THROUGH THE LENS OF SKI RENTAL THREE FLAVORS OF PREDICTIONS IN ONLINE ALGORITHMS

Manish Purohit

Joint work with Ravi Kumar, Zoya Svitkina, and Erik Vee

OUTLINE

- Motivation
- Ski Rental Problem
- The Fortune Cookie
- The Weatherman
- The Constrained Adversary
- Conclusions

TACKLING UNCERTAINTY

Online Algorithms

- Full input is unknown
- Design algorithms for worst-possible future
- Pessimistic
- Cannot exploit patterns / predictability in data.

Machine Learning

- Observe past data
- Build robust models to predict the future
- Highly successful!
- Trained for good average performance
- Not robust to outliers

SKI RENTAL PROBLEM

- Sam recently moved to Colorado
- Renting : \$1
- Buying : \$B
- Should he rent or should he buy?
- Missing: How often does Sam want to ski?

SKI RENTAL PROBLEM

 Sam is very pessimistic and strongly believes "Anything that can go wrong will go wrong"

• Minimizes
$$\max_{x} \frac{Alg(x)}{Opt(x)}$$

SKI RENTAL PROBLEM

- Minimizes $\max_{x} \frac{Alg(x)}{Opt(x)}$
- Deterministic Algorithm:
 - Buy on day B-1
 - 2-competitive
- Randomized Algorithm:
 - Sample $i \in \{1, B\}; p(i) \propto \left(\frac{b}{b-1}\right)^{i-1}$
 - Buy on day *i*
 - $-\frac{e}{e-1}$ -competitive

THE FORTUNE COOKIE

You will ski 26 times

• Notation

- $y \leftarrow$ predicted number of days
- $\eta = |x y| =$ prediction error
- Competitive Ratio
 - Function of the error
 - $\quad \frac{Alg(I)}{Opt(I)} \le c\big(\eta(I)\big)$
- Consistency

Algorithm is β -consistent if $c(0) = \beta$

Robustness

Algorithm is γ -robust if $c(\eta) \leq \gamma$ for all η

Blind Trust

- If $y \ge b$
 - Buy on day 1
- Else
 - Rent every day

Blind Trust

Analysis

- If $y \ge b$ - Buy on day 1
- Else

0

- Rent every day

If $(y \ge b \text{ and } x \ge b)$ or (y < b and x < b)ALG = OPT

If $(y \ge b \text{ and } x < b)$ $ALG = b \le x + (y - x) = OPT + \eta$

If $(y < b \text{ and } x \ge b)$ $ALG = x \le b + (x - y) = OPT + \eta$

b x y

Blind Trust

Analysis

- If $y \ge b$ - Buy on day 1
- Else
 - Rent every day

If $(y \ge b \text{ and } x \ge b)$ or (y < b and x < b)ALG = OPT

If $(y \ge b \text{ and } x < b)$ $ALG = b \le x + (y - x) = OPT + \eta$

If $(y < b \text{ and } x \ge b)$ $ALG = x \le b + (x - y) = OPT + \eta$

Blind Trust

Analysis

- If $y \ge b$ - Buy on day 1
- Else

0

- Rent every day

If $(y \ge b \text{ and } x \ge b)$ or (y < b and x < b)ALG = OPT

If $(y \ge b \text{ and } x < b)$ $ALG = b \le x + (y - x) = OPT + \eta$

If
$$(y < b \text{ and } x \ge b)$$

 $ALG = x \le b + (x - y) = OPT + y$
OPT ALG
y b x

Blind Trust

Analysis

- If $y \ge b$ - Buy on day 1
- Else
 - Rent every day

If $(y \ge b \text{ and } x \ge b)$ or (y < b and x < b)ALG = OPT

If $(y \ge b \text{ and } x < b)$ $ALG = b \le x + (y - x) = OPT + \eta$

If $(y < b \text{ and } x \ge b)$ $ALG = x \le b + (x - y) = OPT + \eta$

$ALG \leq OPT + \eta$

Blind Trust

- If $y \ge b$ - Buy on day 1
- Else
 - Rent every day

Cautious Trust

Analysis

• Let $\lambda \in (0,1)$ be a hyperparameter

$$\frac{ALG}{OPT} \leq \min\left\{1 + \lambda + \frac{\eta}{(1-\lambda) OPT}, \frac{1+\lambda}{\lambda}\right\}$$

- If $y \ge b$
 - Buy on day $[\lambda b]$
- Else
 - Buy on day $\left[\frac{b}{\lambda}\right]$

Cautious Trust

- λ ∈ (0,1) gives a tradeoff between consistency and robustness
- Small λ
 - Higher trust in the predictions
 - Better consistency
 - Worse robustness

Cautious Trust

 λ ∈ (0,1) gives a tradeoff between consistency and robustness

- Small λ
 - Higher trust in the predictions
 - Better consistency
 - Worse robustness

y > b

y < b

 b/λ

- Let's randomize!
- If $y \ge b$ ightarrow0.025 $- k = \lfloor \lambda b \rfloor$ - Define $q_i \leftarrow \left(\frac{b-1}{b}\right)^{k-i} \cdot \frac{1}{b(1-(1-1/b)^k)}$ 0.020 - Choose $j \in \{1, 2, ..., k\}$ randomly from distribution defined by q_i . Probability 0.010 Buy on day j Else $-\ell = \left[\frac{b}{\lambda}\right]$ - Define $r_i \leftarrow \left(\frac{b-1}{b}\right)^{\ell-i} \cdot \frac{1}{b(1-(1-1/b)^{\ell})}$ 0.005 - Choose $j \in \{1, 2, ..., \ell\}$ randomly from distribution defined by r_i . 0.000 λb b Day
 - Buy on day j

- Let's randomize!
- If $y \ge b$
 - $k = \lfloor \lambda b \rfloor$

- Define
$$q_i \leftarrow \left(\frac{b-1}{b}\right)^{k-i} \cdot \frac{1}{b(1-(1-1/b)^k)}$$

- Choose $j \in \{1, 2, ..., k\}$ randomly from distribution defined by q_i .
- Buy on day j
- Else

$$-\ell = \left[\frac{b}{\lambda}\right]$$

- Define
$$r_i \leftarrow \left(\frac{b-1}{b}\right)^{\ell-l} \cdot \frac{1}{b(1-(1-1/b)^\ell)}$$

- Choose $j \in \{1, 2, ..., \ell\}$ randomly from distribution defined by r_i .
- Buy on day j

$$\left(\frac{\lambda}{1-e^{-\lambda}}\right)$$
-consistent! $\left(\frac{1}{1-e^{-(\lambda-\frac{1}{b})}}\right)$ -Robust

THE FORTUNE COOKIE

You will ski 26 times

Consistency •

Robustness

OUTLINE

- Motivation
- Ski Rental Problem
- The Fortune Cookie
- The Weatherman
- The Constrained Adversary
- Conclusions

THE WEATHERMAN

- Predictions are backed by a probabilistic guarantee
- The algorithm can utilize these error probabilities to obtain better performance

THE WEATHERMAN FOR SKI RENTAL

- Suppose we train a binary classifier to predict whether Sam will ski for more than b days or not
- $h \leftarrow \text{probability of correct prediction}$
- The algorithm knows h (say, by observing performance on validation data)
- What algorithms can we obtain in this setting?

THE WEATHERMAN FOR SKI RENTAL

- If prediction < b days
 - Buy on day b
- If prediction more than b days
 - Buy on day i with probability p_i

Minimize *c*

subject to

 $\forall d, E[Alg(d)] \le c \min(b, d)$

THE WEATHERMAN FOR SKI RENTAL

- If prediction < b days
 - Buy on day b
- If prediction more than b days
 - Buy on day i with probability p_i

Minimize *c*

subject to

 $\forall d, E[Alg(d)] \le c \min(b, d)$

THE WEATHERMAN

competitive ratio =
$$f(h)$$

 $f(1) = 1, f\left(\frac{1}{2}\right) = \frac{e}{e-1}$

0.6

0.8

h

OUTLINE

- Motivation
- Ski Rental Problem
- The Fortune Cookie
- The Weatherman
- The Constrained Adversary
- Conclusions

• Bound the amount of uncertainty

• Make structural assumptions about the online input

• More structure \rightarrow Better guarantees

- More convenient to work with fractional version of the problem
- Costs 1 to buy skis
- Costs z to rent for z time (fractional)
- Constraint: $x \ge y$
- "Sam knows he'll ski at least five times"

March 2019					February '19 S M W T F S 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	April '19 S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
24	25	26	27	28	1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

- Let $p_y(z) \leftarrow$ Probability of buying on day z
- Let $q(y) \leftarrow$ Probability of buying on the first day
- Say we enforce $p_y(z) = 0, \forall z > 1$ (Even the deterministic algorithm does that)
- What's the expected algorithm cost for *x* days?
- $Cost_y(x) = q(y) + \int_0^x (1+z)p_y(z)dz + \int_x^1 xp_y(z)dz$
- Set probabilities so that $\left(\frac{Cost_y(x)}{\min(x,1)}\right)$ is a constant

- Let $p_y(z) \leftarrow$ Probability of buying on day z
- Let $q(y) \leftarrow$ Probability of buying on the first day
- Say we enforce $p_y(z) = 0, \forall z > 1$ (Even the deterministic algorithm does that)

There exists a randomized algorithm with competitive ratio

$$\left(\frac{e}{e-(1-y)e^{y}}\right)$$

• Set probabilities so that $\left(\frac{\cos y(x)}{\min(x,1)}\right)$ is a constant

CONCLUSIONS

- The Fortune Cookie
 - Predictions with no error guarantees
 - Competitive ratio = min(consistency, robustness)
- The Weatherman
 - Predicts with error guarantees
 - Competitive ratio = function(error probability)
- The Constrained Adversary (Semi-Online)
 - Structural assumptions about input
 - Improved competitive ratios

THANKS!