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Structural Emergency Control Paradigm
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Abstract— Power grids normally operate at some stable oper-
ating condition where power supply and demand are balanced.
In response to emergency situations, load shedding is a prevailing
approach where local protective devices are activated to cut
a suitable amount of load to quickly rebalance the supply
demand and hopefully stabilize the system. This traditional
emergency control results in interrupted service with severe
economic damage to customers. Also, such control is usually less
effective due to the lack of coordination among protective devices.
In this paper, we propose a novel structural emergency control
to render post-fault dynamics from the critical/emergency fault-
cleared state to the stable equilibrium point. This is a new control
paradigm that does not rely on any continuous measurement
or load shedding, as in the classical setup. Instead, the grid is
made stable by discretely relocating the equilibrium point and its
stability region, such that the system is consecutively attracted
from the fault-cleared state back to the original equilibrium
point. The proposed control is designed by solving linear and
convex optimization problems, making it possibly scalable to
large-scale power grids. Finally, this emergency control scheme
can be implemented by exploiting transmission facilities available
on the existing grids.

Index Terms— Power grids, emergency control, interconnected
systems, synchronization.

I. INTRODUCTION

A. Motivation

THE electric power grid is recognized as the largest engi-
neering achievement in the 20th century. In recent years,

it has been experiencing a transformation to an even more
complicated system with an increased number of distributed
energy sources and more active and less predictable load
endpoints. At the same time, intermittent renewable generation
introduces high uncertainty into system operation and may
compromise power system stability and security. The existing
control operations and modeling approaches, which are largely
developed several decades ago for the much more predictable
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operation of a vertically integrated utility with no fluctuat-
ing generation, need to be reassessed and adopted to more
stressed operating conditions [1]–[5]. In particular, operating
reserves [6], traditionally put in place to maintain power
system frequency in the presence of uncertainties in production
and demand, face limitations in the current grid paradigm.
First, the increased uncertainty in production requires new
ways of dimensioning the reserves available to the operator at
any given moment. Second, because of the substantially higher
stochastic component in the current and future power system
operation, the power grid becomes increasingly vulnerable to
large disturbances, which can eventually lead to major outages.
Such events evolve in time scales much faster than what the
secondary or tertiary frequency control can handle. Hence,
emergency control, i.e., quick actions to recover the stability
of a power grid under critical contingency, is required.

Currently, emergency control of power grids is largely based
on remedial actions, special protection schemes (SPS), and
load shedding [7], which aim to quickly rebalance power
and hopefully stabilize the system. Although these emergency
control schemes make the electrical power grid reasonably
stable to disturbances, their drawbacks are twofold. First,
some of these emergency actions rely on interrupting electrical
service to customers. The unexpected service loss is extremely
harmful to customers since it may lead to enormously high
economic damage, e.g., it is reported that the economic cost
of power interruptions every year in the US is about $79 bil-
lion [8]. Second, protective devices are usually only effective
for individual elements, but less effective in preventing the
whole grid from collapse. Recent major blackouts exhibit
the inability of operators to prevent grid from cascading
failures [9], regardless of the good performance of individual
protective devices. The underlying reason is the lack of coordi-
nation among protective devices, which makes them incapable
of maintaining the stability of the whole grid. These drawbacks
call for system-level, cost-effective solutions to the emergency
control of power grids.

On the other hand, new generations of smart electronic
devices provide fast actuation to smart power grids. Advanced
transmission resources for active and reactive power flow con-
trol are gradually installed into the system and are expected to
be widely available in the future. Besides shunt compensation
(switched reactors and capacitors, Static Var Compensators,
and STATCOMs), over the last decades a large number
of Phase-Shifting Transformers (PSTs) has been installed
in power systems all over the world, while a gradually
increased installation of Thyristor-Controlled Series Capaci-
tors (TCSCs) has also been observed. Both of these devices
can be represented by a variable susceptance (for PST mod-
eling see e.g., [10]). At the same time, HVDC lines and
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Fig. 1. Stability-driven smart transmission control: the fault-cleared state is
made stable by changing the stable equilibrium point (SEP) through adjusting
the susceptances of the network transmission lines.

HVDC back-to-back converters are installed at several loca-
tions, which can also be used for power flow and voltage
control.

Motivated by the aforementioned observations, this paper
aims to extract more value out of the existing fast-acting
controllable grid elements to quickly stabilize the power grid
when it is about to lose synchronism after experiencing contin-
gencies (but the voltage is still well-supported). In particular,
through the use of PSTs, TCSCs, or HVDC, we propose to
adjust selected susceptances and/or power injections in the
transmission system to control the post-fault dynamics and
thereby stabilize the power system. In the rest of this paper,
we will refer to all these devices as FACTS devices.

One of the most remarkably technical difficulties to realize
such a control scheme is that the post-fault dynamics of
a power grid possess multiple equilibrium points, each of
which has its own stability region (SR), i.e., the set of states
from which the post-fault dynamics will converge to the
equilibrium point. If the fault-cleared state stays outside the
stability region of the stable equilibrium point (SEP), then
the post-fault dynamics will result in an unstable condition and
eventually, may lead to major failures. Real-time direct time-
domain simulation, which exploits advances in computational
hardware, can perform an accurate assessment for post-fault
transient dynamics following the contingencies. However, it
does not suggest how to properly design the emergency control
actions that are guaranteed to drive critical/emergency states
back to some stable operating condition.

B. Novelty

To deal with this technical difficulty, we propose a struc-
tural control paradigm to drive post-fault dynamics from
critical fault-cleared states to the desired stable equilibrium
point. In particular, we will change the transmission line
susceptances and/or power injection setpoints to obtain a new
stable equilibrium point such that the fault-cleared state is
guaranteed to stay strictly inside the stability region of this
new equilibrium point, as shown in Fig. 1. Hence, under the
new post-fault dynamics, the system trajectory will converge
from the fault-cleared state to the new equilibrium point.

If this new equilibrium point stays inside the stability region
of the original equilibrium point, then we recover the original
line susceptances/power injections and the system state will
automatically converge from the new equilibrium point to the
original equilibrium point. Otherwise, this convergence can
be performed through a sequence of new transmission control
actions which drive the system state to the original equilibrium
point through a sequence of other equilibrium points, as shown
in Fig. 2.

It is worth noting that the proposed control scheme is a new
control paradigm which is unusual in classical control systems
theory. Indeed, in the proposed control paradigm, we drive the
system from the initial state (i.e., the fault-cleared state) to the
desired equilibrium point by relocating its equilibrium point
and the corresponding stability region. This setup is unusual
from the classical control theory point of view where the
equilibrium point is usually assumed to be unchanged under
the effects of control inputs.

Compared to the existing control methods, the proposed
emergency control method has several advantages, including:

i) It belongs to the family of special protection schemes,
thus being much faster than secondary and tertiary fre-
quency controls, and making it suitable to handle emer-
gency situations.

ii) It avoids load shedding which causes damages and severe
economic loss to consumers.

iii) The investment for the proposed control is minor since
we only employ the already-installed FACTS devices to
change the line impedance/power injection and relocate
the equilibrium point.

iv) It avoids the usage of continuous measurement of power
system state, reducing the resources needed for data
storage and processing. The last feature distinguishes the
proposed structural control paradigm from other link con-
trol methods [11] where the system state is continuously
measured to change the link continuously.

To guarantee the convergence of the post-fault dynamics
under control, we utilize our recently introduced Lyapunov
function family-based transient stability certificate [12], [13].
This stability certificate gives us sufficient conditions to assess
whether a given post-fault dynamics will converge from a
given initial state to a given equilibrium point. In this paper,
we construct a new family of Lyapunov functions which are
convex and fault-dependent, which can balance the trade-off
between computational complexity and conservativeness of the
stability certificate. Similar idea with such control-Lyapunov
function for power systems was also investigated in [14], yet
this is based on the continuous measurement/control design to
change the power injections.

On the practical implementation of the proposed control
approach, we note that it may be dangerous if some step went
wrong during the whole emergency control procedure, e.g.,
due to failure of the corresponding FACTS devices. This is
at the same degree of risk that the grid would experience
in case of protection equipment malfunctions during faults.
Operators are familiar with such risks, and there are standard-
ized procedures to ensure the reliable operation of protection
relays, e.g., periodic checks, tests, etc. Similar procedures
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should be followed to ensure the reliable operation of FACTS
devices during emergencies. In addition, we expect that the
proposed approach will act complementary to other emergency
control actions. Finally, it is worth noting that in the proposed
approach, we only change the susceptances of the transmission
lines in the allowable range of FACTS devices, while the
selected lines are still on service and the network structure is
unchanged. This is different from the line switching approach,
which may cause oscillatory behavior after switching action.

The paper is structured as follows. Section II recalls the
structure-preserving model of power systems and formulates
the emergency control problem of power grids. In Section III,
we construct a new convex, fault-dependent Lyapunov function
family for stability analysis. In Section IV, we design the
emergency controls and propose the procedure for remedial
actions. Section V numerically illustrates the effectiveness
of the proposed emergency control action, and Section VI
concludes the paper.

II. NETWORK MODEL AND EMERGENCY

CONTROL PROBLEM

A. Network Model

In this paper, we consider power systems under critical
situations when the buses’ phasor angles may significantly
fluctuate but the buses’ voltages are still well-supported
and maintained. For such situations, we utilize the stan-
dard structure-preserving model to describe the dynamics of
generators and frequency-dependent dynamic loads in power
systems [15]. This model naturally incorporates the dynamics
of the generators’ rotor angle as well as the response of
load power output to frequency deviation. Mathematically,
the grid is described by an undirected graph A(N , E), where
N = {1, 2, . . . , |N |} is the set of buses and E ⊆ N × N is
the set of transmission lines connecting those buses. Here, |A|
denotes the number of elements in set A. The sets of generator
buses and load buses are denoted by G and L. We assume
that the grid is lossless with constant voltage magnitudes
Vk, k ∈ N , and the reactive powers are ignored. Then, the
structure-preserving model of the system is given by [15]:

mk δ̈k + dk δ̇k +
∑

j∈Nk

akj sin(δk − δ j ) = Pmk , k ∈ G, (1a)

dk δ̇k +
∑

j∈Nk

akj sin(δk − δ j ) = −P0
dk

, k ∈ L, (1b)

where equation (1a) represents the dynamics at generator buses
and equation (1b) the dynamics at load buses. In these equa-
tions, with k ∈ G, then mk > 0 is the generator’s dimensionless
moment of inertia, dk > 0 is the term representing primary
frequency controller action on the governor, and Pmk is the
input shaft power producing the mechanical torque acting on
the rotor of the kth generator. With k ∈ L, then dk > 0 is the
constant frequency coefficient of load and P0

dk
is the nominal

load. Here, akj = Vk Vj Bkj , where Bkj is the (normalized)
susceptance of the transmission line {k, j} connecting the
kth bus and j th bus, Nk is the set of neighboring buses of
the kth bus. Note that, the system described by equation (1)
has many stationary points δ∗

k that are characterized, however,

by the angle differences δ∗
kj = δ∗

k − δ∗
j (for a given Pk) that

solve the following system of power flow-like equations:
∑

j∈Nk

akj sin(δ∗
kj ) = Pk , k ∈ N , (2)

where Pk = Pmk , k ∈ G, and Pk = −P0
dk

, k ∈ L.

B. Emergency Control Problem

In normal conditions, a power grid operates at a stable
equilibrium point of the pre-fault dynamics. Under emergency
situations, the system evolves according to the fault-on dynam-
ics laws and moves away from the pre-fault equilibrium point
to a fault-cleared state δ0. After the fault is cleared, the system
evolves according to the post-fault dynamics described by
equation (1). Assume that these post-fault dynamics possess a
stable operating condition δ∗

origin with its own stability region.
The critical situations considered in this paper are when

the fault-on trajectory is leaving polytope �/2 defined by
inequalities |δkj | ≤ π/2,∀{k, j} ∈ E , i.e., the fault-cleared
state δ0 stays outside polytope �/2. In normal power systems,
protective devices will be activated to disconnect faulted
lines/nodes, which will isolate the fault and prevent the post-
fault dynamics from instability (this would usually happen at
some point beyond a voltage angle difference π/2).

Avoiding disconnecting line/node, our emergency control
objective is to make post-fault dynamics become stable by
controlling the post-fault dynamics from the fault-cleared
state δ0 to the stable equilibrium point δ∗

origin, which, e.g.,
may be an optimum point of some optimal power flow (OPF)
problem. To achieve this, we consider adjusting the post-
fault dynamics through adjusting the susceptance of some
selected transmission lines and/or changing power injections.
These changes can be implemented by the FACTS devices
available on power transmission grids. The rationale of this
control is based on the observation illustrated in Fig. 1 that, by
appropriately changing the structure of power systems, we can
obtain new post-fault dynamics with a new equilibrium point
whose region of attraction contains the fault-cleared state δ0,
and therefore, the new post-fault dynamic is stable.

Formally, we consider the following control design problem:
(P) Structural Emergency Control Design: Given a fault-

cleared state δ0 and the stable equilibrium point δ∗
origin,

determine the feasible values for susceptances of selected
transmission lines and/or feasible power injection such
that the post-fault dynamics are driven from the fault-
cleared state δ0 to the original post-fault equilibrium
point δ∗

origin.
In the next section, we will present the stability certificate

for given post-fault dynamics, which will be instrumental in
designing a structural emergency control solving problem (P)
in Section IV.

III. FAULT-DEPENDENT TRANSIENT

STABILITY CERTIFICATE

In this section, we recall the Lyapunov function family
approach for transient stability analysis [13], [16]. Then,
we construct a new set of fault-dependent Lyapunov functions
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that are convex and result in an easy-to-verify stability cer-
tificate. This set of Lyapunov functions balances the tradeoff
between computational tractability and conservativeness of the
stability certificate.

A. The Lyapunov Function Family Approach

In the LFF approach (see [13], [16] for details), the
nonlinear couplings and the linear model are separated, and
we obtain an equivalent representation of (1) as

ẋ = Ax − B F(Cx). (3)

For the system defined by (3), the LFF approach proposes to
use the Lyapunov functions family given by:

V (x) = 1

2
x�Qx −

∑

{k, j }∈E
K{k, j }

(
cos δkj + δkj sin δ∗

kj

)
, (4)

in which the diagonal, nonnegative matrices K , H and the
symmetric, nonnegative matrix Q satisfy the following linear
matrix inequality (LMI):

[
A�Q + Q A R

R� −2H

]
≤ 0, (5)

with R = QB − C� H − (K C A)�. The classical energy
function is just one element of the large cone of all possible
Lyapunov functions corresponding to a solution of LMI (5):
Q = diag(0, . . . , 0, m1, . . . , mm , 0, . . . , 0), K = S, and
H = 0.

Then, we can prove that an estimation for the region of
attraction of the equilibrium point is given by

RP = {x ∈ P : V (x) < Vmin(P)} , (6)

where the polytope P is defined by inequalities |δkj + δ∗
kj | ≤

π,∀{k, j} ∈ E , and Vmin(P) is the minimum value of
V (x) over the flow-out boundary of polytope P . Finally, to
determine if the post-fault dynamics are stable, we check to
see if the fault-cleared state x0 is inside the stability region
estimate RP .

B. The Fault-Dependent Convex Lyapunov Function

A property of the Lyapunov function V (x) defined in
equation (4) is that it may be nonconvex in polytope P , making
it computationally complicated to calculate the minimum value
Vmin(P). One way to get the convex Lyapunov function is to
restrict the state inside the polytope defined by inequalities
|δkj | ≤ π/2. However, this Lyapunov function can only certify
stability for fault-cleared states with phasor differences less
than π/2.

To certify stability for fault-cleared state staying outside
polytope �/2, which likely happens in emergency situations,
we construct a family of the fault-dependent convex Lya-
punov functions. Assume that the fault-cleared state x0 has
a number of phasor differences larger than π/2. Usually, this
happens when the phasor angle at a node becomes significantly
large, making the phasor difference associated with it larger
than π/2. Without loss of generality, we assume that |δi j (0)| >
π/2,∀ j ∈ Ni at some given node i ∈ N . Also, it still holds

that |δi j (0) + δ∗
i j | ≤ π for all j ∈ Ni . Consider polytope Q

defined by inequalities

|δi j + δ∗
i j | ≤ π, ∀ j ∈ Ni ,

|δkj | ≤ π/2, ∀ j ∈ Nk, ∀k �= i. (7)

Hence, the fault-cleared state is inside polytope Q. Inside
polytope Q, consider the Lyapunov function family (4) where
the matrices Q, K ≥ 0 satisfying the following LMIs:

[
A�Q + Q A R

R� −2H

]
≤ 0, (8)

Q −
∑

j∈Ni

K{i, j }C�{i, j }C{i, j } ≥ 0, (9)

where C{i, j } is the row of matrix C that corresponds to the row
containing K{i, j } in the diagonal matrix K . From (7) and (9),
we can see that the Hessian of the Lyapunov function inside
Q satisfies

H (V (x)) = Q +
∑

{k, j }∈E
K{k, j }C�{k, j }C{k, j } cos δkj

≥ Q +
∑

j∈Ni

K{i, j }C�{i, j }C{i, j } cos δi j

≥ Q −
∑

j∈Ni

K{i, j }C�{i, j }C{i, j } ≥ 0. (10)

As such, the Lyapunov function is convex inside polytope Q
and thus, the corresponding minimum value Vmin(Q), defined
over the flow-out boundary of Q, can be calculated in poly-
nomial time. Also, the corresponding estimate for region of
attraction is given by

RQ = {x ∈ Q : V (x) < Vmin} , (11)

with

Vmin = Vmin(Q) = min
x∈∂Qout

V (x). (12)

The convexity of V (x) in polytope Q allows us to quickly
compute the minimum value Vmin and come up with an
easy-to-verify stability certificate. Therefore, by exploiting
properties of the fault-cleared state, we have a family of
fault-dependent Lyapunov functions that balance the tradeoff
between computational complexity and conservativeness. It is
worth noting that though the Lyapunov function is fault-
dependent, we only need information for the fault-cleared
states instead of the full fault-on dynamics.

Another point we should note is that LMIs (8)-(9) provide us
with a family of Lyapunov functions guaranteeing the stability
of the post-fault dynamics. For a given fault-cleared state, we
can find the best suitable function in this family to certify its
stability. The adaptation algorithm is similar to that in [13],
with the only difference being the augment of inequality (9),
i.e., Q − ∑

j∈Ni
K{i, j }C�{i, j }C{i, j } ≥ 0. More details can be

found in Appendix A.
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Fig. 2. Selection of the sequence of stable equilibrium points δ∗
i ,

i = 1, . . . , N , such that the fault-cleared state is driven through the sequence
of equilibrium points back to the original equilibrium point δ∗

origin.

IV. STRUCTURAL EMERGENCY CONTROL DESIGN

In this section, we solve the post-fault emergency control
problem (P). As illustrated in Fig. 2, to render the post-fault
dynamics from the fault-cleared state x0 to the equilibrium
point δ∗

origin, we will find a sequence of stable equilibrium
points δ∗

1 , . . . , δ∗
N with their corresponding region of attrac-

tions SR1, . . . , SRN such that

x0 ∈ SR1, δ
∗
1 ∈ SR2, . . . , δ

∗
N−1 ∈ SRN, δ∗

N ∈ SRorigin. (13)

Then, the post-fault dynamics can be attracted from the fault-
cleared state x0 to the original equilibrium point δ∗

origin through
a sequence of appropriate structural changes in the power
network. In this section, we will show that we only need
to determine a finite number of equilibrium points through
solving convex optimization problems.

Recall that, the equilibrium point δ∗ is a solution to the
power flow-like equations:

∑

j∈Nk

Vk Vj Bkj sin δ∗
kj = Pk, ∀k ∈ N . (14)

As such, the sequence of equilibrium points δ∗
1 , . . . , δ∗

N can be
obtained by appropriately changing the susceptances {Bkj } of
the transmission lines or by changing the power injection Pk .

In the following, we will design the first equilibrium
point δ∗

1 by changing the selected line susceptances/power
injection, and then design the other equilibrium points
δ∗

2 , . . . , δ∗
N by only adjusting the susceptances of selected

transmission lines. We note that, in each control step, the
susceptances of transmission lines or the power injections will
only be changed one time. This scheme eliminates the need for
the continuous measurement and continuous control actuation
required in traditional feedback control practices.

Designing the first equilibrium point δ∗
1 to drive the system

from an unstable state (i.e., the fault-cleared state x0) to the
stable state δ∗

1 will be performed in a way that differs from
designing the other equilibrium points which serve to drive
the system from the stable state δ∗

1 to the original stable
state δ∗

origin.

A. Design the First Equilibrium Point δ∗
1 by Changing

the Transmission Susceptances

We need to find the new susceptances of transmission lines
such that the equilibrium point δ∗

1 , which has the stability
region SR1, contains x0. Consider the energy function in the
Lyapunov function family (4):

V (x) =
∑

k∈N

mk δ̇
2
k

2
−

∑

{k, j }∈E
Bkj Vk Vj (cos δkj + δkj sin δ∗

1kj
)

=
∑

k∈N

mk δ̇
2
k

2
−

∑

{k, j }∈E
Bkj Vk Vj cos δkj −

∑

k∈N
Pkδk .

(15)

We will find {Bkj } such that x0 ∈ RQ(δ∗
1), i.e., x0 ∈ Q and

V (x0) < Vmin. Note that, V (x0) is a linear function of {Bkj }.
Generally, Vmin is a nonlinear function of {Bkj }. However, if
we use the lower bound of Vmin [13], we can have a bound
V lower

min that is linear in {Bkj }. Then, the condition V (x0) <
V lower

min is a linear matrix inequality, and thus can be solved
quickly by convex optimization solvers to obtain a feasible
solution of V (x0) < Vmin.

B. Design the First Equilibrium Point δ∗
1 by

Changing the Power Injections

Another way to design δ∗
1 is by changing the power injec-

tion. The post-fault dynamics are locally stable when the
equilibrium point stays inside the polytope defined by the
inequalities |δkj | < π/2 [17]. To make the post-fault dynamics
stable, we can place the equilibrium point far away from
the margin |δkj | = π/2, i.e., making the phasor differences
δkj near 0. As such, to search for the equilibrium point δ∗

1
such that x0 ∈ SR1, we will find the equilibrium point δ∗

1
such that its phasor differences are as small in magnitude as
possible.

We recall in [17] that, for almost all power systems, to make
sure |δ∗

kj | < γ < π/2, we need

‖L† p‖E,∞ ≤ sin γ. (16)

Here, L† is the pseudoinverse of the network Laplacian matrix,
p = [P1, . . . , P|N |]�, and ‖x‖E,∞ = max{i, j }∈E |x(i)− x( j)|.
Therefore, to make the phasor differences of the equilib-
rium point δ∗

1 as small as possible, we will find the power
injection Pk such that ‖L† p‖E,∞ as small as possible, i.e.,
minimizing ‖L† p‖E,∞. Note that, with fixed susceptances, the
Laplacian matrix L† is fixed. As such, minimizing ‖L† p‖E,∞
over all possible power injections is a linear optimization
problem.

After designing the first equilibrium point δ∗
1 , we can check

if x0 ∈ SR1 by applying the stability certificate presented in
the previous section. In particular, given the equilibrium point
δ∗

1 and the fault-cleared state x0, we can adapt the Lyapunov
function family to find a suitable function V (x) such that
V (x0) < Vmin. A similar adaptation algorithm with what was
introduced in [13] can find such a Lyapunov function after a
finite number of steps.
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We summarize the procedure as follows.
Procedure 1:

• Minimize the linear function ‖L† p‖E,∞ over the power
injection space;

• Calculate the new equilibrium point from the optimum
value of the power injection;

• Given the new equilibrium point, utilize the adaptation
algorithm to search for a Lyapunov function that can
certify stability for the fault-cleared state x0.

C. Design the Other Equilibrium Points by Changing
the Susceptances of Transmission Lines

Now, given the equilibrium points δ∗
1 and δ∗

origin, we will
design a sequence of stable equilibrium points δ∗

2 , . . . , δ∗
N such

that δ∗
1 ∈ SR2, . . . , δ

∗
N−1 ∈ SRN, δ∗

N ∈ SRorigin. Since all of
these stable equilibrium points stay inside polytope �/2, this
design can be feasible.

Case 1: The number of transmission lines that we can
change is larger than the number of buses |N | (i.e., the number
of lines with FACTS/PST devices available is larger than |N |),
and there are no constraints on the corresponding susceptances.
Then, given the equilibrium point δ∗, it is possible to solve
equation (14) with variables the varying susceptances. Now,
we can choose the sequence of stable equilibrium points
δ∗

2 , . . . , δ∗
N equi-spaced between the equilibrium points δ∗

1 and
δ∗

origin, and find the corresponding susceptances. Then we use
the stability certificate presented in Section III to check if
δ∗

1 ∈ SR2, . . . , δ
∗
N−1 ∈ SRN, δ∗

N ∈ SRorigin.
Case 2: The number of transmission lines that we can

change is smaller than the number of buses |N |, or there
are some constraints on the corresponding susceptances.
Then, it is not always possible to find the suitable suscep-
tances satisfying equation (14) from the given equilibrium
point δ∗.

In each step, to allow the convergence from δ∗
i−1 to δ∗

i ,
we will search over all the reachable susceptance values of
selected transmission lines the best one that minimizes the
distance from δ∗

i−1 to δ∗
i . At the same time, we will make

the distance from these equilibrium points to the original
equilibrium point δ∗

origin strictly decreasing to make sure
that we only need to design a finite number of equilibrium
points. Intuitively, the localization of the equilibrium point
δ∗

i is shown in Fig. 3. Accordingly, for the reachable set of
transmission susceptances, we define δ∗

2 as the closest possible
equilibrium point to δ∗

1 and the distance between δ∗
2 and δ∗

origin
satisfies

d2(δ
∗
2 , δ∗

origin) ≤ d1(δ
∗
1 , δ∗

origin) − d, (17)

where d > 0 is a constant. Similarly, δ∗
3 is the closest possible

equilibrium point to δ∗
2 , and satisfies

d3(δ
∗
3 , δ∗

origin) ≤ d2(δ
∗
2 , δ∗

origin) − d. (18)

and so on. Here, d > 0 is a sufficiently small constant chosen
such that the convergence from δ∗

i−1 to δ∗
i is satisfied for

all i = 2, . . . , N , and di (δ
∗
i , δ) is the distance from δ to the

Fig. 3. Localization of δ∗
i as the closest point to δ∗

i−1 that stays inside the
ball around δ∗

origin with the radius di−1(δ∗
i−1, δ∗

origin)− d. The minimization
of the distance is taken over all the reachable susceptance values of the
selected transmission lines. Here, minimizing the distance between δ∗

i and
δ∗

i−1 enables the convergence from δ∗
i−1 to δ∗

i . The constraint that δ∗
i stays in

the ball will make sure that the distance from the designed equilibrium point to
δ∗

origin is decreasing, and eventually, the equilibrium point stays closed enough
to δ∗

origin such that the system will converge from this equilibrium point
to δ∗

origin.

equilibrium point δ∗
i , which is defined via {B(i)

kj }, i.e.,

di(δ
∗
i , δ) =

∑

k∈N

( ∑

j∈Nk

Vk Vj B(i)
kj (sin δ∗

ikj
− sin δkj )

)2

=
∑

k∈N

(
Pk −

∑

j∈Nk

Vk Vj B(i)
kj sin δkj

)2
.

Note that, with d = 0, the trivial solution to all of the
above optimization problems is δ∗

N ≡ . . . ≡ δ∗
2 ≡ δ∗

1 , and
the convergence from δ∗

i−1 to δ∗
i is automatically satisfied.

Nonetheless, since each of the equilibrium points has a
nontrivial stability region, there exists a sufficiently small
d > 0 such that the convergence from δ∗

i−1 to δ∗
i must still

be satisfied for all i = 2, . . . , N .
On the other hand, since di (δ

∗
i , δ∗) is a quadratic func-

tion of {B(i)
kj }, defining δ∗

2 , . . . , δ∗
N can be described by

the quadratically constrained quadratic program (QCQP)
in {B(i)

kj } :

min
{B(i)

kj }
di (δ

∗
i , δ∗

i−1)

s.t. di (δ
∗
i , δ∗

origin) ≤ di−1(δ
∗
i−1, δ

∗
origin) − d. (19)

In optimization problem (19), di−1(δ
∗
i−1, δ

∗
origin) is a constant

obtained from the previous step. Note that, the condition
di (δ

∗
i , δ∗

origin) ≤ di−1(δ
∗
i−1, δ

∗
origin) − d will probably place δ∗

i
between δ∗

i−1 and δ∗
origin, which will automatically guarantee

that δ∗
i stays inside polytope �/2. Also, since the equilibrium

points are strictly staying inside polytope �/2, the objective
function di (δ

∗
i , δ∗

i−1) and the constraint function di (δ
∗
i , δ∗

origin)

are strictly convex functions of {B(i)
kj }. As such, QCQP (19) is

convex and can be quickly solved using convex optimization
solvers.
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When all of these optimization problems are feasible, then
with d > 0 from Eqs. (17)-(18), we have

d1(δ
∗
1 , δ∗

origin) ≥ d2(δ
∗
2 , δ∗

origin) + d ≥ . . .

≥ dN (δ∗
N , δ∗

origin) + (N − 1)d

≥ (N − 1)d. (20)

As such, N ≤ 1 + (d1(δ
∗
1 , δ∗

origin)/d), and hence, there is only
a finite number of equilibrium points δ∗

2 , . . . , δ∗
N that we need

to determine.

D. Structural Remedial Actions

We propose the following procedure of emergency controls
to render post-fault dynamics from critical fault-cleared states
to the desired stable equilibrium point.

• Initialization: Check if the given fault-cleared state δ0
stays inside the stability region of the original equilib-
rium point δ∗

origin by utilizing the stability certificate in
Section III-B. If not, go to Step 1, otherwise end.

• Step 1: Fix the susceptances and change the power
injection such that the fault-cleared state δ0 stays inside
the stability region SR1 of the new equilibrium point δ∗

1 .
The post-fault dynamics with power injection control will
converge from the fault-cleared state δ0 to the equilibrium
point δ∗

1 . Recover the power injections after the post-fault
dynamics converge to δ∗

1 .
Check whether δ∗

1 stays in the stability region of the
original equilibrium point δ∗

origin by using the Lyapunov
function stability certificate. If this holds true, then the
post-fault dynamics will converge from the new equilib-
rium point to the original equilibrium point. If not, then
go to Iterative Steps.

• Iterative Steps: Determine the transmission suscep-
tances such that the sequence of stable equilibrium
points δ∗

2 , . . . , δ∗
N satisfies that δ∗

1 ∈ SR2, . . . , δ
∗
N−1 ∈

SRN, δ∗
N ∈ SRorigin. Apply consecutively the susceptance

changes on the transmission lines to render the post-fault
dynamics from δ∗

1 to δ∗
N .

• Final Step: Restore the susceptances to the original
susceptances. Then, the post-fault dynamics will auto-
matically converge from δ∗

N to the original equilibrium
point δ∗

origin since δ∗
N ∈ SRorigin.

V. NUMERICAL VALIDATION

A. Kundur 9-Bus 3-Generator System

Consider the 9-bus 3-machine system depicted in Fig. 4
with 3 generator buses and 6 load buses. The susceptances of
the transmission lines are as follows [18]: B14 = 17.3611 p.u.,
B27 = 16.0000 p.u., B39 = 17.0648 p.u., B45 = 11.7647 p.u.,
B57 = 6.2112 p.u., B64 = 10.8696 p.u., B78 = 13.8889 p.u.,
B89 = 9.9206 p.u., B96 = 5.8824 p.u. The parameters for
generators are m1 = 0.1254, m2 = 0.034, m3 = 0.016,
d1 = 0.0627, d2 = 0.017, d3 = 0.008. For simplicity, we
take dk = 0.05, k = 4 . . . , 9.

Assume that the fault trips the line between buses 5 and 7
and make the power injection variate. When the fault is
cleared this line is re-closed. We also assume the fluctuation

Fig. 4. A 3 generator 9 bus system with frequency-dependent dynamic loads.

TABLE I

BUS VOLTAGES, MECHANICAL INPUTS, AND STATIC LOADS

of the generation (probably due to renewables) and load such
that the bus voltages Vk , mechanical inputs Pmk , and steady
state load −P0

dk
of the post-fault dynamics after clearing the

fault are given in Tab. I. The stable operating condition is
calculated as δ∗

origin = [−0.1629 0.4416 0.3623 − 0.3563 −
0.3608 − 0.3651 0.1680 0.1362 0.1371]�, δ̇∗

origin = 0.
However, the fault-cleared state, with angles δ0 = [0.025 −
0.023 0.041 0.012 − 2.917 − 0.004 0.907 0.021 0.023]� and
generators angular velocity [−0.016 − 0.021 0.014]�, stays
outside polytope �/2. By our adaptation algorithm, we do not
find a suitable Lyapunov function certifying the convergence of
this fault-cleared state to the original equilibrium point δ∗

origin,
so this fault-cleared state may be unstable. We will design
emergency control actions to bring the post-fault dynamics
from the possibly unstable fault-cleared state to the equi-
librium point δ∗

origin. All the convex optimization problems
associated in the design will be solved by CVX software.

1) Designing the First Equilibrium Point: Assume that the
three generators 1-3 are dispatchable and terminal loads at
buses 4-6 are controllable, while terminal loads at the other
buses are fixed. We design the first equilibrium point by
changing the power injections of the three generators 1-3
and load buses 4-6. With the original power injection,
‖L† p‖E,∞ = 0.5288. Using CVX software to minimize
‖L† p‖E,∞, we obtain the new power injections at buses 1-6
as follows: P1 = 0.5890, P2 = 0.5930, P3 = 0.5989,
P4 = −0.0333, P5 = −0.0617, and P6 = −0.0165.
Accordingly, the minimum value of ‖L† p‖E,∞ = 0.0350 <
sin(π/89). Hence, the first equilibrium point obtained from
equation (2) will stay in the polytope defined by the
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inequalities |δkj | ≤ π/89,∀{k, j} ∈ E , and can be approx-
imated by δ∗

1 ≈ L† p = [0.0581 0.0042 0.0070 0.0271
0.0042 0.0070 − 0.0308 − 0.0486 − 0.0281]�.

Next, we apply the fault-dependent stability certificate in
Section III.B. With the new equilibrium point δ∗

1 , we have a
family of Lyapunov functions satisfying LMIs (8)-(9). Using
the adaptation algorithm presented in [13], after some steps
we find that there is a Lyapunov function in this family such
that V (x0) < Vmin. As such, when we turn on the new power
injections, the post-fault dynamics are stable and the post-
fault trajectory will converge from the fault-cleared state x0
to the new equilibrium point δ∗

1 . After that, we switch power
injections back to the original values.

2) Designing the Other Equilibrium Points by Changing
Transmission Susceptances: Using the adaptation algorithm,
we do not find a suitable Lyapunov function certifying that
δ∗

1 ∈ SRorigin. As such, the new equilibrium point δ∗
1 may

stay outside the stability region of the original equilibrium
point δ∗

origin. We design the impedance adjustment controllers
to render the post-fault dynamics from the new equilibrium
point back to the original equilibrium point.

Assume that the impedances of transmission lines {1, 4},
{2, 7}, {3, 9} can be adjusted by FACTS devices integrated
with these lines. The distance from the first equilibrium
point to the original equilibrium point is calculated as
d1(δ

∗
1 , δ∗

origin) = 70.6424. Let d = d1(δ
∗
1 , δ∗

origin)/2 + 1 =
36.3212, and solve the following convex QCQP with variable
B(2)

14 , B(2)
27 , and B(2)

39 :
min
{B(2)

kj }
d2(δ

∗
2 , δ∗

1 )

s.t. d2(δ
∗
2 , δ∗

origin) ≤ d1(δ
∗
1 , δ∗

origin) − d = 34.3212. (21)

Solving this convex QCQP problem, we obtain the
new susceptances at transmission lines {1, 4}, {2, 7}, {3, 9}
as B(2)

14 = 33.4174 p.u., B(2)
27 = 22.1662 p.u., and B(2)

39 =
24.3839 p.u., with which the distance from the second equi-
librium point to the first equilibrium point and the original
equilibrium point are given by d2(δ

∗
2 , δ∗

1) = 60.9209 and
d2(δ

∗
2 , δ∗

origin) = 34.3212. Using the adaptation algorithm, we
can check that δ∗

1 ∈ SR2 and δ∗
2 ∈ SRorigin.

3) Simulation Results: When there is no control in use, the
post-fault dynamics evolve as in Fig. 5 in which we can see
that the angle of the load bus 5 significantly deviates from
that of other buses with the angular differences larger than 6.
This implies that the post-fault dynamics evolve to a different
equilibrium point instead of the desired stable equilibrium
point δ∗

origin, where the angular differences are all smaller
than 0.6.

We subsequently perform the following control actions:
(i) Changing the power injections of generators 1-3

and controllable load buses 4-6 to P1 = 0.5890,
P2 = 0.5930, P3 = 0.5989, P4 = −0.0333,
P5 = −0.0617, P6 = −0.0165. From Fig. 6 and Fig. 7,
it can be seen that the bus angles of the post-fault
dynamics converge to the equilibrium point of the con-
trolled post-fault dynamics which is the first equilibrium
point δ∗

1 . In Fig. 8, we can see that the generator frequen-
cies converge to the nominal frequency, implying that the

Fig. 5. Buses angular dynamics when the proposed control is not employed

Fig. 6. Effect of power injection control: Convergence of buses angles from
the fault-cleared state to δ∗

1 in the post-fault dynamics

Fig. 7. Effect of injection control: the convergence of the distance D1(t)
to 0. Here, the Euclid distance D1(t) between a post-fault state and the first

equilibrium point δ∗
1 is defined as D1(t) =

√∑9
i=2(δi1(t) − δ∗

1i1
)2.

post-fault dynamics converge to the stable equilibrium
point δ∗

1 . However, it can be seen that the frequencies
remarkably fluctuate. The fluctuation happens because we
only change the power injection one time and let the
post-fault dynamics automatically evolve to the designed
equilibrium point δ∗

1 . This is different from using the
AGC where the fluctuation of the generator frequencies
is minor, however we need to continuously measure the
frequency and continuously update the control.
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Fig. 8. Effect of power injection control: Convergence of generators
frequencies to the base value.

Fig. 9. Effect of susceptance control: Convergence of buses angles from δ∗
1

to the second equilibrium point δ∗
2 in post-fault dynamics.

(ii) To recover the resource spent for the power injection
control, we switch the power injections to the origi-
nal value. At the same time, we change the suscep-
tances of transmission lines {1, 4}, {2, 7}, and {3, 9}
to B(2)

14 = 33.4174 p.u., B(2)
27 = 22.1662 p.u., and

B(2)
39 = 24.3839 p.u. The system trajectories will converge

from the first equilibrium point δ∗
1 to the second equilib-

rium point δ∗
2 , as shown in Figs. 9-11. Similar to the

power injection control, in this case we also observe the
fluctuation of generator frequencies, which is the result of
the one-time change of line susceptances and autonomous
post-fault dynamics after this change.

(iii) Switch the susceptances of transmission lines
{1, 4}, {2, 7}, and {3, 9} to the original values. The
system trajectories will autonomously converge from
the second equilibrium point to the original equilibrium
point δ∗

original, as shown in Fig. 12.

B. Scalability Demonstration on 118 Bus System

The scalability of the proposed control design depends
on minimizing ‖L† p‖E,∞ to find the optimum power injec-
tions p∗ and solving the quadratically constrained quadratic

Fig. 10. Effect of susceptance control: the convergence of the distance D2(t)
to 0. Here, the Euclid distance D2(t) between a post-fault state and the second

equilibrium point δ∗
2 is defined as D2(t) =

√∑9
i=2(δi1(t) − δ∗

2i1
)2.

Fig. 11. Effect of susceptance control: Convergence of generators frequencies
to the base value.

Fig. 12. Autonomous dynamics when we switch the line susceptances to
the original values: the convergence of the distance Dorigin(t) to 0. Here, the
Euclid distance Dorigin(t) between a post-fault state and the original equilib-

rium point δ∗
origin is defined as Dorigin(t) =

√∑9
i=2(δi1(t) − δ∗

origini1
)2.

program (QCQP) (19) to find the optimum line susceptances.
Minimizing ‖L† p‖E,∞ is a linear problem and can be solved
extremely fast even with the high number of variables. The
QCQP (19) is a convex problem, and can also be solved
quickly in large power systems if we have a small number
of susceptance variables.

To clearly demonstrate the scalability of the proposed con-
trol method to large scale power systems, we utilize the mod-
ified IEEE 118-bus test case [19], of which 54 are generator
buses and the other 64 are load buses as showed in Fig. 13.
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Fig. 13. IEEE 118-bus test case

The data is taken directly from the test files [19], otherwise
specified. The damping and inertia are not given in the test
files and thus are randomly selected in the following ranges:
mi ∈ [0.02, 0.04],∀i ∈ G, and di ∈ [0.01, 0.02],∀i ∈ N .
The grid originally contains 186 transmission lines. We elim-
inate 9 lines whose susceptance is zero, and combine
7 lines {42, 49}, {49, 54}, {56, 59}, {49, 66}, {77, 80}, {89, 90},
and {89, 92}, each of which contains double transmission
lines as in the test files [19]. Hence, the grid is reduced to
170 transmission lines connecting 118 buses. Assume that
we can use the integrated FACTS devices to change the
susceptances of the 3 transmission lines {19, 34}, {69, 70}, and
{99, 100} which connect generators in different Zones 1, 2,
and 3. These transmission lines may have strong effects on
keeping the synchronization of the whole system.

We renumber the generator buses as 1 − 54 and load buses
as 55 − 118. Assume that each of the first ten generator
buses increases 0.01 p.u. and each of the first ten load buses
decreases 0.01 p.u., which result in an equilibrium point with
‖L† p‖E,∞ = 0.8383. This equilibrium point stays near the
stability margin δkj = π/2, and weakly stable. As a result,
the fault-cleared state δ f ault−cleared does not stay inside the
stability region of this equilibrium point, as can be seen
from Fig. 14 which shows that the uncontrolled post-fault
dynamics converges to an equilibrium point with some angular
differences larger than π .

Assume that we can control the power generation at gen-
erator buses 1 − 20, the load buses 55 − 64 are deferrable,
and the terminal loads at other buses are fixed. We design the
first equilibrium point by changing the power injections of the
generators 1-20 and load buses 55-64. Using CVX software
to minimize ‖L† p‖E,∞, after less than 1 second, we obtain
the optimum power injections at these controllable buses with
the minimum value of ‖L† p‖E,∞ = 0.0569 < sin(π/55).
Accordingly, the new equilibrium point δ∗

1 is strongly stable
since it stays far away from the stability margin δkj = π/2.
The controlled post-fault dynamics converges from the fault-
cleared state to the designed equilibrium point as showed in
Fig. 15.

Now, we change the susceptances of the above selected
transmission lines, which are {9, 16}, {30, 31}, and {44, 45}

Fig. 14. Dynamics of buses angle differences in post-fault dynamics when
the proposed control is not applied.

Fig. 15. Convergence of buses angle differences in post-fault dynamics under
the control to the designed equilibrium point.

in the new order. Using CVX software in a normal laptop to
solve the convex QCQP with variable set B = {B(2)

{9,16} > 0,

B(2)
{30,31} > 0, B(2)

{44,45} > 0},
min
B

d2(δ
∗
2 , δ∗

1 )

s.t. d2(δ
∗
2 , δ∗

origin) ≤ d1(δ
∗
1 , δ∗

origin) − 0.001, (22)

we obtain the optimum susceptances at transmission lines
{9, 16}, {30, 31}, and {44, 45} in less than one second:
B(2)

{9,16} = 0.0005 p.u., B(2)
{30,31} = 0.0008 p.u., B(2)

{44,45} =
0.0012 p.u.. Therefore, the proposed control method can
quickly determine the optimum values of both power injection
and susceptance controls, and hence, it is suitable to handle
faults in large scale power systems.

VI. CONCLUSIONS

This paper proposed a novel emergency control paradigm
for power grids by exploiting the transmission facilities widely
available on the grids. In particular, we formulated a control
problem to recover the transient stability of power systems
by adjusting the transmission susceptances of the post-fault
dynamics such that a given fault-cleared state, that origi-
nally can lead to unstable dynamics, will be attracted to
the post-fault equilibrium point. To solve this problem, we
extended our recently introduced Lyapunov function family-
based transient stability certificate [12], [13] to a new set
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of convex fault-dependent functions. Applying this stability
certificate, we determined suitable amount of transmission sus-
ceptance/power injection to be adjusted in critical/emergency
situations. We showed that the considered control design can
be quickly performed through solving a number of linear and
convex optimization problems in the form of SDP and convex
QCQP. The advantage of the proposed control is that the
transmission line’s susceptance or power injection only needs
to be adjusted one time in each step, and hence, no continuous
measurement is required, as in the classical control setup.

To make the proposed emergency control scheme applicable
in practice, we need to take into account the computation and
regulation delays, either by offline scanning contingencies and
calculating the emergency actions before hand, or by allowing
specific delayed time for computation. Also, the variations
of load and generations during this delayed time should be
considered. On the theoretical side, several questions are still
open not only for power grids, but also for the general complex
networks:

• At which locations are the suitable transmission lines
to adjust susceptances such that we can drive the post-
fault dynamics from a given initial state to the desired
equilibrium point?

• Given a grid, what is the minimum number of lines
required to adjust susceptances to obtain the control
objective? How many equilibrium points should be
designed?

• What are the emergency situations where the proposed
control scheme is not effective? Can the proposed control
scheme be extended to deal with situations of voltage
instability?

Finally, the installation of FACTS devices is certainly asso-
ciated with non-negligible costs for the power system stake-
holders. However, this paper does not advocate the installation
of new FACTS devices solely for emergency control. It rather
proposes the use of existing FACTS devices, e.g. PSTs,
TCSCs, or HVDC, to assist in emergency control situations.
For example, a large number of PSTs has been installed in
several power systems for power flow control. HVDC lines and
Back-to-Back converters become more and more widespread
in systems in Europe, the US, or Asia. In this paper, we pro-
pose to use only a number of these already installed devices, in
order to ensure power system stability in emergency situations.
The proposed method can also be combined with transmission
line switching, an approach already used by operators to
ensure power system security or minimize losses. This will
however lead to a mixed-integer optimization problem, instead
of the convex QCQP optimization problem as in Section
IV.C of this paper. In that case, convex relaxations should
be considered to make the control design computationally
tractable [20].

APPENDIX

A. Adaptation Algorithm to Find Suitable Lyapunov Function

The family of Lyapunov functions characterized by the
matrices Q, K satisfying LMIs (8)-(9) allow us to find a
Lyapunov function that is best suited for a given fault-cleared

state x0 or family of initial states. In the following, we propose
a simple algorithm for the adaptation of Lyapunov functions
to a given initial state x0 (similar to that in [13]).

Let ε be a positive constant.

− Step 1: Find Q(1), K (1) by solving LMIs (8)-(9). Calcu-
late V (1)(x0) and V (1)

min.
− Step k: If x0 /∈ R(Q(k−1), K (k−1)), (i.e., V (k−1)(x0) ≥

V (k−1)
min ), then find matrices Q(k), K (k) by solving the

following LMIs:
[

A�Q(k) + Q(k) A R
R� −2H (k)

]
≤ 0,

Q(k) −
∑

j∈Ni

K (k)
{i, j }C

�{i, j }C{i, j } ≥ 0,

V (k)(x0) ≤ V (k−1)
min − ε,

with R = Q(k)B − C� H (k) − (K (k)C A)�. Note that,
V (k)(x0) is a linear function of Q(k), K (k).

With this algorithm, we have

V (k−1)
min ≤ V (k−1)(x0) ≤ V (k−2)

min − ε ≤ . . . ≤ V (1)
min − (k − 2)ε.

(23)

Since V (k−1)
min is lower bounded, this algorithm will terminate

after a finite number of the steps. There are two alternative
exits then. If V (k)(x0) < V (k)

min, then the Lyapunov function is
identified. Otherwise, the value of ε is reduced by a factor of 2
until a valid Lyapunov function is found. Therefore, whenever
the stability certificate of the given initial condition exists, this
algorithm possibly finds it after a finite number of iterations.
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