Online Load Balancing with Learned Weights

Benjamin Moseley Tepper School of Business, Carnegie Mellon University Relational-Al

Joint work with: Silvio Lattanzi (Google), Thomas Lavastida (CMU), and Sergei Vassilvitskii (Goolge)

Carnegie Mellon University

Data Center Scheduling

- Client Server Scheduling
 - Processed in m machines in the restricted assignment setting (more generally unrelated machines)
 - Jobs arrive over time in the **online-list** model
 - Assign jobs to the machines to minimize makespan

Load Balancing under Restricted Assignment

- m machines
- n jobs
 - Online list: a job must be immediately assigned before the next job arrives
 - N(j): feasible machines for job j
 - p(j): size of job j (complexity essentially the same if *unit sized*)
- Minimize the maximum load
 - Optimal load is T

Online Competitive Analysis Model $\frac{ALG(I)}{OPT(I)} \le c$

- c-competitive
- Worst case relative performance on each input I

- Problem well understood:
 - A $\Omega(\log m)$ lower bound on any online algorithm
 - Greedy is a $O(\log m)$ competitive algorithm [Azar, Naor, and Rom 1995]

Beyond Worst Case

- Reasonable assumption:
 - Access to job traces

- Desire a model to assist in assigning future jobs based on the past.
 - Predict the future based on the past.
 - What should be predicted?
 - How can it be predicted?

Learning and Online Algorithms

- Combining learning and optimization
 - Caching [Lykouris and Vassilvitskii 2018]
 - Ski Rental [Purohit et al 2018]
 - Non-clairvoyant scheduling [Purohit et al 2018]

Building a Model

- Guiding principals
 - **Computable** based on prior job traces
 - Predictions should be **reasonably sized**
 - Should be **robust** to error or inconsequential changes to the input
- Focus on **quantity** to predict
 - Independent of learning algorithm used to construct the prediction
 - Focus on the worst case with access to the prediction
- Goal: beat log(m) when error is small
 - Competitive ratio should depend on the error

- **Load** of the machines in the optimal solution?
 - Perhaps we can identify the contentious machines?

- **Load** of the machines in the optimal solution?
 - Perhaps we can identify the contentious machines? No

- **Number** of jobs that can be assigned to a machine?
 - Perhaps machines that can be assigned more jobs are more contentious?

- Number of jobs that can be assigned to a machine
 - Consider the following gadget to any instance New jobs can be assigned to old machines, skewing 'degrees' adversarially

New jobs say have a private machine.

• Distribution on job types

- Is this the best predictive model?
 - 2^m job types possible
 - Need to predict a lot of information in some cases
 - Perhaps not the right model if information is sparse

- Predict dual variables
- Known to be useful for matching in the random order model [Devanur and Hayes, Vee et al.]
 - Read a portion of the input
 - Compute the duals
 - Prove a primal assignment can be (approximately) constructed from the duals online
 - Use duals to make assignments on remaining input

- Predict **dual variables** for makespan scheduling
 - Can derive primal based on dual
 - Sensitive to small error (e.g. changing a variable by a factor of 1/n^{1/2} has the potential to drastically change the schedule)

- Idea: Capture **contentiousness** of a machine
 - Seems like the most important quantity besides types of jobs

Machine Weights

- Predict a weight for each machine
 - Single number (compact)
 - Lower weight means more restrictive machine
 - Higher weight less restrictive
- Framework:
 - Predict machine **weights**
 - Using to construct **fractional** assignments
 - Round to an integral solution online

Results on Predictions

- Existence of weights
 - Theorem 1: Let T be optimal max load. For any ε > 0, there exists machine weights and a rule to convert the weights to fractional assignments such that the resulting fractional max load is at most (1+ε)T.

 Theorem 2: Given predictions of the machine weights with maximum relative error η > 1, there exists an online algorithm yielding fractional assignments for which the fractional max load is bounded by O(Tmin{log(η), log(m)}).

Results on Rounding

Theorem 3: There exists an online algorithm that takes as input fractional assignments and outputs integer assignments for which the maximum load is bounded by O((loglog(m))³T'), where T' is maximum fractional load of the input. The algorithm is randomized and succeeds with probability at least 1-1 / m^c.

 Corollary: There exists an O(min{(loglog(m))³log(η), log m}) competitive algorithm for restricted assignment in the online algorithms with learning setting

• **Theorem 4**: Any randomized online rounding algorithm has worst case load at least $\Omega(T' \log \log m)$

Existence of Good Weights

• Each machine i has a weight w_i

 Job j is assigned to machine i fractionally as follows:

$$x_{i,j} = \frac{w_i}{\sum_{i' \in N(j)} w_{i'}}$$

Existence of Good Weights

 There exists weights that satisfy the following for all machines i

$$\sum_{j} x_{i,j} \le (1+\epsilon)T$$

- Existence builds from [Agrawal, Zadimoghaddam, Mirrokni 2018]
 - Used for approximate maximum matching

Finding the Weights

- Algorithm sketch for computing weights given an instance
 - Initialize all weights to be the same
 - While there is an overloaded machine
 - For each machine i
 - Current load of machine i: $L_i = \sum_i x_{i,j} = \sum_i \frac{w_i}{\sum_{i' \in N(i)} w_{i'}}$
 - If $L_i \ge (1+\epsilon)T$
 - Divide w_i by $(1+\epsilon)$

Accounting for Error in the Predicted Weight

- Say we are given a prediction \hat{w}
- Let the error be the maximum $\eta = \max_i \frac{\hat{w}_i}{w_i}$
- If a machine is overloaded, run an iteration of the weight computation algorithm online
 - Converges in $\log\eta$ steps
 - If the load is greater than a $\log m$ factor off then revert to another online algorithm (i.e. greedy)
- Get a fractional makespan at most $O(T \min\{\log \eta, \log m\})$

Setup for Rounding Algorithm

- Jobs arrive online
- When j arrives it reveals all $x_{i,j}$ over all machines i
- Assign each job immediately when it arrives
- Compare maximum load to the maximum factional load seen so far

Rounding Algorithm

- Possible approaches
 - Prior LP rounding techniques
 - Techniques are too sophisticated to be used online i.e.[Lenstra, Shmoys, Tardos 1990] needs a basic solution, BFS on support graph,...
 - Deterministic rounding
 - We show a $\Omega(\log m)$ lower bound
 - Vanilla randomized rounding
 - Easy to construct instances where a machine is over loaded by $\Omega(\log m)$

Rounding Algorithm

- Use randomized rounding with deterministic assignments
- Assign jobs to machines using the distribution defined by the fractional assignment
- If a job picks a machine with load more than $Tc \log \log m$
 - c is some constant
 - The job fails
 - Let **F** be the set of failed jobs
- Assign failed jobs using greedy (i.e. assign to the the least loaded feasible machine)

Analysis of the Rounding Algorithm

- Assume jobs (machines) have at most $\log m$ machines (jobs) in the support of their fractional assignment.
 - Most interesting case
- Only care about failed jobs (others have small makespan)
- Consider conceptually creating a graph G
 - Nodes are failed jobs
 - Two jobs are connected if they share the same machine

Greedy on Failed Jobs

- Prove components have polylogarithmic size, say $O(\log m)$ with high probability
- Greedy is an $O(\log m')$ approximation for an instance with m' machines
 - Each component is a separate instance with number machines m' = polylog m
- Greedy gives a $O(\log m') = O(\log \log m)$ approximation to the fractional load

Future Work

- How to combine learning with optimization
 - Can predictions be used to discover improved algorithms?
- Theoretical model characterizing good predictions?
- Does there a exist generic algorithm for using data?

Thank you!

Questions?