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The nonlinear cross-polarization interaction among two intense counterpropagating beams in a span of
lossless randomly birefringent telecom optical fiber may lead to the attraction an initially polarization
scrambled signal towards wave with a well-defined state of polarization at the fiber output. By exploiting
exact analytical solutions of the nonlinear polarization coupling process we carry out a linear stability
study which reveals that temporally stable stationary solutions are only obtained whenever the output
signal polarization is nearly orthogonal to the input pump polarization. Moreover, we predict that
polarization attraction is acting in full strength whenever equally intense signal and pump waves
are used.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The cross-interaction among intense counter-propagating
beams in a Kerr or cubic nonlinear medium leads to a mutual
rotation of their state of polarization (SOP). This effect was
extensively theoretically studied since back in the 1980s: for
example, Kaplan and Law [1] found exact analytical solutions
which exhibit polarization bistability and multistability, as later
experimentally confirmed by Gauthier et al. [2]. The same process
is also responsible for leading to both spatial [3–5] as well as
temporal [6] polarization instabilities and chaos. The general
spatio-temporal stability of the nonlinear polarization eigenar-
rangements (or eigenpolarizations) which remain unchanged
upon propagation in the Kerr medium was analyzed by Zakharov
and Mikhailov [7], who pointed out the formal analogy between
the equations describing the Stokes vectors of the two beams and
those associated with the coupling of spin waves in ferromagnetic
materials or Landau–Lifshitz model. This led to the prediction of
the formation of stable domains of mutual arrangements of SOPs
which, depending upon the boundary conditions, may also pro-
duce all-optical polarization switching phenomena as experimen-
tally observed with optical fibers by Pitois et al. [8,9].

The same nonlinear SOP interaction process also leads to an
intriguing phenomenon known as polarization attraction, which
has not been unveiled until relatively recently [10–13]. As a typical
example of this effect, let us consider the case of a backward pump
wave which is injected at one end of the Kerr mediumwith a given
ll rights reserved.

: +39 030 380014.
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SOP. Then one may observe that the forward or signal beam, which
is launched at the other end of the medium, emerges with a well-
defined SOP, irrespective of its initial SOP. Thus we may say that
the polarization interaction has led to the effective attraction of
the output signal SOP towards a particular value which is deter-
mined by the SOP of the pump. The demonstration of such effect
using CW beams in relatively long telecommunication fiber spans
[13] paves the way for conceiving a new class of practical devices
for the all-optical control of the signal SOP in optical communica-
tion and laser systems.

In recent years, a relatively large number of theoretical studies
have permitted to derive the equations describing the SOP inter-
actions of counter-propagating waves in randomly birefringent
telecom fibers [14–16]. On the basis of these equations, it has been
possible to reproduce the experimental findings with a good
quantitative accuracy [17]. From the analytical side, the study of
the stationary (or time-independent) solutions has led to the
interesting observation that polarization attraction is closely
linked with the existence of singular tori or multi-dimensional
separatrix solutions [18,19]. Yet a rigorous analytical description of
the process of relaxation of the signal wave SOP towards the
attracting value remains largely elusive to date, with the exception
of some relatively simple limit cases such as the wave reflection
which occurs in a purely linear distributed feedback mirror [20].
Indeed, the main difficulty in the analysis of the problem is
associated with the presence of boundary conditions in a medium
of finite length.

In this work we present an advance in the understanding of the
physical origin of polarization attraction, by showing that this
effect is associated with the presence of spatio-temporally stable
stationary solutions, whereas all other stationary solutions are
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unstable so that their decay towards the stable or attracting
polarization arrangements is to be expected in the experiments.
We consider the conservative polarization interaction between
intense signal and counterpropagating pump beams in a randomly
birefringent telecom optical fiber span. First we will derive a
relatively simple closed-form expression linking the degree of
relative polarization alignment between the pump and the signal
at the output end of the fiber to their relative orientation at the
fiber input. Next we will carry out a semi-analytical study of these
solutions, showing that the only stable branch of solutions
corresponds to the situation where the signal SOP is effectively
orthogonal to the pump SOP as the fiber length (or beams' power)
grows larger.

Note that recent experiments have also unexpectedly revealed
the effect of self-polarization, whereby a single beam interacting
with its replica back-reflected at the fiber output end by a mirror
also leads to the attraction towards circular polarization states,
independently of the input SOP orientation [21]. A numerical
study of the spatio-temporal stability of the stationary solutions
has also permitted to associate the presence of attracting SOPs
with the existence of stable branches [22].
2. Basic equations

In this work we consider the polarization interaction of two
intense CW beams counter-propagating along the z-axis in a
randomly birefringent fiber of length L. The evolution equations
for the Stokes vectors of the forward (or signal) and backward (or
pump) beams, Sþ ¼ ðSþ1 ; Sþ2 ; Sþ3 ÞT and S− ¼ ðS−1; S−2; S−3ÞT read, in
dimensionless units, as [15]

∂ξSþ ¼ Sþ � Ĵ xS
−

∂ηS− ¼ S− � Ĵ xS
þ ð1Þ

with distance z¼ ξ−η, time t ¼ ξþ η; moreover � denotes vector
cross product, and the cross-polarization tensor Ĵ x ¼ diag −1;1;−1f g.
In the problem described by Eqs. (1), two important physical
parameters are the nonlinear length LNL≡1=ðγSþ0 Þ, where γ is the
nonlinear fiber coefficient, and the diffusion length of the polariza-
tion mode dispersion (PMD) L−1d ¼ 1

3D
2
pðωþ−ω−Þ2. Here the PMD

coefficient reads as

Dp ¼
2

ffiffiffi
2

p
π

ffiffiffiffiffi
Lc

p

LBðωþÞωþ
; ð2Þ

where Lc is the correlation length of the random birefringence
process, ΔβðωþÞ and LBðωþ Þ ¼ 2π=Δβðωþ Þ are the linear birefrin-
gence and the beat length at the signal frequency ωþ respectively.
With the aid of these definitions, it can be shown that Eqs. (1) are
valid in the so-called Manakov limit [16], namely whenever L,
LNL≪Ld. Eqs. (1) can be turned to symmetric form after switching
to the new variables S¼ Sþ and H¼ −Ĵ xS

− (or S− ¼ −Ĵ xH). The
additional factor Ĵ x in the definition of H reflects the fact that the
circular polarization is flipped for beams propagating in opposite
directions. One obtains

ð∂t þ ∂zÞS¼H� S ð3Þ

ð∂t−∂zÞH¼H� S ð4Þ
The case of counter-propagating beams corresponds to the boundary
conditions Sð0Þ ¼ S0 and HðLÞ ¼HL. In the following we will refer to
the S beam as the signal and H beam as the pump. We will assume
that the input signal can have arbitrary polarization Sð0Þ, that we will
later assume to be uniformly distributed on the Poincare sphere. On
the other hand the pump can have a controllable polarization HðLÞ.
One of the primary goals of our study is to characterize the effect of
polarization attraction, or in other words characterize the output
polarization of the beam SL ¼ SðLÞ and its relation to the controllable
pump polarization HðLÞ. We will focus on the analysis of stationary
solutions of (3,4).
3. Exact solution

The stationary solutions of (3,4) can be found by noticing that
whenever ∂tS¼ ∂tH¼ 0, the quantities Ω¼Hþ S, as well as
H2 ¼H � H and S2 ¼ S � S will remain invariant throughout the fiber,
i.e., ∂zΩ¼ ∂zS¼ ∂zH¼ 0. The full solution of (3,4) corresponds to a
simple precession of the signal and the pump polarization vectors
around the spatially constant vector Ω, therefore it can be written as

SðzÞ ¼ Sðz′Þ−Ω � Sðz′Þ
Ω2 Ω

� �
cos ΩlþΩ � Sðz′Þ

Ω2 ΩþΩ� Sðz′Þ
Ω

sin Ωl

ð5Þ
where l¼z�z'. The same kind of relation also holds for the pump
vector HðzÞ. In order to find the actual stationary solutions one
needs to satisfy the boundary conditions, Sð0Þ ¼ S0 and HðLÞ ¼HL.
We will do so by introducing two quantities that characterize the
strength of polarization attraction in the fiber. First, we define the
output signal-pump alignment factor

η¼ ðHL � SLÞ
HS

ð6Þ

which measures the relative orientation of the signal and pump
beams at the z¼L end of the fiber. The alignment factor (6) is the
quantity that characterizes the strength of the polarization attrac-
tion effect: η¼ 1 corresponds to the situation where the signal SOP
is the same as the pump SOP; whereas η¼ −1 corresponds to the
situation where the signal and pump SOPs are orthogonal.

However, given that the boundary conditions fix the polariza-
tion of the signal Sð0Þ ¼ S0 at the left or z¼o boundary of the fiber,
in order to find the value of η we have to solve Eq. (5) by assuming
that the input signal-pump polarization alignment parameter

μ¼ ðHL � S0Þ
HS

ð7Þ

is given. Note that a uniform initial distribution of the signal
polarization on the Poincaré sphere (such as it is obtained from a
SOP scrambler) corresponds to a uniform distribution of the scalar
value μ on the interval μ∈½−1;1�.

The relation between the output signal-pump polarization
alignment η and the corresponding initial alignment parameter μ
can be found by using expression (5) with z¼0 and z′¼ L. By
assuming that the value of η is given, so that the signal SOP the
z¼L end of the fiber is fixed, we may find the initial signal-pump
polarization alignment μ at the z¼0 end of the fiber by taking the
dot product of both sides of Eq. (5) with HL. This yields the
following relation:

μ¼ FðηÞ ¼ ðHηþ SÞðH þ SηÞ
H2 þ S2 þ 2HSη

ð1− cos ΩLÞ þ η cos ΩL ð8Þ

where we have used the condition Ω2 ¼ ðHþ SÞ� ðHþ SÞ ¼H2þ
S2 þ 2HSη. The desired relation between the output η and initial μ
polarization alignment parameters can be found by inverting the
function FðηÞ, i.e., by solving the equation μ¼ FðηÞ for η.

Significant insight into the origin of the polarization attraction
effect can be gained via a simple analysis of the algebraic curves
which are defined by the relation (8). As one can see from Fig. 1, in
general there are multiple branches of stationary solutions, that is
there are potentially many stationary solutions corresponding to
one and the same given value of the initial signal-pump polariza-
tion alignment μ. In order to understand what kind of solution will
be observed in practice, one needs to analyze the temporal



Fig. 3. Diagram of different polarization attraction regimes. The white region
corresponds to the regime of a single branch of stationary solutions: all of these
solutions are temporally stable, but the degree of attraction (or output signal-pump
alignment) remains relatively low. The shaded region corresponds to the multi-
branch regime, where no stationary solutions exist for some values of the input
signal-pump relative SOPs. Finally, the dashed red curve shows the most important
regime where a stable branch exists for any input signal SOP, and the polarization
attraction strength is the highest. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)
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stability of all of these solutions. As will be shown in the next
section, a numerical stability analysis shows that only the lowest
branch of the solutions shown in Fig. 1, corresponding to the
smallest value of η, is stable. In other words, the output signal
beam tends to get attracted to an SOP which is orthogonal to the
pump. This observation is fully consistent with the results of the
numerical analysis performed in Ref. [15]. Moreover, direct numer-
ical simulations of the stationary solutions as those reported in
Fig. 1 have confirmed that, in the case of multiple solutions, only
the lowest branch is temporally stable [23].

In order to quantify the strength of the polarization attraction
effect, it is useful to analyze the structure of the branches of
stationary solutions as in Figs. 1 and 2, and their dependence on
the powers of the signal and pump beams S and H. We have
observed that three different regimes exist. First, whenever the
power of either the signal or the pump is relatively small, only one
branch of the stationary solution exists which is always stable
(e.g., the case with HL¼ SL¼ 1 in Fig. 1). The corresponding region
is shown in white color in Fig. 3. Whenever both the signal and the
pump powers are large enough, multiple solution branches
appear. For example, consider the case with HL¼5, SL¼3 in
Fig. 2: as can be seen, for some values of the initial signal-pump
polarization alignment μ, it turns out that there are no stable
stationary solutions at all. A more detailed numerical analysis of
these regimes is necessary in order to understand the structure of
the non-stationary solutions. However, from a practical perspec-
tive this is not a very interesting situation, as one cannot ensure an
Fig. 1. Relation between output η and input μ polarization alignment parameters,
showing multiple branches of stationary solutions which are observed for high
enough signal and pump powers SL and HL.

Fig. 2. Multiple branches of stationary solutions for non-matched values of S and H.
efficient polarization attraction in this case. The corresponding
region is shaded in Fig. 3.

Finally, there is a third regime which corresponds to the line
H¼S with values H; S4Hcrit ¼ π=2L (red dashed curve in Fig. 3). In
this regime, the lowest branch (e.g., see the red dashed curve with
HL¼ SL¼ 2 in Fig. 1) covers the whole range of initial polarization
alignments −1≤μ≤1: correspondingly, the strength of polarization
attraction is very high. Clearly this is the most interesting regime
from the practical viewpoint, although it might be challenging to
achieve since the power of the pump beam needs to be locked to
the power of the signal.

As a matter of fact, it is possible to quantitatively characterize
the average strength of the polarization attraction process in the
situation where the initial signal beam has a random SOP. In this
case, the average output signal-pump alignment is simply given by
the following expression (we assume that we are operating in the
regime where the lowest branch covers the whole region of initial
polarization alignments μÞ:

〈η〉¼ 1
2

Z 1

−1
ηðμÞ dμ¼−

1
2

Z 1

−1
FðηÞ dη ð9Þ

The resulting dependence of the average output signal-pump
alignment parameter on the input power of the signal beam is
shown in Fig. 4. Here we compare the case of equal signal and
pump powers or H¼S (solid curve) with different situations where
their power is unequal (dashed and dotted curves). As it can be
seen in Fig. 4, with matched signal and pump powers there is a
monotonic decrease of the average pump-signal alignment para-
meter 〈η〉 from zero towards 〈η〉¼ −1 for high beam powers. On the
other hand, with unequal signal and pump powers the average
alignment 〈η〉 exhibits an oscillating behavior as a function of the
signal power, without reaching a significant degree of orthogon-
ality (i.e., 〈η〉≅−1) even for relatively high signal powers. Thus the
results of Fig. 4 confirm the previous statement that effective
polarization attraction only occurs whenever the pump and signal
beam power values are located on the red dashed curve in Fig. 3.



Fig. 4. Output signal-pump average polarization alignment parameter vs. signal
beam power, for different values of pump power. Optimal polarization attraction is
observed for relatively high power values, with matched values of signal and beam
powers S¼H.

Fig. 5. Schematic representation of the Nyquist contour used for stability analysis
(red dashed curve) and possible locations of eigenvalues of stable dynamic system
(blue dots). (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this article.)

K. Turitsyn, S. Wabnitz / Optics Communications 307 (2013) 62–66 65
4. Stability analysis

The stability of the stationary solutions can be studied with the
help of the linearized equations of motion (3)

ð∂t þ ∂zÞs¼H� s−S� h
ð∂t−∂zÞh¼H� s−S� h ð10Þ

Both H and S depend on the position z according to the
expression (5) for the solution found above. However, it is possible
to simplify the equations by turning into a reference frame
rotating with Ω¼Hþ S, where both H and S become constant
vectors. Formally this corresponds to the transformation aðzÞ-
expðΩ̂zÞaðzÞ, applied to every vector a¼ h; s;H; S. The operator Ω̂
represents the vector cross product operation: Ω̂a¼Ω� a. This
yields the following equations:

ð∂t þ ∂zÞs¼−S� ðhþ sÞ;
ð∂t−∂zÞh¼H� ðhþ sÞ: ð11Þ

These equations have to be complemented with the appro-
priate boundary conditions: sðz¼ 0; tÞ ¼ 0 and hðz¼ L; tÞ ¼ 0. In
order to analyze the stability of small deviations on top of the
stationary solutions, we turn to the Laplace transform of s;h.
Assuming that s¼ sλeλt and h¼ hλeλt , we obtain the following
system of ordinary differential equations:

∂zsλ ¼−λs−S� ðhþ sÞ;
∂zhλ ¼ λh−H� ðhþ sÞ: ð12Þ

This system of equations can be written in the matrix form
after introduction of the vector ψT ¼ ½sT hT � and of the matrix form
of the cross product operation Ŝx¼ S� x and Ĥx¼H� x. The
resulting equation has the form

∂zψ ¼ Âψ ¼ −λ1̂−Ŝ −Ŝ
−Ĥ λ1̂−Ĥ

" #
ψ ; ð13Þ

where 1̂ is 3�3 identity matrix. Eq. (13) is a linear ODE with
constant coefficients. The spectrum of the linear normal modes
that exist on top of stationary nonlinear solutions can be found by
using the boundary condition equations. The solution of the
Cauchy problem associated with (13) can be formally written as
ψðLÞ ¼ expðLÂÞψð0Þ. The solution satisfying the boundary condi-
tions exists whenever the solution corresponding to initial condi-
tions ψð0Þ ¼ ½0 hT

0�T that satisfy sðz¼ 0; tÞ ¼ 0 also satisfies the
boundary condition hðz¼ L; tÞ ¼ 0. In other words there exists a
solution of the following system of equation: P̂ expðLÂÞP̂ T

h0 ¼ 0,
where the projection operator P̂ is given by P̂ ¼ ½0̂ 1̂� with 0̂ being
3�3 zero matrix. The Wronskian corresponding to this boundary
value problem is thus given by

WðλÞ ¼ detðP̂ exp½LÂðλÞ�P̂ T Þ: ð14Þ
The eigenmodes of the system correspond to the roots of the

Wronskian: WðλÞ ¼ 0 and therefore the stability of the system can
be assessed by finding the number of roots in the right side of the
complex plane Re λ40. As the only singularity of the Wronskian
function is at λ¼ ∞, the number of roots nþ in the right side of the
complex plane can be expressed via an integral over the contour
surrounding the complex plane according to the classical Cauchy
argument principle

nþ ¼ 1
2πi

∮Γ
W′ðλÞ dλ
WðλÞ ð15Þ

The traditional choice of the contour Γ attributed to Nyquist is
composed of the imaginary axis λ¼ iy with y∈½−L; L� and a half
circle L expðiϕÞ, ϕ∈½−π=2; π;2� with L-∞ (see Fig. 5).

After the implementation of this procedure with the Mathematica
software and its extensive testing in a wide range of parameters, we
have found that only the lowest branch of the nonlinear stationary
solutions is stable. We are not aware of any analytical proof of this
statement, although it should be possible to derive it with an
accurate analysis of the algebraic structure of the problem.
5. Discussion and conclusions

The availability of the analytical expression (8) for the relation-
ship between initial μ and final η polarization alignment between
the SOP of the signal and the input pump SOP has permitted us to
obtain a relatively simple, and yet general description of the origin
of the polarization attraction effect in randomly birefringent
telecom optical fibers. In fact, for observing any polarization
attraction it is necessary that the powers of both the signal and
the pump are larger than a certain threshold value, so that
multiple values of the output alignment η result for a given value
of the input alignment μ. Moreover, our analysis predicts that
the strength of polarization attraction is substantially enhanced
whenever the signal and pump beam powers are kept equal.
A numerical yet rigorous temporal stability analysis has confirmed
numerical simulation results showing that the temporally stable
stationary solutions are only those situated on the lower branch
of the optical polarization multistability curves such as those
reported in Figs. 1 and 2.
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These results provide an interesting insight into the optimal
conditions for experimentally observing polarization attraction in
long spans of randomly birefringent telecom optical fibers. There-
fore we expect that they will find an useful application in fiber-
based devices for the all-optical and potentially ultrafast control of
the light SOP in optical communication systems as well as in fiber
lasers. Indeed, the implementation of polarization attraction with
a counterpropagating and initially fully polarized pump beam
leads to the lossless polarizer functionality: irrespective of their
initial value, all signal SOPs are attracted towards one and the
same value at the fiber output. In contrast with conventional linear
dissipative polarizers, in a lossless polarizer there is no loss of
signal power, hence there is no conversion of initial SOP fluctua-
tions into output intensity fluctuations. The lossless polarizer is
thus a promising device for the stabilization of the light SOP,
which otherwise would randomly fluctuate owing to environmen-
tal perturbations, at the output of fiber optics links. Such stabiliza-
tion is crucial when interfacing optical fibers to polarization-
sensitive receivers or devices based on photonic integrated circuits
(optical add-and-drop multiplexers, optical cross-connects and
switches, etc.).
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