From Supervised to Unsupervised Computational Sensing

Ali Mousavi

Aug 12th 2019

Collaborators

Rich Baraniuk Rice University

Arian Maleki Columbia University

Chris Metzler Stanford University

Reinhard Heckel Rice University

Gautam Dasarathy Arizona StateUniversity²

Computational Sensing

Conventional Sensing

 Computational Sensing: Reduce costs in acquisition systems by replacing expensive hardware w/ cheap hardware + computation

Large Scale Datasets

Data-Driven Computational Sensing

Applications

Data-Driven Computational Sensing

Iterative Algorithms

Iterative Algorithms

Data-Driven Computational Sensing

Data-Driven Computational Sensing

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

С

 $\Phi^{\mathsf{T}}y$

 $\eta(\mathbf{\Phi}^{\mathsf{T}}\mathbf{y})$

Sparse Data

• Approximate Message Passing (AMP) [Donoho, Maleki, Montanari 2009] Projection Operator t+1 $reg(x^{t} + \frac{Tr^{t}}{2}, \tau^{t})$

$$\mathbf{x} = \eta(\mathbf{x} + \mathbf{\Psi} \mathbf{z}, \mathbf{\tau})$$

$$\mathbf{z}^{t} = \mathbf{y} - \mathbf{\Phi}\mathbf{x}^{t} + \frac{1}{\delta}\mathbf{z}^{t-1} \left\langle \eta'(\mathbf{x}^{t-1} + \mathbf{\Phi}^{\mathsf{T}}\mathbf{z}^{t-1}) \right\rangle$$
Feasible Set
Residual

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

Approximate Message Passing (AMP) [Donoho, Maleki, Montanari 2009]
 Projection Operator
 + 1

Sparse Regression

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

Structured Regression

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2} + \lambda f(\mathbf{x}) \qquad \int_{M \times N} \int_{M \ll N} \int_{M \sim N} \int_{M \ll N} \int_{M \sim N} \int_{M$$

• Denoising Approximate Message Passing (D-AMP) [Metzler, Maleki, Baraniuk 2015]

Т

Y

 \mathbf{V}

Unrolling Iterative Algorithms

Learned-Denoising-AMP

$$\begin{split} \textbf{Learned-Denoising-AMP (LDAMP)} \quad & [\text{Metzler, Mousavi, Baraniuk, NIPS 2017}] \\ \mathbf{x}^{l+1} &= \mathcal{D}^{l}(\mathbf{x}^{l} + \mathbf{\Phi}^{\mathsf{T}}\mathbf{z}^{l}) \\ \mathbf{z}^{l} &= \mathbf{y} - \mathbf{\Phi}\mathbf{x}^{l} + \frac{1}{\delta}\mathbf{z}^{l-1} \left\langle \operatorname{div} \mathcal{D}^{l}(\mathbf{x}^{l-1} + \mathbf{\Phi}^{\mathsf{T}}\mathbf{z}^{l-1}) \right\rangle \end{split}$$

• We use a 20-layer convolutional network as a denoiser [Zhang et al. 2017]

• Two layers of the LDAMP network

Training LDAMP and LDIT

• Lemma 1 [Metzler, Mousavi, Baraniuk, *NIPS 2017*] Layer-by-layer training of LDAMP is MMSE optimal.

• Lemma 2 [Metzler, Mousavi, Baraniuk, *NIPS 2017*] Denoiser-by-denoiser training of LDAMP is MMSE optimal.

Training LDAMP

- Lemma 1 [Metzler, Mousavi, Baraniuk, NIPS 2017]
 Layer-by-layer training of LDAMP is MMSE optimal.
- Lemma 2 [Metzler, Mousavi, Baraniuk, *NIPS 2017*] Denoiser-by-denoiser training of LDAMP is MMSE optimal.

Average PSNR (dB) of one hundred 40x40 images Recovered from i.i.d Gaussian Measurements

	Training: $\frac{M}{N} = 0.2$ Testing: $\frac{M}{N} = 0.2$		Training: $\frac{M}{N} = 0.2$	
			Testing: $\frac{M}{N} = 0.05$	
Training Method	LDIT	LDAMP	\mathbf{LDIT}	LDAMP
$\mathbf{End} extsf{-to-End}$	32.1	33.1	8.0	18.7
Layer-by-Layer	26.1	33.1	-2.6	2 18.7
Denoiser-by-Denoiser	28.0	31.6	22.1	25.9

- Noise discretization
 degrades the performance.
- Denoiser-by-denoiser is more generalizable.

Compressive Image Recovery

512x512 images, 20x undersampling, noiseless measurements

Original Image

TVAL3 (26.4 dB, 6.85 sec)

BM3D-AMP (27.2 dB, 75.04 sec)

LDAMP (28.1 dB, 1.22 sec)

summary so far

Data-Driven Computational Sensing

Data-Driven Computational Sensing

- Mousavi, Maleki, Baraniuk, 'Consistent Parameter Estimation', Annals of Statistics 2017
- Mousavi, Dasarathy, Baraniuk, 'Data-Driven Sparse Representation', ICLR 2019

Summary so far

Next Step

Stein's Unbiased Risk Estimator (SURE) [Stein '81]

- A statistical model selection technique
 - ${f X}$ Unknown

$$\mathbf{y} = \mathbf{x} + \mathbf{w}$$

 $\mathbf{w} \sim \mathcal{N}(0, \sigma^2 \mathbb{I})$
 $f_{\theta}(.)$ Weakly differentiable

$$\mathbb{E}_{\mathbf{w}}\left[\frac{1}{n}\|\mathbf{x} - f_{\theta}(\mathbf{y})\|^{2}\right] = \mathbb{E}_{\mathbf{w}}\left[\frac{1}{n}\|\mathbf{y} - f_{\theta}(\mathbf{y})\|^{2}\right] - \sigma_{w}^{2} + \frac{2\sigma_{w}^{2}}{n}\operatorname{div}_{\mathbf{y}}(f_{\theta}(\mathbf{y}))$$
$$\operatorname{div}_{\mathbf{y}}(f_{\theta}(\mathbf{y})) = \sum_{n=1}^{N} \frac{\partial f_{\theta}(\mathbf{y})}{\partial y_{n}}$$

$$33$$

Monte-Carlo SURE [Ramani, Blu, Unser, 2008]

Challenge: Computing the divergence

$$\operatorname{div}_{\mathbf{y}}(f_{\theta}(\mathbf{y})) = \sum_{n=1}^{N} \frac{\partial f_{\theta}(\mathbf{y})}{\partial y_{n}}$$

• For bounded functions:

$$\mathbf{b} \sim \mathcal{N}(0, \mathbb{I})$$
$$\operatorname{div}_{\mathbf{y}}(f_{\theta}(\mathbf{y})) = \lim_{\epsilon \to 0} \mathbb{E}_{\mathbf{b}} \left\{ \mathbf{b}^{t} \left(\frac{f_{\theta}(\mathbf{y} + \epsilon \mathbf{b}) - f_{\theta}(\mathbf{y})}{\epsilon} \right) \right\}$$

• Approximation:

$$\epsilon = \frac{\max\left(\mathbf{y}\right)}{1000}$$
$$\operatorname{div}_{\mathbf{y}}(f_{\theta}(\mathbf{y})) \approx \mathbf{b}^{t} \left(\frac{f_{\theta}(\mathbf{y} + \epsilon \mathbf{b}) - f_{\theta}(\mathbf{y})}{\epsilon}\right)$$

Denoising with Noisy Data

DnCNN Denoiser:

• Training Data:

$$\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_L$$

 $\mathbf{y} = \mathbf{x} + \mathbf{w}$ $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_L$

• Loss Function:

MSE

$$\sum_{\ell=1}^{L} \frac{1}{n} \|\mathbf{x}_{\ell} - f_{\theta}(\mathbf{y}_{\ell})\|^2$$

$$\sum_{\ell=1}^{L} \frac{1}{n} \|\mathbf{y}_{\ell} - f_{\theta}(\mathbf{y}_{\ell})\|^2 - \sigma_w^2 + \frac{2\sigma_w^2}{n} \operatorname{div}_{\mathbf{y}_{\ell}} \{(f_{\theta}(\mathbf{y}_{\ell}))\}_{35}$$

SURE

Denoising with Noisy Data Results

Original Noisy Image

BM3D (26.0 dB, 4.01 sec.)

DnCNN SURE (26.5 dB, 0.04 sec.) DnCNN MSE (26.7 dB, 0.04 sec.)

Compressive Image Recovery w/ Noisy Data

• Problem Formulation:

Image:

Measurements:

Measurement Operator:

Noise:

 $\mathbf{x} \in \mathbb{R}^{N}$ $\mathbf{y} = \mathbf{\Phi}\mathbf{x} + \mathbf{w}, \quad \mathbf{y} \in \mathbb{R}^{M}$ $\mathbf{\Phi} \in \mathbb{R}^{M \times N}$ $\mathbf{w} \in \mathbb{R}^{M}$ $M \ll N$

Setting:

Recovery Algorithm

• Learning Denoising-based AMP (LDAMP) Neural Network (for k=1,...,K):

$$\mathbf{z}^{k} = \mathbf{y} - \mathbf{\Phi}\mathbf{x}^{k} + \frac{1}{m}\mathbf{z}^{k-1}\operatorname{div}D_{\theta^{k-1}}^{k-1}(\mathbf{x}^{k-1} + \mathbf{\Phi}^{*}\mathbf{z}^{k-1})$$
$$\sigma^{k} = \frac{\|\mathbf{z}^{k}\|_{2}}{\sqrt{m}}$$

$$\mathbf{x}^{k+1} = D_{\theta^k}^k (\mathbf{x}^k + \mathbf{\Phi}^* \mathbf{z}^k)$$

Layer by Layer Training

CIDE

Decouples image recovery into a series of denoising problems:

$$\mathbf{x}^k + \mathbf{\Phi}^* \mathbf{z}^k = \mathbf{x}_o + \sigma \mathbf{v}$$
 $\mathbf{v} \sim \mathcal{N}(0, \mathbb{I})$ [Donoho et al. 2009, 2011]
[Bayati and Montanari, 2011]

• Layerwise Training of the LDAMP Network: MSE

$$\theta_{\text{MSE}} = \arg\min_{\theta} \sum_{\ell=1}^{L} \frac{1}{n} \|\mathbf{x}_{\ell} - f_{\theta}(\mathbf{y}_{\ell})\|^2 \qquad \theta_{\text{SURE}} = \arg\min_{\theta} \sum_{\ell=1}^{L} \frac{1}{n} \|\mathbf{y}_{\ell} - f_{\theta}(\mathbf{y}_{\ell})\|^2 - \sigma^{k^2} + \frac{2(\sigma^k)^2}{n} \operatorname{div}_{\mathbf{y}_{\ell}}(f_{\theta}(\mathbf{y}_{\ell}))$$

Compressive Image Recovery

5x undersampling

Original Image

LDAMP MSE (34.6 dB, 0.4 sec.) LDAMP SURE (31.9 dB, 0.4 sec.)

BM3D-AMP (31.3 dB, 13.2 sec.)

39

Take away Messages!

• There are three major paradigms for signal acquisition.

- Each paradigm puts resources on one of the sampling, modeling, or reconstruction tasks.
 Sampling Modeling Reconstruction (~1900)
 Compressive Sensing (~2007)
 Our Work
- There seems to be a preservation of computation between different paradigms.