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Compressed Sensing

Want to recover a signal (e.g., an image) from noisy measurements.

Medical
Imaging

Astronomy Single-Pixel
Camera

Oil Exploration

Linear measurements: see y = Ax , for A ∈ Rm×n.

How many measurements m to learn the signal?
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Compressed Sensing
Given linear measurements y = Ax , for A ∈ Rm×n.

How many measurements m to learn the signal x?

I Naively: m ≥ n or else underdetermined

: multiple x possible.

I But most x aren’t plausible.

5MB 36MB

I This is why compression is possible.

Ideal answer:

m >
(information in image)

(new info. per measurement)
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Compressed Sensing

Given linear measurements y = Ax , for A ∈ Rm×n.

How many measurements m to learn the signal x?

m >
(information in image)

(new info. per measurement)

Image “compressible” =⇒ information in image is small.

Measurements “incoherent” =⇒ most info new.
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Compressed Sensing

Want to estimate x ∈ Rn from m� n linear measurements.

Suggestion: the “most compressible” image that fits measurements.

How should we formalize that an image is “compressible”?

Short JPEG compression

I Intractible to compute.

Standard compressed sensing: sparsity in some basis

I Sparsity + other constraints (“structured sparsity”)

This talk: different approach, no sparsity.
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Standard Compressed Sensing Formalism
“Compressible” = “sparse”

Want to estimate x from y = Ax + η, for A ∈ Rm×n.

I For this talk: ignore η, so y = Ax .

Goal: x̂ with

‖x − x̂‖2 ≤ O(1) · min
k-sparse x ′

‖x − x ′‖2 (1)

with high probability.

I Reconstruction accuracy proportional to model accuracy.

Theorem [Candès-Romberg-Tao 2006]

I m = Θ(k log(n/k)) suffices for (1).
I Such an x̂ can be found efficiently with, e.g., the LASSO.
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Alternatives to sparsity?

MRI images are sparse in the wavelet basis.

Worldwide, 100 million MRIs taken per year.

Want a data-driven model.

I Better structural understanding should give fewer measurements.

Best way to model images in 2019?

I Deep convolutional neural networks.
I In particular: generative models.
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Generative Models

Random
noise z

Image

Karras et al., 2018

nk
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Generative Models

Want to model a distribution D of images.

Function G : Rk → Rn.

When z ∼ N(0, Ik), then ideally G (z) ∼ D.

Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]:

Karras et al., 2018

Faces

Schawinski et al., 2017

Astronomy

Paganini et al., 2017

Particle Physics

Variational Auto-Encoders (VAEs) [Kingma & Welling 2013].
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Suggestion for compressed sensing

Replace “x is k-sparse” by “x is in range of G : Rk → Rn”.



Our Results
“Compressible” = “near range(G)”

Want to estimate x from y = Ax , for A ∈ Rm×n.

Goal: x̂ with

‖x − x̂‖2 ≤ O(1) · min
x ′∈range(G)

‖x − x ′‖2 (2)

Main Theorem I: m = O(kd log n) suffices for (2).

I G is a d-layer ReLU-based neural network.
I When A is random Gaussian matrix.

Main Theorem II:

I For any Lipschitz G , m = O(k log rL
δ ) suffices.

I Morally the same O(kd log n) bound.
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Our Results (II)
“Compressible” = “near range(G)”

Want to estimate x from y = Ax , for A ∈ Rm×n.

Goal: x̂ with

‖x − x̂‖2 ≤ O(1) · min
x ′∈range(G)

‖x − x ′‖2 (3)

m = O(kd log n) suffices for d-layer G .

I Compared to O(k log n) for sparsity-based methods.
I k here can be much smaller

Find x̂ = G (ẑ) by gradient descent on ‖y − AG (ẑ)‖2.

I Just like for training, no proof this converges
I Approximate solution approximately gives (3)
I Can check that ‖x̂ − x‖2 is small.
I In practice, optimization error is negligible.
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Related Work

Model-based compressed sensing (Baraniuk-Cevher-Duarte-Hegde
’10)

I k-sparse + more =⇒ O(k) measurements.

Projections on manifolds (Baraniuk-Wakin ’09, Eftekhari-Wakin ’15)

I Conditions on manifold for which recovery is possible.

Deep network models (Mousavi-Dasarathy-Baraniuk ’17, Chang et al
’17)

I Train deep network to encode and/or decode.
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Experimental Results
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Experimental Results

MNIST: n = 28x28 = 784, m = 100.
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Experimental Results
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Proof Outline (ReLU-based networks)

Show range(G ) lies within union of ndk k-dimensional hyperplane.

I Then analogous to proof for sparsity:
(
n
k

)
≤ 2k log(n/k) hyperplanes.

I So dk log n Gaussian measurements suffice.

ReLU-based network:

I Each layer is z → ReLU(Aiz).

I ReLU(y)i =

{
yi yi ≥ 0
0 otherwise

Input to layer 1: single k-dimensional hyperplane.

Lemma

Layer 1’s output lies within a union of nk k-dimensional hyperplanes.

Induction: final output lies within ndk k-dimensional hyperplanes.
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Proof of Lemma
Layer 1’s output lies within a union of nk k-dimensional hyperplanes.

z is k-dimensional.

ReLU(A1z) is linear, within any constant region of sign(A1z).

How many different patterns can sign(A1z) take?

k = 2 version

: how many regions can n lines partition plane into?

I 1 + (1 + 2 + . . .+ n) = n2+n+2
2 .

I n half-spaces divide Rk into less than nk regions.

�

Therefore d-layer network has ndk regions.
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I 1 + (1 + 2 + . . .+ n) = n2+n+2
2 .

I n half-spaces divide Rk into less than nk regions.

�

Therefore d-layer network has ndk regions.
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Summary (part 1)

m >
(information in image)

(new info. per measurement)

Generative models can bound information content as O(kd log n).

Generative models differentiable =⇒ can optimize in practice.

Gaussian measurements ensure independent information.

I O(1) approximation factor

⇐⇒ O(1) SNR⇐⇒ O(1) bits each

With random weights (i.e., before training) can prove more:

I The optimization has no local minima [Hand-Voroninski]
I L = O(1) not nd so m = O(k log n), if k � n/d .
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Extensions

Inpainting:

I A is diagonal, zeros and ones.

Deblurring:

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin) Compressed Sensing and Generative Models 20 / 33



Extensions

Inpainting:

I A is diagonal, zeros and ones.

Deblurring:

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin) Compressed Sensing and Generative Models 20 / 33



Extensions

Inpainting:

I A is diagonal, zeros and ones.

Deblurring:

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin) Compressed Sensing and Generative Models 20 / 33



Extensions

Inpainting:

I A is diagonal, zeros and ones.

Deblurring:

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin) Compressed Sensing and Generative Models 20 / 33



Extensions

Inpainting:

I A is diagonal, zeros and ones.

Deblurring:

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin) Compressed Sensing and Generative Models 20 / 33



Talk Outline

1 Using generative models for compressed sensing

2 Learning generative models from noisy data
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Where does the generative model come from?

Training from lots of data.

Problem

If measuring images is hard/noisy, how do you collect a good data set?

Question

Can we learn a GAN from incomplete, noisy measurements of the desired
images?
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GAN Architecture

Z

G

Generated image

Real image D Real?
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GAN Architecture

Z

G

Generated image

Real image D Real?

Generator G wants to fool the discriminator D.

If G ,D infinitely powerful: only pure Nash equilibrium when G (Z )
equals true distribution.

Empirically works for G ,D being convolutional neural nets.
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Ambient

GAN training

Z

G

Generated image

Real image D Real?
Real measurement

Simulated
measurement

f

Discriminator must distinguish real measurements from simulated
measurements of fake images

Can try this for any measurement process f you understand.

Compatible with any GAN generator architecture.
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Measurement: Gaussian blur + Gaussian noise
Measured Wiener Baseline AmbientGAN

Gaussian blur + additive Gaussian noise attenuates high-frequency
components.

Wiener baseline: deconvolve before learning GAN.

AmbientGAN better preserves high-frequency components.

Theorem: in the limit of dataset size and G , D capacity →∞, Nash
equilibrium of AmbientGAN is the true distribution.
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Measurement: Obscured Square

Measured Inpainting Baseline AmbientGAN

Obscure a random square containing 25% of the image.

Inpainting followed by GAN training reproduces inpainting artifacts.

AmbientGAN gives much smaller artifacts.

No theorem: doesn’t know that eyes should have the same color.
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Measurement: Limited View

Motivation: learn the distribution of panoramas from the distribution
of photos?

Measured AmbientGAN

Reveal a random square containing 25% of the image.

AmbientGAN still recovers faces.
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Measurement: Dropout

Measured Blurring Baseline AmbientGAN

Drop each pixel independently with probability p = 95%.

Simple baseline does terribly.

AmbientGAN can still learn faces.

Theorem: in the limit of dataset size and G , D capacity →∞, Nash
equilibrium of AmbientGAN is the true distribution.
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1D Projections

So far, measurements have all looked like images themselves.

What if we turn a 2D image into a 1D image?

Motivation: X-ray scans project 3D into 2D.

Face reconstruction is crude, but MNIST digits work decently:
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Compressed sensing

Compressed sensing: learn an image x from low-dimensional linear
projection Ax .

AmbientGAN can learn the generative model from a dataset of
projections {(Ai ,Aixi )}.
Beats standard sparse recovery (e.g. Lasso).
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Summary

Z

G

Generated image

D
Real measurement

Simulated
measurement

f

Plug the measurement process into the GAN
architecture of your choice.

The generator learns the pre-measurement ground
truth better than if you denoise before training.

Could let us learn distributions we have no data for.

Read the paper (“AmbientGAN”) for lots more experiments.
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Conclusion and open questions

Main results:

I Can use lossy measurements to learn a generative model of the
underlying distribution.

I Can use a generative model to reconstruct from lossy measurements.

Finite-sample theorems for learning the generative model?

I Take Gaussian blur plus Gaussian noise.
I Wiener filter before GAN: lose frequencies beyond O(1) standard

deviations.
I With N data points, can we learn logN standard deviations?

Better upper bound on complexity of generative models?

I Lipschitz parameter at initialization is much smaller than nd ...
I ...but we don’t actually expect it to be small after training.

Can the reconstruction incorporate density over the manifold?

I Computational problem: pseudodeterminant of Jacobian matrix.
I Speed-up with linear sketching?

More uses of differentiable compression?
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