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Semi-online algorithms

Future Is partly known, partly adversarial
Pre-process the known part
Then make irrevokable decisions at each step

Interpolates between offline and online models



Offline bipartite matching

* Polynomial-time solvable using max flow

N




Online bipartite matching

« Nodes in U known in advance U vV

« Nodes in V arrive one by one ®

 Match at each step

 Competitive ratio compares to
offline OPT



Online bipartite matching

« RANKING algorithm [1]is 1 — 1/e competitive:
* Fix a random permutation of offline nodes
e For each online node:

 Match to the first available neighbor in the
permutation

[1] Richard Karp, Umesh Vazirani, Vijay Vazirani. An optimal algorithm for on-line bipartite matching. STOC 1990



Semi-online bipartite
matchning

Know U and part of V in advance

All of V arrives one by one in
arbitrary order

Match at each step ®

Competitive ratio compares to oftline
OPT

Integral or fractional matching ®



Notation

o Bipartite graph G = (U, V, E;)
e V=V,UV,
 Vp: known (predicted) part of V

 V,: unknown (adversarial) part
of V

« Known subgraph H = (U, Vp, Ey)

< o



Online/offline parameter o

« Simplifying assumption for this talk: perfect matching in G

§
A
V]

fraction of adversarial nodes

e 0 = 0: offline, 6 = 1:online

« Competitive ratio in terms of 0

OPT(H)
OPT(G)

. General case: 0 = 1

* Other definition doesn't work if many isolated nodes



Results

* Integral matching:

e Algorithm with competitive ratio

1 =64 6%(1 = 1/e)

. Hardness of 1 — de™°
(1 =6+6>=82+...)

* Fractional matching:

. Algorithm and hardness of 1 — de ™



Related settings

* Optimal online assignment with forecasts
Erik Vee, Sergei Vassilvitskii, and Jayavel Shanmugasundaram. EC 2010

* Uncertainty in demands, not in graph structure

* Online allocation with traffic spikes: Mixing adversarial and stochastic models
Hossein Esfandiari, Nitish Korula, and Vahab Mirrokni. EC 2015

e Forecast is a distribution, not a fixed graph
* Large degree assumption
* Same hardness result

* Maximum matching in the online batch-arrival model
Euiwoong Lee and Sahil Singla. IPCO 2017

* Online nodes arrive in batches



Observations

* Worst case: predicted nodes before adversarial

» Algorithm for this case can be transtormed into
one for arbitrary order

« Should select a maximum matching on H

* No benefit to leaving predicted nodes
unmatched

* Do this as preprocessing



Selecting a matching for H

* Any deterministic algorithm would do badly




Algorithm outline

« Find a (randomized) maximum matching in H
« Which nodes to "reserve" for V,?

e Run RANKING for adversarial nodes



Analysis outline

Reserved C U: not matched in H. —
| Reserved| =n— | Vp| = don

Marked C U: matched to V, by OPT.
|Marked| = |V, | = én

Suppose E[ | Reserved N Marked|] = x - n
« Matching sizen —on+ (1 — 1/e)xn
« Competitiveratiol —o+ (1 — 1/e)x

Aim for x = 52



Reserving nodes

Goal: sample a matching in H s.t.
E[ | Reserved N Marked|] = &°n

Special case: H is complete
« Reserve each node with probability o

In general, a distribution over matchings s.t.
VYu € U, Pr|uisreserved] = 6 may not exist

Want a distribution making nodes' probabilities
of being reserved as equal as possible




Matching skeleton
decomposition

« Decomposition of H (poly-time)

e U=U,T, Vp=U,S§,

l’

° 1_‘(Uz<] l) = z<]

1;
S Sj
1< ]=——= >
° 7’1 7}
* Fractional matching in each component -
O
o deg(u) =1, deg(v) =|5;|/|T;] ®

[1] Ashish Goel, Michael Kapralov, Sanjeev Khanna.
On the communication and streaming complexity of maximum bipartite matching. SODA 2012.



Dependent rounding

* Apply dependent rounding [1] to

each component of the matching ;
skeleton B
1
3
« Probability of u € T, being 2
d.
reserved is —
| T;

l

[1] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, Aravind Srinivasan.
Dependent rounding and its applications to approximation algorithms. JACM 53(3):324-360, 2006.



Marked nodes

e Adversary's goal:
« Mark on nodes in U whose complement has a matching in H

* Minimize overlap with reserved nodes

e Best strategy:

 Selectd, = |T;| — |S;| nodes per component i
d; on)?
E[lReserveanarkedl] = Zd — > (on)
T~ n
(by Cauchy-Schwarz) ®
@

. = 1 =56+ 6%1 = 1/e) competitive ratio



Haraness bound

U: @ @ @ @ @ @ @ @

Vi@ (= (® ()
Vp

* Predicted: complete graph; adversarial: block upper triangular

. Hardness of 1 — e



Fractional matching

e Online model
« Nodes of V arrive one at a time, have to be fractionally matched to U
« Water-level algorithm [1] gives optimal 1 — 1/e ratio
e Match to the neighbor with lowest existing amount
e Semi-online fractional bipartite matching
. We get tight bounds of 1 — de ™

* Primal-dual analysis extension of [2]

[1] Bala Kalyanasundaram and Kirk Pruhs.

An optimal deterministic algorithm for online b-matching. Theor. Comput. Sci., 233(1-2):319-325, 2000
[2] Nikhil R. Devanur, Kamal Jain, Robert D. Kleinberg.

Randomized primal-dual analysis of RANKING for online bipartite matching. SODA 2013



Algorithm for semi-online
fractional matching

For predicted nodes Vp: 1

- ®
» Take fractional matching /

|
from skeleton decomposition 2 \
of H 1 S

For adversarial nodes V: 1

 Use water-level algorithm —




Primal-dual analysis
min Yy ay+ Y Bo

uel veV

V{u,v} € E, «,+ [y >1

Vu € U, vy, > 0
V/U & V, ,ﬁgv Z O

« For x found by our algorithm, set &, and [, such that
* primal objective = dual objective

e a,+ B, > 1— e~° for all edges



summary

* Semi-online bipartite matching
. Algorithm: 1 — & + 6%(1 — 1/e)
. Hardness: 1 — §e™°

 Open problem: close the gap

e Fractional case

. Algorithm and hardness: 1 — de ™



Sets puzzle

Ground set with n elements m
Collection of sets & v

« Each S € & contains d elements of [n]
Player 1: pick A € &, maximize |A N B
Player 2: pick B € &, minimize |A N B|

Show: there is a randomized strategy for player 1 to
guarantee E[|A N B|] > d*/n




