
1

Robustness against Disturbances in Power Systems
under Frequency Constraints
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Abstract—Wide deployment of renewable generation and grad-
ual decrease of the overall system inertia make the modern
power grids more vulnerable to transient instabilities and unac-
ceptable frequency fluctuations. Time-domain simulation based
assessment of the system security to uncertain and stochastic
disturbances is extremely time-consuming. In this paper, we
develop an alternative approach allowing for a computationally
efficient and mathematically rigorous certification of the power
grid stability with respect to external disturbances. The derived
sufficient condition is constructed via convex optimization and is
shown to be non-conservative for several IEEE cases.

Index Terms—Input to output stability, small gain analysis,
local sector bound, power grid, dynamic security assessment

I. INTRODUCTION

Transient stability assessment is one of the most compu-
tationally challenging security assessment procedures carried
out by the system operators [1]–[3]. In addition to the transient
stability, the operators are required to maintain the system
frequency close to the nominal 50 or 60 Hz levels [4]. The
grid is equipped with under-frequency load shedding (UFLS)
relays, under and over-frequency generation protection relays
to ensure the frequency regulation is met [5]. Traditionally,
the deviations of frequency during faults were suppressed by
the turbine speed governors and the natural inertia of the
generators. However, in recent years, the primary frequency
response capabilities of the grid has declined steadily in many
power grids, like the Eastern Interconnection [6] of the US.
The decline in response results in deeper frequency nadir,
which in turn increases the risk of unintended disconnection
of units and cascading outages.

Moreover, the levels of ambient fluctuations in the grid have
also increased together with the higher penetration of renew-
ables. Traditional time-domain simulations give a high fidelity
assessment of stability when the disturbance and the operating
conditions are known exactly. However, the disturbances are
often uncertain and impossible to predict by its nature. Typical
disturbances could include nearly-instant switching events,
such as load shedding and generation tripping, or continuous
changes, such as varying power output from wind turbines
[5], [7]. For example, one of the most common causes of
frequency rise is the near simultaneous tripping of more than
one pumped storage unit. With these disturbances to the grid,
there is a question concerning the critical disturbance levels
that the grid can withstand at the given operating condition.

This paper proposes an efficient estimation on the the
maximum acceptable magnitude of disturbance that the grid
can handle without losing stability and violating frequency
constraints. In other words, it allows the operator to certify

that the grid is secure with respect to set of properly bounded
disturbances. The disturbance is characterized by only its
magnitude and instant step changes such as switching or
tripping can be included in the analysis. This result goes be-
yond the typical certificates established by the energy function
and Lyapunov function based methods that are not naturally
designed to address the non-autonomous systems with time-
dependent disturbances.

Our approach is based on the analysis of Lurie system with
sector bound [8], [9]. The small gain theorems has been the
key tool for analysis of these system [10]–[12]. Extension of
small gain theorem to a locally bounded nonlinearity has been
recognized [13]. More recent work has been focusing on the
input to state stability (ISS) [14], [15]. Similar to local small
gain theorem, the local input to state stability (LISS) has been
studied [16], [17]. They were considered for network system
[16], [18] where the system gain was extended to gain matrix.

In this paper, we study the system from more traditional
framework focusing on the input-output stability rather than
ISS. The stability of the output is directly linked to the severity
of the disturbance, and there is a upper-bound threshold in
absolute magnitude of disturbance that the grid can be guar-
anteed to be stable. The analysis extends the traditional notion
of input-output stability or Bounded Input Bounded Output
(BIBO) stability and considers the problem of appropriately
constraining the input so that the output is also constrained
by operational requirements on the generator frequencies.
Constrained Input Constrained Output (CICO) of the system is
defined to identify appropriate constraints on the disturbance
so that the system response is also constrained by operational
limits. The term Constrained Input Constrained Output ap-
peared previously in [19] for imposing constraint on output in
a filter design. The condition for this stability is derived in a
similar way to the small-gain condition in nonlinear system
[20], [21].

Recently, there has been growing applications of local sector
bound on the nonlinearities of power flow equation [22], [23].
The performance of these methods is dependent on the how the
system states are bounded, but computing the optimal bound
for the given problem is often difficult due to the complexity of
these problems. In our formulation, we are able to optimize the
region for the local sector bound since our sufficient condition
is a simple nonlinear inequality constraint. The result of the
optimization computes the upper bound on the magnitude of
disturbance so that the grid is guaranteed to remain stable.
The feasible region of the problem turns out to be convex
and thus can be solved efficiently in a scalable way [24]. For
the purpose of dynamic security assessment, computational
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tractability and scalability are essential features, which our
method meets these requirements.

The rest of the paper is organized as follows. Chapter II
describes the system model and its Lurie representation, as
well as formulating the stability problem. Section III intro-
duces our main result with input to output stability analysis
and stability condition under disturbances. In Section IV,
we present the sector bound of the nonlinear power flows
and an optimization procedure to determine the maximum
acceptable disturbance magnitude. Section V presents the case
studies on several IEEE cases including discussions on how to
avoid computational-heavy gain computation step in operation.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The power grid is represented as an undirected graph
A(N , E), where N = {1, 2, ..., n} is the set of buses, and
E ⊆ N × N is the set of transmission lines connecting the
buses. The indices G = {1, ...,m} denote the generators, and
L = {m + 1, ...,m + n} denote the loads. Let ` denote the
number of transmission lines, and E ∈ Rn×` the incidence
matrix of the graph. 0 and I denotes the zero matrix and the
identity matrix of appropriate dimensions. Moreover, given a
matrix A ∈ Rn×n, we denote by ρ(A) its spectral radius, i.e.,
the maximum norm of its eigenvalues.

A. Power System Model

The structure-preserving second order swing equation is
used to model the power system dynamics, given by

Mk δ̈k +Dk δ̇k +
∑

(k,j)∈E

Bkj sin(δkj) = pk, ∀k ∈ G

Dk δ̇k +
∑

(k,j)∈E

Bkj sin(δkj) = PL,k, ∀k ∈ L
(1)

where Mk and Dk are the inertia and damping coefficients of
the generator k, respectively. pk and PL,k are the mechanical
power at generator k and load k, respectively. Moreover,
Bkj = bkjVkVj , where bkj is the susceptance of the trans-
mission line (k, j), and Vk is the voltage magnitude at bus
k, which we assume constant. Finally, δkj denotes the phase
difference between bus k and bus j, i.e., δkj = δk − δj .

In addition to the grid dynamics, the first order turbine
governor dynamics are considered, which provides the primary
frequency control of the synchronous machines, given by

Tkṗk + pk +
1

Rk
δ̇k = PG,k, k ∈ G, (2)

where PG,k is the scheduled power injection at bus k, Tk is
the governor time constant, and Rk is the droop coefficient.
To write the system model (1) and (2) in a vector form, the
following notations are introduced. Let δG and δL be the
vectors obtained by stacking the scalars δk, for k ∈ G and
δk, for k ∈ L, respectively. Moreover, let δ =

[
δTG δTL

]T
.

Similarly, let p, PG and PL be the vectors obtained by stacking
the scalars pk, PG,k, for k ∈ G, and PL,k for k ∈ L,
respectively. Let M , DG, DL and B be the diagonal matrices
containing the elements Mk, Dk, for k ∈ G, Dk, for k ∈ L,

and Bkj , for (k, j) ∈ E , on their diagonal, respectively.
Finally, let E =

[
ETG ETL

]T
, where the subscripts G and

L correspond to the generator and load buses, respectively.
Consider now the disturbance vector u =

[
uTG uTL

]T
. The

system model (1) and (2) can be rewritten in the following
form:

Mδ̈G +DGδ̇G + EGB sin(ET δ) = p

DLδ̇L + ELB sin(ET δ) = PL + uL

T ṗ+ p+R−1δ̇ = PG + uG

(3)

Notice that this simple formulation of the disturbance could
incorporate a rich variety of uncertainty scenarios, such as load
shedding, generation tripping, and stochastic fluctuations in the
power output from wind turbines.

B. Lurie System Representation

In the following, the system (3) will be rewritten as a
Lurie system, which is represented as interconnection of linear
dynamical system and a nonlinear “diagonal” state feedback
operator. As it will be shown in this paper, the Lurie system,
together with the efficient bounding of the nonlinearity by two
linear functions, heavily simplifies the analysis of nonlinear
systems.

The model system (3) can be written in a state space
representation. Let δ = δ∗ and δ̇ = 0 represent the equilibrium
point of (3), with generator power injection p = p∗. Then, we
define the state of the system as x =

[
xT1 xT2 xT3 xT4

]T
,

with x1 = δG− δ∗G, x2 = ˙δG, x3 = δL− δ∗L, and x4 = p−p∗.
Now let w = ET δ − ET δ∗ be the phase difference on

each transmission line subtracted by its equilibrium, and y be
vector containing the frequencies of the generators y = ˙δG.
Finally, let θ∗ = ET δ∗, and v = sin(θ∗ + w) − sin(θ∗) −
diag(cos(θ∗))w. With these new variables, the system (3) can
be written in the Lurie form ẋ = Ax+Bvv+Buu as follows:

ẋ =


0 I 0 0

A21 −M−1DG A23 M−1

A31 0 A33 0

0 −R−1T−1 0 −T−1

x

+


0

−M−1ETGX
−1

−D−1
L ETLX

−1

0

 v +


0 0

0 0

0 D−1
L

T−1 0

u
(4)

with
A21 = −M−1ETGBdiag(cos θ∗)EG

A23 = −M−1ETGBdiag(cos θ∗)EL

A31 = −D−1
L ETLBdiag(cos θ∗)EG

A33 = −D−1
L ETLBdiag(cos θ∗)EL.

The complete model can be rewritten as

ẋ = Ax+Bvv +Buu (5a)
v = sin(θ∗ + w)− sin(θ∗)− diag(cos(θ∗))w (5b)
y = [0 I 0 0]x = Cyx (5c)

w = [ETG 0 ETL 0]x = Cwx. (5d)
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Fig. 1. Lurie system representation of the swing equation with the linearized
dynamics in G(s) and the nonlinear components in ϕ(·).

The matrix A in (4) was obtained by linearizing the system (3)
around the equilibrium point with respect to x and v. Notice
that the vector v represents the nonlinear feedback of the state
x, i.e., v = ϕ(w) = ϕ(Cwx). To examine the stability of
the system, the linearization around the equilibrium has to
be stable, thus the matrix A being a Hurwitz is a necessary
condition.

Let the transfer function matrix G(s) represent the linear
dynamics in Laplace domain. Then the Lurie system (4) can
be graphically represented as in Figure 1. Following this
representation of the system, the transfer function matrix G
can be divided into four blocks:

G(s) =

[
Gy,u(s) Gy,v(s)
Gw,u(s) Gw,v(s)

]
(6)

where each block of transfer matrix can be computed by
Gi,j(s) = Ci(sI − A)−1Bj , with i ∈ {y, w} and j ∈ {u, v}.
Given the system model described in this section, the problem
can be formulated as follows.

C. Problem Formulation

Consider the power system model (4), containing the ad-
ditive magnitude-bounded disturbance u. The analysis carried
out in this paper concentrates on finding the maximum bound
on the magnitude of the disturbance such that the system
remains inside the operational constraints, which corresponds
to the generators remaining synchronized, and the generator
frequencies constraints are never violated. In order to quantify
the magnitude of the disturbance u, we propose the following
element-wise infinite norm.

Definition 1. Let u(t) ∈ Rn. Its element-wise infinity norm,
‖u‖∞ ∈ Rn, is defined as[

‖u‖∞
]
i

= sup
t≥0
|ui(t)| (7)

where
[
‖u‖∞

]
i

and ui are the i-th entry of ‖u‖∞ and u
respectively.

Remark. The element-wise infinity norm is different from
the standard L∞ norm of u, defined as ||u||L∞ =
maxi(supt≥0 |ui(t)|). The proposed element-wise norm en-
ables the optimization of each entry in the disturbance vector
u, rather than optimizing all the entries uniformly. This im-
portant feature will be employed to compute adaptive bound
over the state of the system to yield the optimal result.

The problem can be now mathematically formulated as
follows.

Problem formulation. Consider the power system (1) written
in Lurie form (5). The objective of our problem is to find the
maximum bound ū on the disturbance such that if ‖u‖∞ ≤ ū,
the following two conditions hold:
(i) ‖w‖∞ < π, and

(ii) ‖y‖∞ ≤ ȳ.
Notice that the first condition prevents angular separation of

the generators during the transient, and the second constraint
ensures the frequency constraint to prevent any under or over-
frequency emergency control actions.

III. INPUT-OUTPUT STABILITY ANALYSIS

In this section, the mathematical framework for the analysis
and assessment of the system stability under the additive
disturbance u will be established. The proposed framework
combines the input-output stability approach with the sector
bounds on the nonlinearity v in the Lurie system to propose
a novel small-gain theorem.

Let y = Hu define an input-output relation , where H is
an operator that specifies the output y in terms of the input
u, and define the input-output stability of the operator H with
respect to the element-wise infinity norm, which we denote
‖·‖∞, as follows.

Definition 2 (Bounded Input Bounded Output). The oper-
ator H is BIBO if its output is bounded for every bounded
input, i.e., there exists a non-negative constant matrix γH such
that

‖y‖∞ ≤ γH‖u‖∞. (8)

If the system is BIBO, then the system will be referred
as an input-output stable system. For an input-output stable
linear system, where the operator H corresponds to the transfer
function G(s) in equation (6), the gain matrix ϕG can be
computed using the following lemma.

Lemma 1. Given an input-output stable linear system with
transfer function G(s), the ij element of the gain matrix γG
can be computed as

γG,ij = ||Gij(t)||1 (9)

where ||Gij(t)||1 =
∫∞
−∞ |hij(τ)|dτ , with hij being the

impulse response of the Gij .

Proof. For the i-th element of the output vector,

|yi(t)| =
∣∣∣∣∑
j

∫ ∞
−∞

hij(τ)uj(t− τ)dτ

∣∣∣∣
≤
∑
j

ūj

∫ ∞
−∞
|hij(τ)|dτ

=
∑
j

||Gij(t)||1ūj =
∑
j

γij ūj .

Remark. The linear dynamics G(s) in the Lurie system is
input-output stable if the power system is small-signal stable.
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The matrix γG, can be divided, according to (6), into

γG =

[
γy,u γy,v
γw,u γw,v

]
. (10)

Consider now the nonlinear component, given by v = ϕ(w),
and notice that it is decentralized, i.e., vi = ϕi(wi) ∀i ∈
{1, . . . , `}. As a consequence, if the nonlinear map ϕ(·) is
input-output stable, then the gain matrix γϕ is a diagonal
matrix. The diagonal element of γϕ in the position {i, i} is
equal to:

γϕ,ii = sup
wi

∣∣∣∣ viwi
∣∣∣∣, (11)

and direct substitution of equation (5b) results in

γϕ,ii = sup
wi

∣∣∣∣ sin(θ∗i + wi)− sin θ∗i
wi

− cos θ∗i

∣∣∣∣ (12)

which is finite for bounded phase angles. Therefore the nonlin-
ear component ϕ(·) is input-output stable. Given the computed
gain matrices of the system, the following inequalities hold by
definition:

‖y‖∞ ≤ γy,u‖u‖∞ + γy,v‖v‖∞ (13a)
‖w‖∞ ≤ γw,u‖u‖∞ + γw,v‖v‖∞ (13b)
‖v‖∞ ≤ γϕ‖w‖∞ (13c)

The gain matrices are non-negative matrices (γi,j ≥ 0 ∀i, j).
Using this property, the next lemma is stated and will be used
in the proofs for the results in this paper.

Lemma 2. Given positive matrices, γw,v and γϕ, the following
three conditions are equivalent:

(i) ρ(γw,vγϕ) < 1
(ii) (I − γw,vγϕ)−1 ≥ 0

(iii) There exists x ≥ 0 such that (I − γw,vγϕ)x > 0

Proof. We skip the details of the proof for this lemma in this
paper and will use the result from [25]. The proof is based on
the properties of Z and M matrices. A matrix is a Z-matrix
if its off-diagonal elements are on-positive, and M -matrix if it
is a Z-matrix and its eigenvalues have nonnegative real parts.
First notice that the matrix I − γw,vγϕ is a Z-matrix since
the gain matrices are non-negative matrices. Now notice that
ρ(γw,vγϕ) < 1 if and only if the eigenvalues of I − γw,vγϕ
have nonnegative real parts, which is the definition of M -
matrix. Given I − γw,vγϕ being a M -matrix, condition (i),
(ii), and (iii) are equivalent [25].

Remark. Since the matrix γw,vγϕ is nonnegative, it has a real
eigenvalue equal to its spectral radius ρ(γw,vγϕ) [26].

The M -matrix appears in other problems in power systems
such as voltage stability [27]. In the next theorem, we present
the condition under which the power system is input-output
stable.

Theorem 1 (Small Gain Theorem for element-wise infinity
norm). The system (5) is input-output stable if γG and γϕ are
finite and ρ(γw,vγϕ) < 1.

Proof. By substituting Equation (13b) into Equation (13c) and
rearranging, we have

(I − γw,vγϕ)‖w‖∞ ≤ γw,u‖u‖∞.

Since ρ(γw,vγϕ) < 1, Lemma 2 results in (I−γw,vγϕ)−1 ≥ 0.
As such,

‖w‖∞ ≤ (I − γw,vγϕ)−1γw,u‖u‖∞

The output can be bounded by

‖y‖∞ ≤ γy,u‖u‖∞ + γy,v‖v‖∞
≤ γy,u‖u‖∞ + γy,vγϕ‖w‖∞
≤
[
γy,u + γy,vγϕ(I − γw,vγϕ)−1γw,u

]
‖u‖∞.

Therefore, the system is input-output stable.

Notice that this is small-gain theorem for our newly-defined
element-wise infinity norm from Definition 1.

Remark. The condition in Theorem 1 is not satisfied for arbi-
trary nonlinear gain matrix γϕ. Indeed, since ρ(γw,vγϕ) < 1,
it results that for fixed linear gain matrix γw,v , there exists a
limit on the magnitude of γϕ such that our system is input-
output stable.

The small gain condition ensures input-output stability,
which ensures the output is bounded for every bounded input.
However, for a system that is not globally stable, the bounded
output cannot be guaranteed for every bounded input. On the
other hand if the input is constrained by some ū, the output
could be bounded. The following definition exploits this fact,
and it is also known as local input-output stable system.

Definition 3. (Constrained Input Bounded Output) The
operator H is CIBO if there exist ū, such that for every
constrained input (‖u‖∞ ≤ ū), the output is bounded (‖y‖∞ <
∞).

For a locally stable system or a system with strong nonlin-
earity, the small gain condition may not be satisfied. However,
if the input is bounded, then w could be also bounded, which
leads to tighter sector bound over the nonlinearity.

Recall that w corresponds to the phase differences deviation
from the phase differences at the equilibrium, i.e., w = ET δ−
ET δ∗. Let w̄ be some magnitude bound on w, i.e., ‖w‖∞ ≤ w̄.
Now notice that γϕ is function of w̄, i.e., γϕ = γϕ(w̄), and
that larger w̄ results in larger γϕ(w̄) (see Figure 2). As a
consequence, the condition in Theorem 1 could be satisfied for
some w̄. w̄ is some fictitious bound over the phase differences
deviation and is used only within the analysis.

This observation is exploited in the following theorem,
where a sufficient condition for the stability of our system
is presented by considering phase difference bound, w̄, to the
condition as an auxiliary variable.

Theorem 2. Let ū ∈ Rn be the bound on the input such that
‖u‖∞ ≤ ū. If γG and γϕ are finite, and if there exists ū ≥ 0
and w̄ ≥ 0 satisfying

γw,uū < (I − γw,vγϕ(w̄))w̄, (14)

then the system is CIBO and ‖w‖∞ ≤ w̄.
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Fig. 2. Sector bound for v = ϕ(w) = sin(w + ET δ∗)− cos(ET δ∗)w.

Proof. Since gain matrix is a positive matrix and ū ≥ 0, (I −
γw,vγϕ(w̄))w̄ > γw,uū ≥ 0 with w̄ ≥ 0. From Lemma 2,
ρ(γw,vγϕ) < 1, and the system is input-output stable from
Theorem 1. Substituting condition (14) and Equation (13c)
into Equation (13a), we have

‖w‖∞ ≤ γw,u‖u‖∞ + γw,v‖v‖∞
≤ (I − γw,vγϕ(w̄))w̄ + γw,vγϕ‖w‖∞.

By rearranging,

(I − γw,vγϕ)‖w‖∞ ≤ (I − γw,vγϕ(w̄))w̄

I − γw,vγϕ is inverse-positive from Lemma 2, so ‖w‖∞ ≤
w̄.

Remark. If condition (14) satisfies for all w̄, then this is
equivalent condition to the small gain condition in Theorem
1.

This remark can be directly observed from Lemma 2. This
inequality condition is a different representation of small gain
condition that exploits the fact that γϕ can be a function of
w̄. There is a natural trade-off based on the value of w̄. The
nonlinear gain γϕ increases as w̄ increases, which makes it
difficult to meet the small gain condition. On the other hand,
small w̄ imposes more strict bound on the phase difference on
transmission lines. This trade-off is represented as the product
of I−γw,vγϕ(w̄) and w̄, which are monotonically decreasing
and linearly increasing function of w̄.

In power grid, the output is bounded due to the dissipation
from damping. In order to prevent continuous angular sepa-
ration and enforce generator frequency constraints, we need
to impose additional conditions. This brings the following
definition of constrained input constrained output.

Definition 4. (Constrained Input Constrained Output) The
operator H is CICO if there exist ū, such that for every
constrained input (‖u‖∞ ≤ ū), the output is constrained
(‖y‖∞ ≤ ȳ).

The condition on the constrained input is extend to incor-
porate the output constraints.

Theorem 3. Let ū ∈ Rn be the bound on the input such that
‖u‖∞ ≤ ū. If γG and γϕ are finite, and there exist ū ≥ 0 and
w̄ ≥ 0 such that

γw,uū < (I − γw,vγϕ(w̄))w̄

γy,uū+ γy,vγϕ(w̄)w̄ ≤ ȳ
(15)

then the system is CICO, and ‖w‖∞ ≤ w̄ and ‖y‖∞ ≤ ȳ.

Proof. From Theorem 2, the first condition in (15) ensures
‖w‖∞ ≤ w̄. Moreover, substitution of the condition in this
theorem and Equation (13c) into Equation (13a) results in

‖y‖∞ ≤ γy,u‖u‖∞ + γy,vγϕ‖w‖∞ ≤ γy,uū+ γy,vγϕw̄ ≤ ȳ.

The condition proposed in Theorem 3 will be used in the
next section to efficiently compute the maximum acceptable
disturbance magnitude.

IV. COMPUTATION OF THE DISTURBANCE BOUND

In the following, an optimization problem is formulated to
find the bound on the disturbance, ū, such that the frequencies
of the generator remain inside its operational limit. Given a
potential disturbance u, the system operator only needs to
check u ≤ ū to ensure generator frequency constraint. The
input-output stability framework developed in Theorem 3 will
be used as a constraint to the optimization problem.

The first step in doing so is to derive an explicit expression
for the gain of nonlinear component γϕ. Recall that γϕ is
function of w̄:

γϕ,ii(w̄i) = sup
|wi|≤w̄i

∣∣∣∣ sin(wi + θ∗i )− sin(θ∗i )

wi
−cos(θ∗i )

∣∣∣∣ (16)

where θ∗ = ET δ.
In the following corollary, an analytical expression is de-

rived for the gain of the nonlinear components γϕ,ii(w̄i).

Corollary 1. Let w̄ ∈ Rl and θ∗ = ET δ∗ ∈ Rl be such that
∀i : |θ∗i |+ w̄i ≤ π, |θ∗i | ≤ π

2 . Then,

γϕ,ii(w̄i) ≤ cos |θ∗i | −
sin(|θ∗i |+ w̄i)− sin |θ∗i |

w̄i
. (17)

Proof. From Equation (12) and given |θ∗i | ≤ π
2 , we have

γϕ,ii(w̄i) = sup
|wi|≤w̄i

∣∣∣∣ sin(wi + θ∗i )− sin(θ∗i )

wi
− cos(θ∗i )

∣∣∣∣
= sup
|wi|≤w̄i

∣∣∣∣ sinwi − wiwi
cos θ∗i +

coswi − 1

wi
sin θ∗i

∣∣∣∣
≤ sup
|wi|≤w̄i

|wi| − sin |wi|
|wi|

cos |θ∗i |+
1− cos |wi|
|wi|

sin |θ∗i |

Moreover, the function inside the supremum monotonically
increases with respect to wi for |θ∗i | + w̄i ≤ π. Therefore,
inequality (17) holds true.

At this point, by using the analytic expression for the gain
of the nonlinearity (16), the implicit bound on the maximum
disturbance magnitude can be established from Theorem 2,
which also guarantees the input-output stability of the system.
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The frequency constraints condition from Theorem 3, com-
pute the bound on the acceptable disturbance can be formu-
lated as the following optimization problem:

maximize
w̄≥0, ū≥0, µ

µ

subject to γw,uū < (I − γw,vγϕ(w̄))w̄

γy,uū+ γy,vγϕ(w̄)w̄ ≤ ȳ
|θ∗|+ w̄ < π, µ ≤ cT ū

(18)

where the vector c ∈ Rn can be used to fix the ratio of the
perturbation at each bus. Notice that this procedure allows us
to find the maximum disturbance magnitude at a particular
bus, or at a combination of buses.

Propostion 1. The feasible space of the optimization problem
(18) is convex.

Proof. Using the explicit expression for γϕ(w̄) in the con-
straint γw,uū ≤ (I − γw,vγϕ(w̄))w̄, we obtain the following
constraint:

γw,uū ≤ (I − γw,vdiag(cos θ∗))w̄

− γw,v sin |θ∗|+ γw,v sin(|θ∗|+ w̄)
(19)

This constraint is valid in the region defined by 0 ≤ |θ∗i |+
w̄i ≤ π, which appears as a constraint. The sinusoidal term
is with this bound is concave, and therefore the constraint in
equation (19) forms a convex region. Similarly, the constrained
output condition is similarly bounded to a convex region of a
sinusoidal function. As a consequence, the feasible region of
the optimization problem (18) is convex.

V. SIMULATIONS

In this section, we present an illustrative example on a single
machine infinite bus and more standard case studies on IEEE
9-bus and 39-bus systems.

A. Single Machine Infinite Bus (SMIB)

The procedure and plot of the condition is illustrated on
SMIB example with second order swing equation with lossless
line. The dynamic equation is given by

mδ̈ + dδ̇ + a sin δ = P0 + u (20)

with its equilibrium at δ0 = arcsin(P0/a). Let the output be
the frequency in Hertz, y = δ̇/2π. Substituting w = δ − δ0,
and v = sin(δ)− cos(δ0)w,

mẍ+ dẋ+ a cos(δ0)x+ av = u (21)

where m = 1, D = 1.2, Pm = 0.2 and a = 0.8 is used in
this study. In frequency domain,

W =
1

ms2 + ds+ a cos(δ0)

[
U − aV

]
= Gw,uU +Gw,vV,

(22)

and Y = sW/2π. The gain of the matrix was computed
Gy,u = 0.178, Gy,v = 0.142, Gw,u = 1.434, and Gw,v =
1.148. Following our procedure, the nonlinear gain can be
plotted as a function of bound on the phase difference,
which is plotted in Figure 3 (a). Since our gain matrix is a

scalar, the condition for stability is γw,vγϕ < 1. In Figure
3 (b), we plot the main condition in Theorem II, which is
γw,uū ≤ (I − γw,vγϕ(w̄))w̄ in blue.

Fig. 3. Maximum perturbation allowed as a function of sector bound for 2
bus system.

The estimation of the upper bound on the acceptable dis-
turbance was computed by time-domain simulation of a step
response. A step disturbance of size, ū, was applied and the
maximum phase difference deviation, w̄, was recorded, and
each simulation point was plotted with red points connected
by a dashed line in Figure 3.

The simulation points are only upper-bound on the accept-
able disturbance, and it does not give a sufficient condition
to state the disturbance is acceptable. Monte-Carlo simula-
tion could be used to find tighter upper-bound, but it is
extremely time-consuming. On the other hand, our approach
uses optimization to efficiently compute the lower-bound of
the maximum acceptable disturbance. The result shows that
the gap between the upper-bound from step response and
lower-bound based on our method is very tight. The maximum
perturbation allowed occurs when the w̄ is about 0.9 rad, which
can be computed with optimization. The small-gain theorem
condition in Figure 3 (a) is violated when the deviation of
angle is about 2.4. The feasible disturbance disappears at the
same w̄, which illustrates the equivalence of condition (i) and
(iii) Lemma 2. In Figure 4, the upper-bound on the frequency
deviation is computed with the output gain. Similarly, the
lower bound on the frequency deviation was computed using
simulation.

B. 9-bus and 39-bus systems

This section presents experimental case studies on IEEE
9-bus and 39-bus systems. The nonlinear optimization was
computed on PC laptop with an Intel Core I7 3.3 GHz CPU
and 16GB of memory with interior point method with IPOPT
[24]. Figure 5 plots a graphical representation of the computed
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Fig. 4. Maximum frequency deviation for 2 bus system.

maximum bound on the disturbance. The maximum acceptable
disturbance was computed assuming the disturbance is applied
at a single bus. The result shows that the disturbance tend to
be more acceptable on the buses that have many neighbors
to distribute the impact. On the generator nodes, the second
order dynamics plus the governor reduces the damping ratio,
and only small disturbances are acceptable.

Fig. 5. Result of analysis for 9 bus and 39-bus systems. A disturbance on
individual node is considered and the resulting maximum bound is represented
as the size of circle on each node. For both systems, a reference circle (bus
1) is labeled with its value.

For the 9 bus system, the gain matrix took 1.86 seconds and
optimization took 0.017 seconds. For the 39 bus system, the
computation time for the gain matrix was 166.9 seconds, and
optimization time was 0.148 seconds. The most computational
intense step in our method is computation of gain matrix of
the linear component, which requires simulation of impulse
response and numerical integration. One of the approach for
mitigating the long computation time is building the data base
for the gain matrix. Since the generator locations and types are
fixed, the operating point is frequent at certain region. When
the system runs under a similar operating point to the one
stored in the database, the stored gain matrix can be reused.
Moreover, the computation could be accelerated by exploiting
the fact that the modes of the each entry in the gain matrix is
common and could be bounded [28]. Only the optimization has
to be carried online, which takes in the range of milliseconds.

For the 39-bus case study, two scenarios were considered
which introduced step and continuous disturbances.

1) Simultaneous Distributed Generators tripping: Near si-
multaneous tripping of loads on bus 3, 15 and 27 are consid-
ered in this scenario. The active power load at those buses are

3.22 p.u., 3.2 p.u. and 2.81 p.u. respectively. The maximum
perturbation was solved with the frequency deviation bounded
by 0.5 Hz. The result bounded the tripped load magnitude
to be less than 0.939 p.u. Without frequency constraint, the
maximum perturbation allowed is computed to be 2.29 p.u. at
each load.

2) Wind generation: In this scenario, varying power output
from wind generation at bus 1, 9 and 16 was considered. This
gives quick assessment of the grid to plan for curtailment
of renewables. The result gives the bound of 1.305 p.u.
deviation of renewable from its nominal generation. Without
the frequency constraint, 2.02 p.u. deviation in active power
is allowed at each wind generator.

Fig. 6. Simulation results for simultaneous generation tripping (b) and wind
generation (a) and their frequency response for 39 bus system.

VI. CONCLUSION

The input to output stability analysis technique presented in
this paper provides a novel and practical solution to quickly
estimate disturbances withstandable by the electric power
grids. The system operators often need to quickly estimate the
risk and take action in a pressing and unexpected environment
where offline studies have not covered. Conventionally, the
consideration of operational constraints on frequency deviation
has been dealt separately from studying the transient stability.
Our formulation offers a simple way to unify these consid-
erations and utilize well-developed optimization methods to
perform stability assessment. Our method efficiently divide
computationally heavy step, which can be done in an offline
environment, and the optimization procedure, which can be
quickly done in an online environment. Our studies shows
that our technique is not very conservative can include wide
range of disturbances.

In the future work, we plan to extend our result to addi-
tional characterizations of disturbance such as ramping rate
constraint or duration of disturbance. While our approach
allows inclusion of any disturbance that is only bounded by
its magnitude, the disturbance may exhibit specific character-
istics. By exploiting additional knowledge about the nature of
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disturbance, our method can be extended to adapted to more
specific applications.
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