups are treated.

In recent years, there has been a growing awareness that standard clustering procedures may
exacerbate bias or reinforce structural disparities, such as forming clusters that disproportionately
represent one demographic group while marginalizing others. This has motivated the development
of fair clustering algorithms, which aim to incorporate fairness constraints alongside standard
clustering objectives. Fairness in clustering can take many forms, including ensuring balanced
group representation within clusters, minimizing worst-case costs across demographic groups
(social fairness), or guaranteeing that similar individuals are treated similarly (individual fairness).
These models bring together algorithmic design with ethical and societal considerations, making
the study of fair clustering both technically rich and socially important.

In this survey, we provide an overview of algorithmic results in fair clustering, with an emphasis
on theoretical models, approximation guarantees, and algorithmic techniques. Our focus is
primarily on centroid-based clustering objectives, such as fair variants of 𝑘-center, 𝑘-median, and
𝑘-means, which have been the most extensively studied from an algorithmic perspective. We
briefly mention other clustering frameworks where fairness has also been explored, including
spectral clustering [Kleindessner et al., 2019b, Wang et al., 2023, Tonin et al., 2025] and hierarchical
clustering [Ahmadian et al., 2020, Chhabra et al., 2021, Knittel et al., 2023a,b], though these are not
the main focus of this survey.

It is worth emphasizing that this is by no means a comprehensive survey. The body of work in
fair clustering is vast and growing, including numerous models, fairness criteria, algorithmic
strategies, and empirical evaluations. Our goal is to present a curated overview of core algorithmic
contributions that have shaped the field, particularly in terms of theoretical guarantees and
complexity results. Moreover, we are not covering the empirical aspects of fair clustering in detail,
such as the development of real-world benchmarks, practical deployment challenges, and critical
evaluations of fairness definitions. These components are not only important but also essential for
advancing the overall impact of fair clustering within the broader fields of algorithmic fairness and
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machine learning. Developing representative datasets and benchmarks is crucial for translating
theoretical insights into effective practice, and deployment-focused studies often reveal practical
trade-offs that are not captured by algorithmic models alone. For readers interested in these
empirical and application-oriented directions, we refer to works such as [], which investigate the
effectiveness of fair clustering on real datasets, examine benchmark design, and assess the interplay
between fairness, accuracy, and interpretability in real-world settings. Well-known real-world
examples, such as the ProPublica analysis of recidivism risk scores in classification [Angwin et al.,
2022], have been instrumental in highlighting both the challenges and societal impact of fairness in
algorithmic decision making. Similarly, compelling case studies and practical applications in fair
clustering have the potential to capture attention and clearly demonstrate the real-world value and
necessity of fairness in this area.

Roadmap of the survey. Fair clustering methods can be broadly categorized according to the
type of fairness they seek to enforce, reflecting different philosophical and practical interpretations
of what it means for a clustering to be “fair” [Dwork et al., 2012, Hardt et al., 2016, Barocas et al.,
2017, Mitchell et al., 2021]. These categories distinguish whether fairness is defined at the level
of individuals, groups, or the overall distribution of clustering outcomes, and each perspective
introduces unique algorithmic challenges and modeling considerations.

2 Group Fairness Notions in Clustering

A central line of work in fair clustering focuses on enforcing group fairness, where individuals are
partitioned into protected demographic groups (such as by race, gender, or age), and the goal is to
ensure that the clustering process does not result in disproportionate or disparate treatment of any
group. Group fairness has attracted significant interest due to its close connection to real-world
equity concerns and its potential to reduce bias in downstream decision-making applications.
The key idea is to ensure that no group is systematically underrepresented, overrepresented, or
disproportionately burdened by the clustering output.

However, there is no single canonical definition of group fairness in clustering. Instead, several
formalizations have been proposed, each capturing a different intuition about what it means for a
clustering to be fair. These include notions such as balance within clusters, where the demographic
composition of each cluster should resemble that of the whole dataset; fair representation within centers,
where the selected cluster representatives (e.g., medoids or means) should be demographically
diverse; and cost-based fairness such as min-max or socially fair clustering, which aims to equalize
clustering costs across groups.

In the following subsections, we survey key algorithmic developments under each of these group
fairness paradigms.

2.1 Fair representation within clusters

This notion of group fairness in clustering aims to ensure that each cluster reflects the demographic
composition of the dataset, particularly across protected groups such as gender or ethnicity.
Chierichetti et al. [2017] pioneered the algorithmic study of fair clustering by introducing the notion
of balance, a quantitative measure of group parity within a subset.

In their seminal work, Chierichetti et al. [2017] introduced the notion of fair clustering with two
protected groups. In this setting, we are given a set of 𝑛 points 𝑃 in a metric space (𝑋, 𝑑), where
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Figure 1: Left (U): An unbalanced clustering, where the selected cluster is dominated by individuals
from one group (green), with only a single member from the other group, resulting in unequal
representation in the advantaged cluster. Right (F): A more balanced clustering.

each point belongs to either the red or the blue group. For any subset of points 𝑆 ⊆ 𝑃, let 𝑟(𝑆)
and 𝑏(𝑆) denote the number of red and blue points in 𝑆, respectively. The balance is defined as
balance(𝑆) = min

(
𝑟(𝑆)
𝑏(𝑆) ,

𝑏(𝑆)
𝑟(𝑆)

)
, which attains its maximum value of 1 when the groups are equally

represented. Given the point set 𝑃, a number of clusters 𝑘, and a required minimum balance
𝑡 ∈ (0, 1], the fair clustering problem is to partition 𝑃 into clusters 𝒞 = {𝐶1 , . . . , 𝐶𝑘} such that
each cluster 𝐶𝑖 satisfies balance(𝐶𝑖) ≥ 𝑡, a property referred to as 𝑡-balance, while minimizing a
clustering objective such as 𝑘-center or 𝑘-median.

Chierichetti et al. [2017] showed that enforcing exact fairness constraints in clustering is NP-hard,
and then develop a two-stage approximation framework based on the concept of fairlets which
are small, 𝑡-balanced subsets that act as “atomic” units in the subsequent clustering process. The
method first decomposes the dataset into a collection of fairlets and then applies standard clustering
algorithms on their representatives. For the case of 𝑡 = 1, the fairlet decomposition reduces to a
minimum-cost perfect matching problem. Their framework yields approximation algorithms when
the balance parameter 𝑡 is a rational number: For example, they provide a 4-approximation for the
fair 𝑘-center problem, and show 𝑂(𝑡)-approximation for the fair 𝑘-median problem.

This two-step method preserves fairness guarantees and modularity which allows existing clustering
algorithms to be adapted with minimal changes. However, the construction of fairlets may become
computationally expensive, particularly as the number of groups increases.

Next, we consider a generalization of the fair clustering problem to the setting with multiple groups.
Specifically, we are given a set of 𝑛 points 𝑃 in a metric space (𝑋, 𝑑), where each point may belong
to one or more of ℓ (possibly overlapping) groups 𝑃1 , . . . , 𝑃ℓ , and 𝑃 =

⋃
𝑖∈[ℓ ] 𝑃𝑖 .

2.1.1 Extending to multiple groups: (I) absolute balance.

Generalizing the fair representation notion of Chierichetti et al. [2017], Bera et al. [2019] introduced
a more general model of fairness in clustering using parameterized group constraints applicable
to the setting with more than two groups. Each protected group 𝑗 is assigned lower and upper
fraction bounds, 𝛼 𝑗 and 𝛽 𝑗 , to enforce representation constraints in every cluster. Formally, a
clustering 𝒞 = {𝐶1 , · · · , 𝐶𝑘} is (𝛼, 𝛽)-fair if for every cluster 𝐶 ∈ 𝒞 and every group 𝑗 ∈ [ℓ ],
𝛼 𝑗 · |𝐶| ≤ |𝐶 ∩ 𝑃𝑗| ≤ 𝛽 𝑗 · |𝐶|.
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Bera et al. [2019] present a post-processing algorithm that converts any vanilla clustering (for any ℓ𝑝
objective, such as 𝑘-means, 𝑘-median, or 𝑘-center) into one that satisfies these fairness constraints,
with an additive violation of at most 4Δ + 3 individuals per group per cluster (where Δ is the
maximum number of groups any point belongs to), while increasing the clustering cost by at most
a constant factor. Independently, Bercea et al. [2019] obtained similar guarantees by allowing small
additive violations in group representation. While both approaches seek to balance fairness and
clustering quality, the algorithm of Bera et al. [2019] provides stronger guarantees and supports the
more general setting with overlapping group memberships.

For fair 𝑘-center clustering, Harb and Lam [2020] proposed a scalable algorithm that achieves a
5-approximation guarantee, with additive fairness violations matching those in Bera et al. [2019].
Notably, although this algorithm allows for worst-case additive violations of fairness constraints,
the authors show that the expected additive deviation from the specified 𝛼𝑖 and 𝛽𝑖 bounds is zero1.

By designing coresets for fair clustering, Bandyapadhyay et al. [2021] presented algorithms
that compute a constant-factor approximation for fair 𝑘-median and 𝑘-means, running in time
(𝑘Δ)𝑂(𝑘Δ)poly(𝑛), and crucially, these algorithms do not violate the fairness constraints. In the
special case of no overlap between groups, the runtime improves to (𝑘ℓ )𝑂(𝑘ℓ )poly(𝑛). Previously,
coresets for fair representation clustering were also studied in [Schmidt et al., 2019, Huang et al.,
2019].

Prior to [Bera et al., 2019], this notion of fairness was studied for (1) the 𝑘-center problem [Rösner and
Schmidt, 2018], and (2) 𝑘-clustering with an ℓ𝑝-objective on balanced instances, which are instances
with equal group sizes and 𝛼 𝑗 = 𝛽 𝑗 = 1 for all 𝑗 ∈ [ℓ ] [Böhm et al., 2021]. In these special cases,
the fair clustering problem admits a constant-factor approximation. In another line of research, a
special case of this fairness notion, known as restricted dominance, imposes only upper bounds on the
fraction of each group within clusters. For this setting, Ahmadian et al. [2019] developed a bicriteria
approximation algorithm that provides fairness guarantees with bounded additive violations

Building on [Bera et al., 2019, Backurs et al., 2019], Dai et al. [2022] designed a “purely multiplicative”
𝑂(log 𝑘)-approximation for the 𝑘-median objective (i.e., without additive violations) in the setting
with multiple groups, under the (𝛼, 𝛽) fairness notion of [Bera et al., 2019]. Their algorithm runs
in time 𝑛𝑂(ℓ ), where ℓ is the number of groups. It was subsequently shown by Bandyapadhyay
et al. [2024] that obtaining an approximation factor of 𝑜(log 𝑘) for fair 𝑘-median in polynomial time is
as hard as breaking the long-standing Ω(log 𝑘) barrier for the well-studied soft uniform capacitated
𝑘-median problem. The approach of Dai et al. [2022] relies on probabilistically approximating
arbitrary metrics by tree metrics [Bartal, 1998, Fakcharoenphol et al., 2003]. Notably, in the context
of fair 𝑘-median, this idea of approximating the input metric with a distribution over dominating
trees was also used by Backurs et al. [2019] in their near-linear time approximation algorithm for fair
representation clustering with two groups.

Question 1. Can the 𝑂(log 𝑘)-approximation barrier for fair 𝑘-median under multi-group (𝛼, 𝛽) fairness
constraints be improved in polynomial time, or is this limitation fundamental?

Question 2. Is it possible to design a near-linear time approximation algorithm for fair 𝑘-clustering with
general ℓ𝑝 objectives under multi-group (𝛼, 𝛽) fairness constraints? In particular, can we obtain algorithms
that are both efficient and provide strong approximation guarantees for settings beyond two groups and
objectives beyond 𝑘-median?

1That is, the group representation bounds are satisfied on average, as opposed to expected zero violations.
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2.1.2 Extending to multiple groups: (II) pairwise

In a different extension of the fair representation within clusters to multiple groups, Bandyapadhyay
et al. [2024, 2025] explicitly studied the notion of pairwise fairness which given an integer parameter
𝑡, requires to output a clustering 𝒞 = {𝐶1 , · · · , 𝐶𝑘} such that for every cluster 𝐶 ∈ 𝒞 , and every pair
of groups 𝑖 , 𝑗 ∈ [ℓ ], |𝐶 ∩ 𝑃𝑖|/𝑡 ≤ |𝐶 ∩ 𝑃𝑗| ≤ 𝑡 · |𝐶 ∩ 𝑃𝑖|.
For 𝑘-center, via an LP-based rounding scheme, Bandyapadhyay et al. [2025] show an 𝑂(1)-
approximation for two settings: (i) there are two groups in the input and 𝑡 is an integer, and (ii)
when 𝑡 = 1. On the hardness side, the authors prove an integrality gap of Ω(𝑘) for their proposed
LP relaxation when 𝑡 is not an integer even with two groups.

For 𝑘-median, the problem turns out to be more difficult. Bandyapadhyay et al. [2024] provides
𝑂(𝑘2ℓ 𝑡)-approximation for 𝑡-pairwise fair 𝑘-clustering when there are ℓ disjoint groups in the input.
On the negative side, they show it is NP-hard to approximate the problem within a factor better
than 𝑛1−𝜀, for every constant 𝜀 > 0, when there are overlapping groups, even for 𝑘 = 2.

2.1.3 Further remarks

Fair clustering with Sum-of-Radii objective. This notion has been popular and well-studied for
clustering with other objective function such as sum-of-radii, where the the goal is to minimize the
sum of radii of the constructed clusters [Carta et al., 2024, Nezhad et al., 2025].

Fairness under bounded cost. Another research direction focuses on minimizing unfairness
given an upper bound on the clustering cost, as proposed by Esmaeili et al. [2021]. Instead of
minimizing clustering cost subject to strict fairness constraints, this approach sets an upper limit
on the clustering cost and shifts the objective to minimizing unfairness. In this setting, each point
belongs to a group, and clusters are required to approximately reflect the population proportions of
each group. Formally, unfairness for group 𝑗 is defined as the minimum proportional relaxation 𝛿 𝑗
such that, in every cluster, the group’s proportion lies within the relaxed bounds [𝛼 𝑗 − 𝛿 𝑗 , 𝛽 𝑗 + 𝛿 𝑗].
The paper considers three natural objectives: group-utilitarian (minimize the sum of all group
violations), group-egalitarian (minimize the maximum group violation), and group-leximin (minimize
the worst, then the second-worst, and so on, violations). The optimization problem can be formally
stated as minimizing one of these unfairness objectives, subject to the constraint that the clustering
cost does not exceed a given threshold 𝑈 . For the first two fairness objectives, the authors provide
bicriteria approximation algorithms that achieve bounded violations of the fairness constraints,
and ensure that the objective value is within a small additive error of the upper bound 𝑈 .

Fair labeled clustering. Clustering is a widely used preprocessing step in many decision-making
pipelines. From a fairness perspective, it is often sufficient to ensure equity in the outcomes or
labels assigned to clusters in subsequent steps, rather than enforcing group balance within the
clusters themselves. Motivated by these applications, ? introduced the fair labeled clustering
framework, where fair representation constraints are imposed on the set of points that receive
each outcome label. Specifically, after clusters are formed, the goal is to ensure that, for each label,
the aggregate population assigned that label satisfies the desired group representation, even if
individual clusters do not. This approach is less restrictive than traditional fair clustering and often
results in higher-quality clusterings, while still mitigating disparate impact in the outcomes.

The fair labeled clustering problem has two main variants. In the first, labeled clustering with
assigned labels (LCAL), each cluster is given a predetermined outcome label (for example, based
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on the cluster center). In the second, labeled clustering with unassigned labels (LCUL), labels can be
assigned to clusters in a way that further improves fairness or efficiency. In both cases, the goal is to
minimize clustering cost while satisfying proportional group representation constraints for each
label. Notably, LCAL can be solved in polynomial time for any fixed number of labels, in contrast to
the traditional fair clustering problem, which is NP-hard (even not known whether it is possible to
approximate within a factor better than Ω(log 𝑘)). The authors develop efficient algorithms based
on network flow for both settings, as well as randomized rounding for LCUL to ensure fairness
constraints hold in expectation.

Distance to fairness and consensus. Chakraborty et al. [2025] introduced the problem of finding
the closest fair clustering to a given clustering in the case of binary groups, and devised a constant-
factor approximation algorithm for it. They also proposed the notion of fair consensus clustering,
where, given a collection of clusterings 𝒟1 , . . . ,𝒟𝑚 over the same dataset, the goal is to find a fair
clustering 𝒞 ∗ that minimizes the overall distance to the input clusterings. The distance is defined
as the ℓ𝑝-norm of the vector of distances from 𝒞 ∗ to each 𝒟𝑖 , where the distance between two
clusterings is the number of pairs of points that are clustered together in one clustering but not
in the other. For this consensus problem, they show that their approach for closest fair clustering
yields a constant-factor approximation in the two-group setting.

Question 3. Is it possible to generalize the results of Chakraborty et al. [2025] for closest fair clustering and
fair consensus clustering to settings with more than two groups?

In large-scale computational models. In the context of fair clustering, with fair representation
within clusters, under massive data processing models, streaming algorithms have received
increasing attention due to the need to process large-scale and rapidly arriving data. A key
challenge in this setting is to ensure fairness, typically defined via demographic constraints or
group-based balance, while maintaining computational and memory efficiency. In the standard
insertion-only streaming model, several works have explored the use of coresets for fair 𝑘-means and
𝑘-median clustering [Schmidt et al., 2019, Huang et al., 2019, Bandyapadhyay et al., 2021], providing
algorithms that maintain compact summaries (coresets) of the input while approximately preserving
both clustering cost and fairness constraints. These approaches allow for efficient post-processing to
recover fair clusterings and have established bounds on coreset sizes and approximation guarantees.
However, adapting fairness to more dynamic models like the sliding window model, where only the
most recent elements are considered, remains more challenging. The recent work of Cohen-Addad
et al. [2025] initiates the study of fair clustering in this setting, providing the first algorithms for fair
𝑘-center clustering in sliding windows with provable approximation and space guarantees.

2.1.4 Fair representation within centers (Centroid-based clustering)

Another important fairness notion in clustering is fair representation among centers, where the demo-
graphic composition of the selected cluster centers themselves must reflect a desired distribution.
This idea is particularly relevant in centroid-based clustering objectives such as 𝑘-center, 𝑘-median,
and 𝑘-means, especially when the centers are intended to serve as a representative summary of the
dataset (e.g., in applications like data summarization or decision-making).

Kleindessner et al. [2019a] introduced a formulation where the dataset is partitioned into ℓ

demographic groups, and exactly 𝑘𝑖 centers must be chosen from group 𝑖, for some input parameters
𝑘1 , . . . , 𝑘ℓ . While this ensures strict demographic proportionality, it may significantly degrade
clustering quality. To address this, [Hotegni et al., 2023, Nguyen et al., 2022] proposed a relaxation
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called fair range clustering, which requires the number of selected centers from each group 𝑖 to
fall within a specified interval [𝛼𝑖 , 𝛽𝑖]. This flexible model captures a range of fairness policies
while allowing for improved clustering performance. They present constant-factor approximation
algorithms for fair range 𝑘-clustering under ℓ𝑝-norm objectives, including 𝑘-center, 𝑘-median, and
𝑘-means.

Overall, fair representation within centers is crucial in applications like image search, recourse design,
or any setting where the selected representatives are presented directly to users or downstream
decision-making systems.

Further remarks. Clustering with constraints on the set of centers that form an independent set of a
matroid over the candidate facilities is a well-studied abstraction that subsumes this notion of fairness.
This line of work has yielded constant-factor approximations through LP relaxations with matroid
polytopes, swap/pipage rounding, and matroid-aware local search, across median/means/center-
style objectives, and has been used extensively in the fair-clustering literature [Hajiaghayi et al., 2010,
Krishnaswamy et al., 2011, Charikar and Li, 2012, Swamy, 2016, Chen et al., 2016, Krishnaswamy
et al., 2018, Jones et al., 2020, Chiplunkar et al., 2020]. In particular, the notion of fairness with
exact per-group quotas is a direct special case (a partition-matroid feasibility on centers), placing it
squarely within this framework; by contrast, the fair range variant relaxes quotas to intervals and is
not itself a matroid (since feasibility is not downward-closed), though it admits reductions that
leverage matroid structure via extendable-set relaxations in [El Halabi et al., 2020, Hotegni et al.,
2023].

2.1.5 Min-Max fairness (aka socially fair clustering)

Socially fair clustering addresses disparities in clustering cost across different demographic groups.
Rather than requiring fair representation within each cluster, the objective here is to minimize the
worst-case (maximum) clustering cost incurred by any group. Early work by Abbasi et al. [2021] and
Ghadiri et al. [2021] introduced this formulation for 𝑘-median and 𝑘-means objectives, providing
𝑂(ℓ )-approximation algorithms, where ℓ is the number of protected groups. However, their results
relied on natural LP relaxations that were shown to have an integrality gap of Ω(ℓ ), limiting the
scope for improved approximations.

To address this limitation, [Makarychev and Vakilian, 2021] introduced a strengthened LP relaxation
for socially fair ℓ𝑝-clustering that adds locality constraints tailored to the structure of the metric
space and the weight distribution. Their algorithm achieves an 𝑂̃(log ℓ/log log ℓ )-approximation
for general 𝑝, which is tight under standard complexity assumptions—matching a hardness lower
bound for even unweighted 𝑘-median on uniform metrics Bhattacharya et al. [2014]. This result
represents the best-known approximation for socially fair 𝑘-median and 𝑘-means (for 𝑝 = 1 and
𝑝 = 2), and generalizes to arbitrary weights over groups. Moreover, [Makarychev and Vakilian, 2021]
extend their techniques to the weighted case, where each group 𝑗 is represented by a weight function
𝑤 𝑗 : 𝐿 → R+ over the set of data points, and the goal is to minimize max𝑗

∑
𝑣∈𝐿 𝑤 𝑗(𝑣) · 𝑑(𝑣, 𝐶)𝑝 for

a center set 𝐶. This framework captures applications where group importance varies across the
domain, and it broadens applicability to non-disjoint and even overlapping group memberships.

Finally, their algorithm supports both multiplicative and bicriteria approximation guarantees. The
bicriteria version relaxes the number of centers from 𝑘 to 𝑘/(1−𝛾) and achieves a cost approximation
of 𝑂(1/𝛾) times the optimum. Overall, this line of work solidifies min-max fairness as a practically
and theoretically robust approach to equitable clustering across heterogeneous populations.
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Chlamtác et al. [2022] extended the socially fair clustering framework to a more general family of
objectives called (𝑝, 𝑞)-fair clustering, where the goal is to minimize the ℓ𝑞 norm across groups of
the ℓ𝑝 clustering cost incurred by each group. This formulation captures and generalizes a wide
range of clustering problems: classical clustering (𝑞 = 𝑝), robust clustering (𝑞 = 1) Anthony et al.
[2010], and socially fair clustering (𝑞 = ∞). The (𝑝, 𝑞) objective provides a flexible way to interpolate
between average-case fairness and worst-case fairness, allowing practitioners to tune the fairness
strictness by adjusting 𝑞 relative to 𝑝.

The authors developed approximation algorithms based on novel convex programming relaxations.
For the case 𝑝 ≤ 𝑞, they achieved an 𝑂((𝑞/ln(1 + 𝑞/𝑝))1/𝑝)-approximation using randomized
rounding and careful handling of integrality gaps through non-standard constraints. For the
case 𝑝 ≥ 𝑞, they presented an 𝑂(𝑘(𝑝−𝑞)/(2𝑝𝑞))-approximation, which nearly matches their derived
hardness bound of 𝑘Ω((𝑝−𝑞)/(𝑝𝑞)) under standard assumptions, such as the hardness of the Min-𝑠-
Union problem. These results nearly close the gap between algorithmic upper bounds and known
lower bounds for various 𝑝, 𝑞 regimes. Overall, the (𝑝, 𝑞)-fair clustering model provides a powerful
framework for balancing fairness and efficiency in clustering, accommodating a range of practical
fairness requirements beyond strict max-min fairness.

Goyal and Jaiswal [2023] provided tight fixed-parameter tractable (FPT) (3𝑧 + 𝜀)-approximation
algorithms for socially fair 𝑘-median (𝑧 = 1) and 𝑘-means (𝑧 = 2), running in time (𝑘/𝜀)𝑂(𝑘) · 𝑛𝑂(1),
and proved these bounds to be optimal under the Gap-ETH assumption.

The min-max fairness framework has since been influential in formalizing fairness in clustering
beyond compositional constraints, addressing real-world scenarios that demand cost equity over
demographic parity.

Conclusion. Fair clustering is a vibrant area at the intersection of algorithm design and social
responsibility. This survey reviewed core fairness definitions and highlighted key algorithmic
techniques, with an emphasis on group fairness notions. In future parts of this survey, we will
cover additional notions of fairness for clustering, in particular, those related to individual fainress.
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