
Online Load Balancing
with Learned Weights

Benjamin Moseley
 Tepper School of Business, Carnegie Mellon University

Relational-AI

Joint work with: Silvio Lattanzi (Google), Thomas Lavastida (CMU),
and Sergei Vassilvitskii (Goolge)

Data Center Scheduling
• Client Server Scheduling

• Processed in m machines in the restricted assignment setting (more
generally unrelated machines)

• Jobs arrive over time in the online-list model

• Assign jobs to the machines to minimize makespan

Load Balancing under
Restricted Assignment

• m machines

• n jobs

• Online list: a job must be
immediately assigned before the
next job arrives

• N(j): feasible machines for job j

• p(j): size of job j (complexity
essentially the same if unit
sized)

• Minimize the maximum load

• Optimal load is T

Online Competitive Analysis
Model

• c-competitive

• Worst case relative performance on each input I

• Problem well understood:

• A lower bound on any online algorithm

• Greedy is a competitive algorithm [Azar,
Naor, and Rom 1995]

�(log m)

ALG(I)

OPT (I)
� c

O(log m)

Beyond Worst Case
• Reasonable assumption:

• Access to job traces

• Desire a model to assist in assigning future jobs based on the
past.

• Predict the future based on the past.

• What should be predicted?

• How can it be predicted?

Learning and Online
Algorithms

• Combining learning and optimization

• Caching [Lykouris and Vassilvitskii 2018]

• Ski Rental [Purohit et al 2018]

• Non-clairvoyant scheduling [Purohit et al 2018]

Building a Model
• Guiding principals

• Computable based on prior job traces

• Predictions should be reasonably sized

• Should be robust to error or inconsequential changes to the input

• Focus on quantity to predict

• Independent of learning algorithm used to construct the prediction

• Focus on the worst case with access to the prediction

• Goal: beat log(m) when error is small

• Competitive ratio should depend on the error

What to Predict?
• Load of the machines in the optimal solution?

• Perhaps we can identify the contentious
machines?

0

20

40

60

80

Machine 1 Machine 2 Machine 3 Machine 4

makespan 80

optimal solution

What to Predict?
• Load of the machines in the optimal solution?

• Perhaps we can identify the contentious
machines? No

0

20

40

60

80

Machine 1 Machine 2 Machine 3 Machine 4

new instance
padded with
dummy jobs

optimal solution

loads the
same

What to Predict?
• Number of jobs that can be assigned to a machine?

• Perhaps machines that can be assigned more
jobs are more contentious?

What to Predict?

Old Machine

New jobs say
have a private

machine.

• Number of jobs that can be assigned to a machine

• Consider the following gadget to any instance
New jobs can be assigned
to old machines, skewing

‘degrees’ adversarially

What to Predict?
• Distribution on job types

• Is this the best predictive model?

• job types possible

• Need to predict a lot of information in some cases

• Perhaps not the right model if information is sparse

2m

What to Predict?
• Predict dual variables

• Known to be useful for matching in the random order
model [Devanur and Hayes, Vee et al.]

• Read a portion of the input

• Compute the duals

• Prove a primal assignment can be (approximately)
constructed from the duals online

• Use duals to make assignments on remaining input

What to Predict?
• Predict dual variables for makespan scheduling

• Can derive primal based on dual

• Sensitive to small error (e.g. changing a variable
by a factor of 1/n1/2 has the potential to drastically
change the schedule)

What to Predict?

• Idea: Capture contentiousness of a machine

• Seems like the most important quantity besides
types of jobs

Machine Weights
• Predict a weight for each machine

• Single number (compact)

• Lower weight means more restrictive machine

• Higher weight less restrictive

• Framework:

• Predict machine weights

• Using to construct fractional assignments

• Round to an integral solution online

Results on Predictions
• Existence of weights

• Theorem 1: Let T be optimal max load. For any ε > 0,
there exists machine weights and a rule to convert the
weights to fractional assignments such that the resulting
fractional max load is at most (1+ε)T.

• Theorem 2: Given predictions of the machine weights
with maximum relative error η > 1, there exists an online
algorithm yielding fractional assignments for which the
fractional max load is bounded by O(Tmin{log(η), log(m)}).

Results on Rounding
• Theorem 3: There exists an online algorithm that takes as input

fractional assignments and outputs integer assignments for which the
maximum load is bounded by O((loglog(m))3T’), where T’ is maximum
fractional load of the input. The algorithm is randomized and succeeds
with probability at least 1- 1 / mc.

• Corollary: There exists an O(min{(loglog(m))3log(η), log m}) competitive
algorithm for restricted assignment in the online algorithms with learning
setting

• Theorem 4: Any randomized online rounding algorithm has worst case
load at least ⌦(T 0 log logm)

Existence of Good Weights

• Each machine i has a weight

• Job j is assigned to machine i fractionally as
follows:

xi,j =
wiP

i02N(j) wi0

wi

Existence of Good Weights
• There exists weights that satisfy the following for all

machines i

• Existence builds from [Agrawal, Zadimoghaddam,
Mirrokni 2018]

• Used for approximate maximum matching

X

j

xi,j (1 + ✏)T

Finding the Weights
• Algorithm sketch for computing weights given an instance

• Initialize all weights to be the same

• While there is an overloaded machine

• For each machine i

• Current load of machine i:

• If

• Divide by

Li =
X

j

xi,j =
X

j

wiP
i02N(j) wi0

(1 + ✏)wi

Li � (1 + ✏)T

Accounting for Error in the
Predicted Weight

• Say we are given a prediction

• Let the error be the maximum

• If a machine is overloaded, run an iteration of the weight
computation algorithm online

• Converges in steps

• If the load is greater than a factor off then revert to
another online algorithm (i.e. greedy)

• Get a fractional makespan at most

ŵ

⌘ = max
i

ŵi

wi

log ⌘

logm

O(T min{log ⌘, logm})

Setup for Rounding
Algorithm

• Jobs arrive online

• When j arrives it reveals all over all machines i

• Assign each job immediately when it arrives

• Compare maximum load to the maximum
factional load seen so far

xi,j

Rounding Algorithm
• Possible approaches

• Prior LP rounding techniques

• Techniques are too sophisticated to be used online i.e.[Lenstra,
Shmoys, Tardos 1990] needs a basic solution, BFS on support
graph,…

• Deterministic rounding

• We show a lower bound

• Vanilla randomized rounding

• Easy to construct instances where a machine is over loaded by
⌦(logm)

⌦(logm)

Rounding Algorithm
• Use randomized rounding with deterministic assignments

• Assign jobs to machines using the distribution defined by the fractional
assignment

• If a job picks a machine with load more than

• c is some constant

• The job fails

• Let F be the set of failed jobs

• Assign failed jobs using greedy (i.e. assign to the the least loaded feasible
machine)

Tc log logm

Analysis of the
 Rounding Algorithm

• Assume jobs (machines) have at most machines
(jobs) in the support of their fractional assignment.

• Most interesting case

• Only care about failed jobs (others have small makespan)

• Consider conceptually creating a graph

• Nodes are failed jobs

• Two jobs are connected if they share the same machine

logm

G

Greedy on Failed Jobs
• Prove components have polylogarithmic size,

say with high probability

• Greedy is an approximation for an
instance with m’ machines

• Each component is a separate instance with
number machines

• Greedy gives a
approximation to the fractional load

O(logm0)

O(logm)

O(logm0) = O(log logm)

m� = polylog m

Future Work
• How to combine learning with optimization

• Can predictions be used to discover improved
algorithms?

• Theoretical model characterizing good predictions?

• Does there a exist generic algorithm for using
data?

Thank you!

Questions?

