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Linear and nonlinear vibration energy harvesting has been the focus of considerable research in recent
years. However, fundamental limits on the harvestable energy of a harvester subjected to an arbitrary
excitation force and different constraints is not yet fully understood. Understanding these limits is not only
essential for an assessment of the technology potential, but it also provides a broader perspective on the
current harvesting mechanisms and guidance in their improvement. Here, we derive the fundamental limits
on the output power of an ideal energy harvester for arbitrary excitation waveforms and build on the current
analysis framework for the simple computation of this limit for more sophisticated setups. We show that the
optimal harvester maximizes the harvested energy through a mechanical analog of a buy-low-sell-high
strategy. We also propose a nonresonant passive latch-assisted harvester to realize this strategy for an
effective harvesting. It is shown that the proposed harvester harvests energy more effectively than its linear
and bistable counterparts over a wider range of excitation frequencies and amplitudes. The buy-low-sell-
high strategy also reveals why the conventional bistable harvester works well at low-frequency excitation.
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I. INTRODUCTION

The problem of energy supply is one of the biggest issues
in miniaturizing electronic devices. Advances in technol-
ogy have reduced the power consumption in electronic
devices such as wireless sensors, data transmitters, and
medical implants to the point where ambient vibration,
a universal and widely available source of energy, has
become a viable alternative to costly traditional batteries.
A typical vibratory energy harvester (VEH) consists of a
vibrating host structure, a transducer (e.g., electromagnetic,
electrostatic, or piezoelectric), and a harvesting circuitry
(e.g., a simple electrical load).

Most of the conventional VEHs exploit linear resonance,
i.e., tuning the natural frequency of the host structure to the
excitation frequency, to maximize the harvested energy. This
approach has three obvious downsides: an inherent narrow
bandwidth of linear resonance and limited robustness, an
inefficiency in real-world applications with wideband and
nonstationary excitation sources, and the big gap between
the low frequency of the typical excitation sources (such as
waves and walking motion), and the high natural frequency
of small-scale linear VEHs. In fact, nonstationary and
random vibration are more common than harmonic excita-
tion in many practical applications [1-4]. To overcome these
limitations, researchers have recently tried to make use of the
purposeful introduction of nonlinearity in VEH design [5].
One of the key challenges in designing nonlinear harvesters
is the immense range of possible nonlinearities. Among
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different types of nonlinearity, bistability has received more
attention in the past few years [6—10]. However, the question
of what are the fundamental limitations of nonlinear energy
harvesting is still open.

The explicit identification of fundamental performance
limits has played a crucial role in many fields of science
and engineering. In the energy field, the classical Carnot
cycle efficiency was a guiding principle for the develop-
ment of thermal power plants and combustion engines.
It has also inspired scientific debates that consequently
lead to the formation of modern statistical physics. The
Lanchester-Betz limit for wind harvesting efficiency [11],
and the Shockley-Queisser limit for the efficiency of
solar cells [12] are commonly used for the long-term
assessment of sustainable energy policies. Shannon’s limit
of information capacity [13] has formed a foundation for
the development of modern communication systems.
The Bode’s-sensitivity-integral limits in feedback control
theory [14] provide a standard tool for the analysis of
design trade-offs in modern control systems.

There have been very few, but influential, studies in the
context of energy harvesting that have addressed the
question of the maximal power limits for VEHs. The idea
of maximizing the harvested energy was originated in the
seminal works by Mitcheson er al. [15,16] and Ramlan
et al. [17]. Mitcheson et al. [15] derived the maximum
harvested power for velocity-damped and Coulomb-
damped resonant generators as well as for the Coulomb-
force parametric generator (CFPG) with one mechanical
degree of freedom when subjected to harmonic excitation.
They also estimated the maximum possible harvested
power for a general harvesting device excited by harmonic
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force using proof mass traversal at the force extrema [16].
Ramlan et al. [17] took an energy approach and estimated
the available power from a nonlinear VEH subjected to
harmonic excitation. They showed that with a displacement
constraint, the nonlinear harvester can harvest in the limit
of 4/z times what a tuned linear VEH can harvest.

More recently, similar to Ref. [17] but in a more
advanced fashion, Halvorsen et al. [18] derived upper
bound limits for a harvester with one mechanical degree of
freedom and linear damping. They considered arbitrary
general excitation waveforms in the absence of displace-
ment limits (damping-dominated motion) and periodic
excitation with displacement limits. The upper bound
limit for a damping-dominated motion was generalized
to multiple sinusoid input by Heit and Roundy [19].
Also, the maximal power limits for nonlinear energy
harvesters under white-noise excitation were explored in
Refs. [20-22]. Although these studies address the same
fundamental question, the white-noise approximation is
rather restrictive and leads to overly conservative bounds.
This assumption may not be applicable to many practical
settings where most of the energy-harvesting potential is
associated with low frequencies.

Although the question of fundamental limits to the
energy conversion rate in the context of the vibratory
energy harvesters has received limited attention thus far,
these types of questions have been studied much more
thoroughly in statistical physics. For example, the seminal
Jarzynski relation derived in Ref. [23] can be interpreted as
the statistical constraint on the possible efficiency of the
work to the free energy conversion process. More general
relations have been derived in Refs. [24,25] for entropy
production in stochastic systems. The stochastic systems
appearing in vibratory system analysis are specific exam-
ples of the so-called nonequilibrium steady states that were
studied, for example, in Refs. [25,26]. Despite the immense
effort in the statistical physics community, most of the
studies have focused on the systems where the stochastic
fluctuations have a thermal nature and satisfy special
fluctuation-dissipation relations. This is the case in many
practically relevant systems, such as molecular motors [27]
or optical trap experiments [28]. The main challenge with
the extension of these results to the vibrational systems is
the inherent nonequilibrium nature of the fluctuations that
requires more general approaches not relying on underlying
microscopic statistical features of the system. However,
more general approaches relying on the techniques from
control and information theory [29] may eventually lead to
the convergence of these currently separate fields.

In this study, we build on the current framework for
deriving the energy-harvesting limits, generalize it to
almost arbitrary excitation waveforms, and provide insights
into how to approach these limits in practice. To illustrate
the approach, we build a hierarchy of increasingly more
constrained models of nonlinear harvesters, derive the

closed-form solutions for simplest models, and provide
general formulations where the closed-form solutions do
not exist. Inspired by the optimal solutions to the simple
model, we propose a conceptual design of nonresonant
latch-assisted (LA) nonlinear harvesters and show that they
are significantly more effective than the traditional linear
and nonlinear harvesters in broadband low-frequency
excitation that is common to practical situations.

II. IDEAL ENERGY HARVESTING

We consider a model of a single-degree-of-freedom ideal
energy harvester characterized by the mass m and the
displacement x(¢) that is subjected to the energy-harvesting
force f(z) and exogenous excitation force F(¢). The
dynamic equation of the system is a Newton’s second
law mi(t) = F(t) + f(¢). The fluxes of energy in the
system are given by the expressions Fx, —fx, and
(m/2)x* representing, rtespectively, the external input
power to the system, harvested power, and instantaneous
kinetic energy of the system.

We start our analysis by considering an idealized
harvester with no constraints imposed on either the harvest-
ing force f(t) or the displacement x(¢). It is easy to show
that the overall harvesting rate in this setting is unbounded.
Indeed, the trajectory defined by a simple relation
X(t) = xF(t) that can be realized with the harvesting force
f = mxF — F results in the harvesting rate of kF that can
be made arbitrarily large by increasing the mobility con-
stant . This trivial observation illustrates that the question
of fundamental limits is well posed only for the model that
incorporates some technological or physical constraints.
This is a general observation that applies to most of the
known fundamental limits. For example, the Carnot cycle
limits the efficiency of cycles with bounded working fluid
temperature, and the Shannon capacity defines the limits
for signals with bounded amplitudes and bandwidth.

To derive the first nontrivial limits to the energy-
harvesting power limits we consider the displacement
amplitude and energy dissipation constraints that are
common to all energy harvesters. For the first constrained
model we consider the displacement constraint with the
trajectory limited in a symmetric fashion, i.e., |x(7)| < Xpax
where X, is the displacement limit. In this model we
assume there is no natural dissipation of energy in the
system, so in the steady state motion, the integral net input
of energy into the system equals the harvested energy.
Thus, the maximum harvested energy could be evaluated
simply by maximizing the following expression [18]:

s = mix / diF (1)), (1)

Here, the optimization is carried over the set of all
“reachable” trajectories, that can be realized given the
system constraints. As long as the harvesting force f is not
subjected to any constraints, this set simply coincides with
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the set of bounded trajectories defined by |x(7)| < Xax The
optimal trajectory is then easily found by rewriting the
integral in Eq. (1) as — [ d¢F(7)x(¢). It is straightforward to
check that this expression is maximized by

x.(1) = —Xmysign[F(1)]. (2)

The interpretation of Eq. (2) is straightforward and can be
summarized as a buy-low-sell-high (BLSH) harvesting
strategy. The optimal harvester keeps the mass at its lowest
(highest) position until the force F reaches its local
maximum (minimum) and then activates the force f to
move the mass by 2x,,, upwards (downwards) as fast as
possible. In general, f is not passive for all time, and this
mechanism is in fact nonresonant. Similar results were
reported for time harmonic excitation in Ref. [18]. Also, the
CFPG discussed in Ref. [15] follows a similar displacement
trajectory as Eq. (2) when the excitation is harmonic with a
relatively large force amplitude. However, if the excitation
is nonstationary or not harmonic the trajectories will be
very different and CFPG will not track the changes in the
direction of the external forcing F(r), unlike BLSH
described by Eq. (2).

The BLSH strategy is remarkably similar to the strategy
employed by the Carnot cycle machine and can also be
derived using similar geometric arguments. In the F-x
parametric plane, the overall harvested energy is defined as
the integral § Fdx representing the area of the contour
produced by the cycle. For a local realization of the force,
both the values of the force and the values of displacement
are bounded, so the energy is maximized by the contour
with a rectangular shape. Similarly, the Carnot cycle has a
simple rectangular shape in the temperature-entropy 7-S
diagram derived by recognizing that the overall work given
by § TdS is the area of the contour that is constrained by the
temperature limits.

The net harvested energy in this model can be expressed
as Epax = Xmax J |F(2)|dt. For commonly used Gaussian
models of the random external forces characterized by
the Fourier transform F, = [drexp(iwt)F(r), and
corresponding power spectral density |F »|% the quantity
F(t) is a Gaussian random variable with zero mean and
the variance given [(dw/2r)w?|F,|*. Therefore, the maxi-
mal harvesting energy is given by the following simple
expression:

2 dw
Emax = xmax; /2_ﬂw2|Fm|2' (3)

The strategy favors the high frequency harmonics which
produce frequent extrema of the external force, each
coming with the harvesting opportunity. In practice, har-
vesting energy at very high harmonics will not work
because of the natural energy dissipation in the system.
So, in our next model, we consider the limits associated
with dissipation.

To make the analysis tractable we define another model
without the displacement constraints (SO X, = ),
but with the additional damping force F,;= —c,x.
Consequently, the dynamic equation changes to mx(¢)+
cnx(t) = F(t) + f(t), and c,,x*(¢) represents the power
dissipated in the mechanical damper. The harvested energy
— [dtf(1)x(t) is then equal to [ di[F(t)x(r) — ¢, x*(1)),
assuming no accumulation of energy in the system at steady
state. This is a simple quadratic function in x that is
maximized by x = F/2c,,, thus resulting in the following
integral energy expression.

F(1)
. dr. (4)

Epax = max/ dt[F(t)x — ¢, X% = /
As in the previous models, without any constraints on
the harvesting force, the trajectory is achievable with the
input harvesting force of the form f(¢) = mx,(t) — F(t)/2.
These results were also reported by Halvorsen et al. [18].
Furthermore, using Parseval’s theorem and the final
result in Eq. (4), the maximum energy in the frequency
domain is equal to E,,,, = [(dw/8xc,,)|F,|*. This simple
frequency-domain representation has an important
property that with the optimal and ideal harvester force,
the energy is harvested from all the frequency components
of the excitation force equally proportionate to the power
spectrum of the forcing function. This is very advantageous
to low frequency and broadband vibration sources such
as wave or walking motion, where efficient resonant
harvesting is not possible.

In a similar fashion, it is possible to construct more
complicated limits that combine multiple constraints.
Although most of these models do not admit a closed-
form solution, the corresponding optimization problem
can be transformed into a system of differential algebraic
equations (DAEs) using the Lagrangian multiplier and
slack variable techniques. For example, the incorporation
of the displacement constraints into a damped harvesting
model can be accomplished by solving the following
variational problem:

Epay — max / dH[F5— i —pE— AT —a®). ()

Here, the unconstrained optimization is carried over x(¢),
f(), the two Lagrangian multiplier functions A(¢) and
u(t), and the so-called slack variable (7). The function
E(x, x,%,t) = m¥ + c,,x — F — f represents the equality
constraint associated with the equations of motion, while
the indicator function Z(x) = x2, — x> that is positive
only on an admissible domain represents the inequality
constraint for the displacement. Other equality and inequal-
ity constraints on the displacement, velocity, or harvesting
force can be naturally incorporated in a similar way. Using
the standard Euler-Lagrangian variational approach the

064009-3



ASHKAN HAJI HOSSEINLOO and KONSTANTIN TURITSYN

PHYS. REV. APPLIED 4, 064009 (2015)

problem can be transformed into a system of DAEs that can
be solved for arbitrary forcing functions and thus provide
universal benchmarks for any practical harvesters.

It is worth noting that the general approach of studying
the extremal behavior of the physical systems using the
variational approach is by no means new. In its modern
form it originated in the quantum field theory [30] but has
since been applied in many fields, most notably in one of
the most difficult nonlinear problems of turbulent dynamics
[31]. Halvorsen et al. [18] also used a similar variational
approach to find the maximal power bound for a VEH
subjected to period excitation and displacement limits.

The innocent-looking DAEs that resulted from applying
the variational approach to the Lagrangian in Eq. (5) are
not always easy to solve even computationally (particularly
if the DAEs have a high index). However, the time-
discretized objective function in Eq. (4) can be maximized
using standard nonlinear optimization approaches. In
particular, the optimization of quadratic functionals like
Eq. (4) complemented by any linear equality and inequality
constraints like m¥ = F + f and |x| < x,,,, can be easily
performed using standard convex optimization techniques
[32]. Discretization of the system can be accomplished
by using the spectral representation of the force and
displacement signals.

To illustrate the generality and efficacy of this approach
in handling different practical constraints and complexities,
we attempt to find the power bounds of the same system
described above (with mechanical dissipation) with some
additional constraints. First, we apply dissipativity con-
straint on the harvesting force f, i.e., fx < 0, that prevents
the injection of positive energy from the controller. Second
we assume the nonideal actuator, with losses —df> — e f
related to actuation force generation. Typically those
are resistive Ohmic losses due to currents required
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FIG. 1. Contour plot of optimal average harvested power with
penalty coefficient e = 5 as a function of penalty coefficient d
and displacement limit x,,, when subjected to harmonic ex-
citation F(z) = 2sin(0.1¢). The numerical values of m = 1 and
¢,, = 1 are used. The dashed red line shows the transition from
the potentially harvestable regime to the nonharvestable regime.
The inset shows the optimal average power in terms of d for
different values of e for a fixed displacement limit of x,, = 1.5.

for electromagnetic or electrostatic force f generation.
Optimization results are reflected in Fig. 1. The figure
reveals the transition from the regime where energy could
potentially be harvested to the regime where no energy
could be harvested no matter how the system is optimized
or designed. This is an unexpected consequence of the
|| < Xpmax cONStraint, as one can easily see that harvesting
is always possible in linear systems.

III. FORCE CONSTRAINTS

A small-scale harvester with an ideal arbitrary harvesting
force may not be easily realizable with the current tech-
nology. More accurate power limits can be derived on
models incorporating additional constraints on the harvest-
ing force f(¢). In a more realistic representation of the
system, the harvesting force f(¢) can be decomposed into
three parts. First, there is an inherent or intentionally
introduced restoring force from the potential energy
U(x) usually originating from the mechanical strain of a
deflected cantilever harvester or a magnetic field. Second,
there is the linear harvesting energy force c,x that is typical
to most of the traditional conversion mechanisms, particu-
larly to electromagnetic transduction mechanisms. Finally,
controlled harvesters may also utilize an additional control
force u(t) to enhance the energy-harvesting effectiveness.
The control force cannot be used for direct extraction of
energy from the system, however, it can be used to
change the dynamics of the system in a way that increases
the overall conversion rate c,x*>. More precisely, the
overall energy harvested from the system is given by
[ dt[c,x* — w(t)], where w(t) represents the power neces-
sary to produce the control force u(#) and its corresponding
power p(r) = u(t)x. The power flows in the system are
illustrated schematically in Fig. 2. The corresponding
optimization problem can be written as

E pax = mMax / dt[Fx — c,,x* — I(1)]. (6)

Here, the new function I(¢) = w(z) — p(t) represents the
losses of power during the control process. The specifics
of the losses process depend on the details of the system

3.

Fi o [ Epergy »(") (Harvester ' w(t)
' ‘ ‘: ontroller

Cmd? 1(t)

FIG. 2. Power flow diagram of the VEH consisting of the main
harvesting system coupled with its harvesting controller.
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design and can be difficult to analyze in a general setting.
However, it is easy to incorporate a number of common
natural and technological constraints on the loss rate. First,
the second law of thermodynamics implies that the
losses are always positive. If the control system cannot
accumulate any energy, this constraint can be represented
simply as [(¢f) > 0. If energy accumulation is possible,
only the integral constraint can be enforced: [ [(z)dt > 0.
Obviously, if the former is the only constraint imposed on
the system, the optimal solution would correspond to zero
losses [ = 0 and it coincides with previous analysis of an
ideal harvester.

More interesting bounds can be obtained by incorporat-
ing common technological constraints. The obvious one is
introducing limits on the force value up;, < u(f) < upay
that can be naturally added via additional slack variables as
described above or as the bounds on the decision variables
if one chooses to do the discrete nonlinear optimization
approach. The other two constraints represent different
levels of sophistication of the harvesting control system.
First is the inability of the control system to harvest the
energy. Typically, the conversion of mechanical energy to a
useful electrical one happens only through the electric
damping mechanism characterized by the force c,x. In this
case, the work done to produce the control input is
constrained to be positive, so w(¢) >0 or [(7) > —ux.
This setup corresponds to a harvesting system where the
control force u(f) can inject the energy (positive and/or
negative) into the system but cannot harvest it from the
system. An even more restrictive constraint would corre-
spond to a situation where the control system cannot inject
positive energy at all. This type of control is only capable of
increasing the natural dissipation rate, thus acting as an
effective break. In this case, the power injection can be only
negative, i.e., dissipative, so u(t)x < 0.

These two extensions of the problem can be naturally
transformed either into nonlinear systems of DAEs using
the slack variable technique explained above or into a
nonlinear and hopefully convex optimization problem after
discretization in time. Numerical analysis of these equa-
tions may provide upper bounds on the harvested energy
limits. Comparison of different bounds would then provide
a natural way of valuing the potential benefits of possible
control systems used in energy harvesters.

IV. NONRESONANT LATCH-ASSISTED
ENERGY HARVESTING

To further illustrate the usefulness of the harvesting
power limits, we propose a novel nonlinear and nonreso-
nant harvester that is inspired by the behavior of an ideal
harvester with no mechanical damping described by
Eq. (2). The harvester is based on a simple extension of
a classical linear mass-spring-damper system with a simple
latch mechanism that can controllably keep the system

close to x = 4x,,,, positions mimicking the ideal harvester
and to enforce the trajectory expressed by Eq. (2).

More specifically, we use a simple control strategy
where the secondary stiff spring representing the latch is
activated when the harvester mass reaches its maximum or
minimum displacement limit. The harvester mass is held at
the limit after this activation. When the force reaches its
extremal value a signal is sent to the latch mechanism to
release the mass by detaching the secondary spring. The
dynamic equation of this system could be rewritten as
mx(t) + (¢, +¢.)x(t) + Uy (x) = F(t) — U/ (x)o(t), where
o(1) is the signal for activation or deactivation of the latch
system. Uy(x) and U,(x) are, respectively, the potential
energy of the harvester’s linear restoring force and the
latch mechanism. Signal generation of () may practically
require a minimal energy, but otherwise the LA harvester
is completely passive.

Figure 3 illustrates the concept of maximizing the
harvested energy through a latch mechanism as one method
to mimic the trajectory in Eq. (2). In this method, almost
all of the work is done on the system when the system is
moving from one end to the other; this energy is then
harvested and dissipated when the system is blocked by a
latch from moving outside of the extremal points.
Whenever the excitation is slow in comparison to the
natural period of the harvester, the system translates
between the extrema very quickly, while the force remains
close to its extremal values. The system takes natural
advantage of the frequencies, and, unlike traditional linear
harvesters, has a higher effectiveness at low frequencies.

Figures 4(a) and 4(b) depict displacement and energy
time histories, respectively, for LA, linear, and bistable
harvesters subjected to harmonic excitation. The most
common bistable potential is used here for comparison.
The bistable potential is of the quartic form U(x) =
—a(x?/2 — x*/4x?), where a = 5 and x,; = 0.875 (stable

T T T
9 [:' harvester vibrating mass
44 $ latch mechanism stiffness
1 § harvester stiffness
31 & electrical (good) damper
2 1 #  mechanical damper
5
E o 8
Q =
e L
a
L
©
F—12
=5 T T T T T T
0 50 100 150
time
FIG. 3. Latch-assisted harvester. Here, an energy harvester

with linear mechanical and electrical damping and linear stiffness
is considered. Vibration travel is constrained to 1.5 units, i.e.,
|x(r)| < 1.5.
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FIG. 4. Displacement and energy time histories. (a) The
displacement time history for the three linear, bistable, and
latch-assisted harvesters. Damping ratios of ¢, = 0.02 and
¢, = 0.1, and a displacement limit of 1.5 units are used. The
excitation is harmonic of the form F(r) = 2sin(0.1¢) and its
scaled waveform (scaled to unity in amplitude) is plotted as a
dashed line. (b) The corresponding energy time history for the
three harvesters.

equilibrium) are the tuning parameters. For a fair compari-
son the bistable and linear systems are first optimized
for a given force statistics and displacement constraints.
Also, all the variables in all of the figures are dimension-
less. Dimensionless energy is calculated by evaluating
Jo¢.x(7)*dr’. Tt could be seen from the figure that energy
is transferred to the LA harvester mainly when the mass is
allowed to move from one displacement limit to the other,
and the energy is harvested during this period and after
this period when the harvester mass is held at one end.
It could also be seen that at low frequencies the bistable
harvester tries to mimic the LA harvester by keeping the
mass at one end in one of its wells and releasing it at a later
time close to the extremum of the excitation force. This is a
very important insight as to why and how the bistable
harvester works better than the linear one, particularly at
low frequencies.

Figure 5 gives further insight into the origin of high
energy-harvesting effectiveness of the latch-assisted
mechanism. We plot phase diagrams for the LA harvester
as well as for linear and bistable harvesters in Fig. 5(a).
According to Fig. 5(a), the translation between the two ends
occurs at the greatest speed in the latch-assisted harvester
that could be indicative of better energy harvesting.
Figure 5(b) is even more illustrative, showing the force
capable of doing positive work versus displacement. In this
figure, the ideal harvester has a perfect rectangle curve,
analogous to the perfect rectangle of the Carnot engine
in the 7-S diagram. All other harvesters fall inside this
rectangle enclosing a smaller area.

To check the robustness and compare the efficient-
harvesting range, the performance of the three harvesters
over a wide range of base-excitation frequencies and
amplitudes is illustrated in Fig. 6. In this experiment, fixed
parameters are used for all three harvesters for the full
range of excitation statistics (e.g., a = 0.5 and x, = 1 for

3
2
—bistable
1 = ——linear
> —ideal
8o
o
>
-1
-2
-3
-2 0 0
displacement displacement
FIG. 5. Phase and force-displacement diagrams. (a) The phase

diagram for the three linear, bistable, and latch-assisted systems.
Damping ratios of ¢,, = 0.02 and {, = 0.1 and a displacement
limit of 1.5 units are used. The excitation is harmonic of the form
F(r) = 2sin(0.1¢). (b) The force-displacement curves for the
linear, bistable, latch-assisted mechanism, and ideal harvester
with no mechanical damping.

the bistable system). To make sure that the harvesters
are confined within the displacement limit (2.5 units in
this case), very stiff walls at +x,,, are implemented in
the simulations. The latch-assisted harvester has a higher
power over a wider range of excitation frequencies and
amplitudes. The LA harvester works best at low frequen-
cies and large amplitudes where it can mimic the ideal
harvester best. The low effectiveness of the LA harvester
at low frequencies and small amplitudes is because the
system does not reach the displacement limits to latch, and
hence works like a linear system in this region.

It has been shown that the current nonlinear harvesters,
in particular, the bistable harvesters, are sensitive to the
type of excitation, and may not be very effective when
subjected to real ambient vibration sources [33]. To analyze
how robust and efficient the LA harvester is when subjected
to real-world vibration signals, we tested its performance
on real experimental data of walking motion at the hip
level [34] which is inherently a low-frequency motion.
According to Fig. 7, the latch-assisted system outperforms
the other two systems.

Implementation is also an important aspect of theoretical
studies that should be addressed. Common nonlinear VEHs
have been experimentally tested in recent years (see, e.g.,
Refs. [35-37]). The CFPG setup [15] with an adjusted logic
could be used to implement the BLSH strategy. Another
way to implement the LA VEH could be through an
adaptive bistable system with time-dependent values of
a and x; used to hold and release the mass at proper times.
To do so and mimic the LA mechanism, the adaptive
bistable system should create a huge potential barrier when
the harvester mass reaches the displacement limits (stable
wells) and then kill the barrier when the harvester mass is
supposed to traverse between the displacement limits based
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FIG. 6. Normalized average harvested power contours. The normalized average power of the three harvesters for a wide range of
harmonic base-excitation amplitude and frequency is plotted for a fixed displacement limit of 2.5 units. The average power is normalized
by the maximum average power that could be harvested by an ideal harvester with no mechanical damping.
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FIG. 7. Energy harvesting while walking. (a) Time history and
(b) velocity spectrum of experimental acceleration recorded at
the hip while walking [34]. (c) Displacement time history of the
nonlinear LA VEH when base excited by walking motion.
Displacement and time (frequency) are scaled by 13 ym and
500 rad/s, respectively. The same damping ratios and displace-
ment limitof 1.5 units are used. (d) Time history of nondimensional
harvested energy for the three systems. In addition to the optimal
bistable harvester (x, = 0.9 and a = 2), the performance of two
bistable harvesters with detuned parameter a is also illustrated.

on the BLSH logic. It is worth mentioning that this is a
completely passive process.

V. CONCLUSION

In conclusion, we have generalized and extended the
current analysis framework and model hierarchy for the
derivation of fundamental limits of the nonlinear energy-
harvesting rate. The framework allows an easy incorpo-
ration of almost any constraints and arbitrary forcing
statistics and represents the maximal harvesting rate as a
solution of either a set of DAEs or a standard nonlinear
optimization problem. Closed-form expressions were
derived for two cases of harvesters constrained by

mechanical damping (damping-dominated motion) and
maximal displacement limits. The results for damping-
dominated motion were already reported in Ref. [18] but
were derived here for the sake of completeness and also to
add a few more comments on it. For the more practical and
interesting constraint, i.e., the displacement constraint, we
showed that a universal buy-low-sell-high logic guarantees
a maximum harvested energy when there is no or very
small mechanical damping. To illustrate the value of the
limits and this logic, we have proposed a simple concept for
nonlinear energy harvesting that mimics the performance of
the optimal system using a passive and nonresonant latch
mechanism. The proposed mechanism outperforms both
linear and bistable harvesters in a wide range of parameters
including the most interesting regime of low-frequency
large-amplitude excitation where the current harvesters fail
to achieve high performance. It was also shown that the
conventional bistable harvester tries to mimic the BLSH
logic at low frequencies, which provides a conceptual
insight into why and how the bistable harvester performs
well at low excitation frequencies.
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