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Abstract

We introduce a large-volume box classification for binary prediction, which main-
tains a subset of weight vectors, and specifically axis-aligned boxes. Our learning
algorithm seeks for a box of large volume that contains “simple” weight vectors
which most of are accurate on the training set. Two versions of the learning pro-
cess are cast as convex optimization problems, and it is shown how to solve them
efficiently. The formulation yields a natural PAC-Bayesian performance bound
and it is shown to minimize a quantity directly aligned with it. The algorithm out-
performs SVM and the recently proposed AROW algorithm on a majority of 30
NLP datasets and binarized USPS optical character recognition datasets.

1 Introduction

Linear models are widely used for a variety of tasks including classification and regression. Support
vectors machines [3, 22] (SVMs) are considered a primary method to efficiently build linear clas-
sifiers from data, yielding state-of-the-art performance. SVMs and many other methods are often
easy to implement and efficient, yet return only a single weight-vector with no additional informa-
tion about alternative models nor about confidence in prediction.

An alternative approach is taken by Bayesian methods [21, 13]. The primary object is a (posterior)
distribution over models that is updated using Bayes rule. Unfortunately, the posterior is very com-
plicated even for simple models, such as Bayesian logistic regression [15], and it is not known how
to perform the update analytically, and approximations are required.

In this work we integrate the advantages of both approaches. We propose to model uncertainty
over weight-vectors by maintaining a (simple) set of possible weight-vectors, rather than a single
weight-vector. Learning is motivated from principles of discriminative learning rather than Bayes’
rule, and it is optimizing a combination of an hand-crafted regularization term and the empirical
loss. Specifically, our algorithm maintains an axis-aligned box, which only requires double number
of parameters than maintaing a single weight-vector, a dominating model for many tasks.

We use a similar conceptual reasoning as used in Bayes point machines (BPM) [13]. Both ap-
proaches maintain a set of possible weights, which can be thought of as a posterior. BPMs use the
version space, the set of all consistent weight vectors, which is a convex polyhedron. Since the size
of the polyhedron’s representation grows with the number of training examples, BPMs approximate
the polyhedron with a single weight-vector, the Bayes point. Our algorithms model the set as a box,
with a representation that is fixed in the size of the input, and find an optimal prediction box.

We cast learning as a convex optimization problem and propose methods to solve it efficiently. We
further provide generalization bounds using PAC-Bayesian theory, and show that our algorithm is
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minimizing a quantity directly related to the generalization bound. We give two formulations or
versions of the algorithm, one that is closely related to the bound, while the other is smooth.

We experiment with 30 binary text categorization datasets from various tasks: sentiment classifica-
tion, predicting domain of product-review, assigning topics to news items, tagging spam emails, and
classifying posts to news-groups. The results indicate that our algorithms outperform SVM and the
recently proposed AROW [4] algorithm, which was shown to be the state-of-the-art in numerous
NLP tasks. Additional support for the superiority and robustness of our algorithms, especially in
high-noise setting, is provided using experiments with 45 pairs of binarized USPS OCR problems.

Notation: Given a vector x ∈ Rd, we denote its kth element by xk ∈ R, and by |x| ∈ Rd the
vector with component-wise absolute value of its elements, |x| = (|x1|, . . . , |xd|).

2 Large-Volume Box Classifiers
Standard linear classification learning algorithms maintain and return a single weight vector w? ∈
Rd used to predict the label of any test point. We study a generalization of these algorithms where
hypotheses are uncertainty (sub)sets of weight vectors w. Such a hypothesis can be seen as a ran-
domized linear classifier or a voting process. To classify an instance x, a parameter vector w is
drawn according to the hypothesis and predicts the label sign(w · x). Herbrich et.al. [13, 12], ar-
gued in a similar context that such a randomization yields a more robust solution. PAC-Bayesian
analysis and its generalization bounds give additional justification to this approach (see Sec 5).

The uncertainty subsets we study are axis aligned boxes parametrized with two vectors u,v ∈
Rd where we assume, uk ≤ vk for all k = 1 . . . d. In words, u is the vertex with the lowest
coordinates, and v is the vertex with the largest coordinates. The projection of the box onto the
k-axis yields the interval [uk,vk]. The set of weight vectors contained in the box is denoted by,
Q = {w : uk ≤ wk ≤ vk for k = 1 . . . d} . Given an instance x to be classified, a Gibbs classifier
samples a weight vector uniformly in random from the box w ∈ Q and returns sign(w · x). A
deterministic alternative we use in practice is to employ the center of mass defined byµ = 1

2 (u+ v)
and return sign(µ · x). For linear classifiers, the majority prediction with Gibbs sampling coincides
with predicting using the center of mass. We also define the uncertainty intervals σ = 1

2 (v − u).
Intuitively, the uncertainty in the weight associated with the kth feature is σk. Clearly, v = µ + σ
and u = µ− σ.

3 Learning as Optimization
Given a labeled sample S = {(xi, yi)}ni=1, a common practice in learning linear models w is to
perform structural risk minimization (SRM) [25] that picks a weight-vector that is both “simple” (eg
small norm) and performs well on the training set. Learning is cast as an optimization problem,

w? = arg min
w

1

n

∑
i

`(w, (xi, yi)) +DR(w) . (1)

The first term is the empirical loss evaluated on the training set with some loss function `(w, (x, y)),
and the second term is a regularization that penalizes weight-vectors according to their complexity.
The parameter D > 0 is a tradeoff parameter.

Learning with uncertainty sets invites us to balance three desires rather than two as when learning
a single weight-vector. The first two desires are generalizations of the structural risk minimiza-
tion principle [25] to boxes: we prefer boxes containing weight-vectors that attain both low loss
`(w, (xi, yi)) and are “simple” (eg small norm). This alone though is not enough, as if the loss and
regularization functions are strictly convex then the optimal box would in fact be a single weight-
vector. The third desire is thus to prefer boxes with large volume. Intuitively, if during training
an algorithm finds a box with large volume, such that all weight-vectors belonging to it attain low
training error and are simple, we expect the classifier based on the center of mass to be robust to
noise or fluctuations. This will be formally stated in the analysis described in Sec 5. We formalize
this requirement by adding a term that is inversely proportional to the volume of the box Q.

We take a worst-case approach, and define the loss of the box Q given an example (x, y) denoted
by `(Q, (x, y)) to be the loss of the worst member w ∈ Q. Similarly, we define the complexity
of the box Q to be the complexity of the most complex member of the box w ∈ Q, formally,
`(Q, (x, y)) = supw∈Q `(w, (x, y)) andR(Q) = supw∈QR(w).
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Putting it all together, we replace (1) with,

Q? = arg min
Q∈Q

sup
w∈Q

(
1

m

∑
i

`(w, (xi, yi)) +DR(w)

)
, (2)

where Q is a set of boxes with some minimal volume. In other words, the algorithm is seeking for
a set of alternative weight-vectors all of which are performing well on the training data. We expect
this formulation to be robust, as a box is evaluated with its worst performing member.

We modify the problem by removing the constraintQ ∈ Q and adding an equivalent penalty term to
the objective, namely the log-volume of the box. We use the log-volume function for three reasons.
First, it is a common barrier function in optimization [26], and in our case it keeps the box from
actually shrinking to a zero volume box. Second, this choice is supported by the analysis below,
and third, it is additive in the dimension of the data d, like all other quantities of the objective.
Additionally, we bound the supremum over w with a sum of supremum operators. To conclude, we
cast the learning problem as the following optimization problem over boxes,

arg min
Q

1

m

∑
i

sup
w∈Q

`(w, (xi, yi))− C log volQ+D sup
w∈Q

R(w) , (3)

where C,D > 0 are two trade-off parameters used to balance the three goals. (In the analysis
below it will be shown that D can be also interpreted as a Langrange multiplier of a constrained
optimization problem.) We further develop the last equation by making additional assumptions over
the loss function and the regularization. We assume that the loss is a monotonically decreasing
function of the product y(x>w), often called the margin (or the signed margin). This is a property
of many popular loss functions for binary classification, including the hinge-loss and its square used
by SVMs [3, 22], exp-loss used by boosting [9], logistic-regression [11] and the Huber-loss [14].
Under this assumption we compute analytically the first term of the objective (3).

Lemma 1 If the loss function is monotonically decreasing in the margin, `(w, (x, y)) =
`(y
(
x>w

)
) then supw∈Q `(w, (xi, yi)) = `(y(x>µ)− |x|σ).

Proof: From the monotonicity of `(·) we have supw∈Q `
(
y(x>w)

)
= `

(
infw∈Q y(x>w)

)
.

Computing the infimum we get,

inf
w∈Q

y(x>w) = inf
wk∈[uk,vk] for k=1...d

d∑
k=1

(yxk)wk =

d∑
k=1

inf
wk∈[uk,vk]

(yxk)wk

=

d∑
k=1

(yxk)

{
uk (yxk) ≥ 0
vk (yxk) < 0

=

d∑
k=1

(yxk) (µk − sign(yxk)σk) = y(x>µ)− |x|σ ,

using u = µ− σ and v = u+ σ as stated above.

The lemma highlights the need to constrain the volume to be strictly larger than zero: due to mono-
tonicity and the fact that σ ≥ 0 (component wise) we have `(y(x>µ) − |x|σ) ≥ `(y(x>µ)), so
the loss is always minimized when we set σ = 0. We next turn to analyse the third term of (3) with
the following lemma.

Lemma 2 (1) Assuming R(w) is convex, then supw∈QR(w) is attained on vertices of the box Q.
(2) Additionally, ifR(w) is strictly convex then the supremum is attained only on vertices.

Proof: We use the fact that every point in the box can be represented as a convex combination
of the vertices. Formally, given a point in the box w ∈ Q, there exists a vector α ∈ R2d with
non-negative elements and

∑
tαt = 1 such that w =

∑
tαtzt where zt are the vertices of the

box. Convexity of R(·) yields, R(w) ≤
∑
tαtR(zt) ≤ maxt {R(zt)} . Thus, if w attains the

supremum supw∈QR(w) then so does at least one vertex. Additionally, ifR(w) is a strictly convex
function, then the first inequality in the last equation is a strict inequality, and thus a non-vertex
cannot attain the supremum.

Common regularization functions are defined as sums over individual features, that is R(w) =∑
k r(wk). In this case the supremum is attained on each coordinate independently as follows.
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Corollary 3 AssumingR(w) is a sum of scalar-convex functions
∑
k r(wk), we have,

sup
w∈Q

R(w) =
∑
k

max {r(uk), r(vk)} =
∑
k

max {r(µk − σk), r(µk + σk)} .

The corollary follows from the lemma since a supremum of a scalar-function over a box is equivalent
to taking the supremum over the box projected to a single coordinate. Finally, the volume of a box
is given by a product of the length of its axes, that is, vol (Q) =

∏
k (vk − uk) =

∏
k (2σk) =

2d
∏
k σk .

To summarize, the learning problem of the large-volume box algorithm is cast by solving the fol-
lowing minimization problem, in terms of the center µ and the size (or dimensions) σ,

min
σ≥0,µ

1

m

m∑
i=1

`
(
yi(x

>
i µ)− |xi|σ

)
−C

∑
k

logσk +D
∑
k

max {r(µk − σk), r(µk + σk)} , (4)

where `(·) is a monotonically decreasing function, r(·) is a convex function, and C,D > 0 are two
trade-off parameters used to balance our three desires. We denote by

zi,+ = yixi + |xi| ∈ Rd , zi,− = yixi − |xi| ∈ Rd . (5)

The kth element of zi,+ (zi,−) is twice the kth element of |xi| if the sign of the kth element of xi
agrees (disagrees) with yi, and zero otherwise.

This problem can equivalently be written in terms of the two “extreme” vertices u and v as follows,

min
v≥u

1

m

m∑
i=1

`

(
1

2

(
v>(zi,−) + u>(zi,+)

))
− C

∑
k

log (vk − uk)+D
∑
k

max {r(vk), r(uk)} , (6)

by using the relation yix>i (v+u)−|xi|(v−u)=v>(zi,−)+u>(zi,+) . Note, if the loss function `(·)
is convex, then both formulations (4) and (6) of the learning problem are convex in their arguments,
as each is a sum of convex functions of linear combination of the arguments, and a maximum of
convex functions is convex.

We conclude this section with an additional alternative formulation, which for convenience, we
present in the notation of (6). Although the above problem is convex, the regularization term∑
k max {r(vk), r(uk)} is not smooth because of the max operator. In this alternative, we replace

it with a smooth term, by changing the max to a sum, yielding
∑
k r(vk) + r(uk) = R(u) +R(v).

The problem then becomes,

min
v≥u

1

m

m∑
i=1

`

(
1

2

(
v>(zi,−) + u>(zi,+)

))
− C

∑
k

log (vk − uk) +D (R(u) +R(v)) . (7)

The two alternatives are related via the following chain of inequalities, 0.5 max {r(vk), r(uk)} ≤
0.5 (r(vk) + r(uk)) ≤ max {r(vk), r(uk)} ≤ r(vk) + r(uk) . In other words, given either one
of the problems (6) or (7), we can lower and upper bound it with the other problem with a proper
choice of trade-off parameter D. We call the two versions BoW for box-of-weights algorithm, and
refer to them as BoW-M(ax) and BoW-S(um), respectively.

4 Optimization Algorithm

We now present an algorithm to solve (6) for the special case r(x) = x2. The algorithm is a based
on COMID [8] and its convergence analysis follows directly from the analysis of COMID, which
is omitted due to lack of space. The algorithm works in iterations. On each iteration a (stochastic)
gradient decent step is performed, followed by a regularization-optimization step. Formally, the
algorithm picks a random example i and updates,

(ũ, ṽ)← (u,v)− αη
2

(
zi,+ , zi,−

)
for α = `′

(
1

2

(
v>(zi,−) + u>(zi,+)

))
.
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The algorithm then solves the following regularization-oriented optimization problem,

min
u,v

1

2
‖u− ũ‖2 +

1

2
‖v − ṽ‖2 − C

∑
k

log (vk − uk) +D
∑
k

max
{
v2k,u

2
k

}
.

The objective of the last problem decomposes over individual pairs uk,vk so we reduce the opti-
mization to d independent problems, each defined over 2 scalars u and v (omitting index k),

min
u,v

F (u, v) =
1

2
(u− ũ)

2
+

1

2
(v − ṽ)

2 − C log (v − u) +Dmax
{
v2, u2

}
. (8)

We denote the half-plane H = {(u, v) ∈ R2 : v > u} and partition it into three subsets: G1 =
{(u, v) ∈ H : v > −u}, G2 = {(u, v) ∈ H : v < −u}, and the line L = {(u, v) ∈ R2 : v = −u}.
The following lemma describes the optimal solution of (8).

Lemma 4 Exactly one of the items below holds and describe the optimal solution of (8).

1. If there exists (u, v) ∈ G1 such that v is a root of f(v) = αv2 + βv + γ and u =
ũ − 2Dv + (ṽ − v) where α = 2(1 + D)(1 + 2D), β = −ũ(1 + 2D) − ṽ(3 + 4D), and
γ = ṽ + ũṽ − C, then it is a global minimum of F .

2. If there exists (u, v) ∈ G2 such that u is a root of f(u) = αu2 + βu + γ and v =
ṽ − 2Du + (ũ − u) where α = 2(1 + D)(1 + 2D), β = −ṽ(1 + 2D) − ũ(3 + 4D) and
γ = ũ + ṽũ − C, then it is a global minimum of F . Furthermore, such point and a point
described in 1 cannot exist simultaneously.

3. If no points as described in 1 nor 2 exist, then the global minimum of F is (u,−u) such
that u is a root of f(u) = αu2 + βu+ C where α = 2 + 2D, β = ṽ − ũ, γ = −C.

Proof sketch: By definition, the function F is smooth and convex on G1. The condition in 1 is
equivalent to satisfying ∇F (u, v) = 0, and therefore any point that satisfies it, is a minimum of
F
∣∣
G1

. A similar argument applies to G2 with 2. The convexity of F on the entire set H yields
that any such point is also a global minimum of F , and that if no such point exists then F attains
a global minimum on L (which is derived in 3). The latter is sure to exist since limv→0 F |L =
limv→∞ F |L =∞. The algebraic derivation is omitted due to lack of space.

Similarly, we develop the update for solving (7). Here after the gradient step we need to solve the
following problem per coordinate k, minu,v F (u, v) = 1

2 (u− ũ)
2

+ 1
2 (v − ṽ)

2−C log (v − u) +

D
(
v2 + u2

)
. The following lemma characterizes the optimal solution.

Lemma 5 The optimal solution (u, v) ∈ {(u, v) ∈ R2 : v − u > 0} of the last problem is such
that u is a root of the polynomial f(u) = αu2 + βu + γ where α = 2 + 2D + 6D + 8D2,β =
−(ṽ+2Dṽ+ ũ+6Dũ)−2ũ,γ = ũ2 + ũṽ−4C−2CD and v = (ṽ + ũ− u(1 + 2D)) /(1 + 2D).

Its proof is similar to the proof of Lemma 4, but simpler and omitted due to lack of space.

5 Analysis

PAC-Bayesian bounds were introduced by McAllester [19], were further refined later (e.g. [17, 23]),
and applied to analyze SVMs [18]. They often have been shown to be quite tight.

We first introduce some notation needed for the discussion of these bounds. Let ¯̀(w, (x, y)) denote
the zero-one loss, that is ¯̀(w, (x, y)) = 1 if sign(w ·x) 6= y and ¯̀(w, (x, y)) = 0 otherwise. LetD
be a distribution over the labeled examples (x, y), and denote by ¯̀(w,D) the expected zero-one loss
of a linear classifier characterized by its weight vectorw: ¯̀(w,D) = Pr(x,y)∼D[sign(w ·x) 6= y] =

E(x,y)∼D[¯̀(w, (x, y))] . We abuse notation, and denote by ¯̀(w, S) the expected loss ¯̀(w,DS) for
the empirical distribution DS of a sample S.

PAC-Bayesian analysis states generalization bounds in terms of two distributions - prior and pos-
terior - over all hypotheses (i.e. over weight-vectors w). Below, we identify a compact set with a
uniform distribution over the set, and in particular we identify a box Q with a uniform distribution
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over all weight vectors it contains (and zero mass otherwise). Similarly, we identify any compact
body P with a uniform distribution over its elements. In other words, we refer to the prior P and
the posterior Q both as two uniform distributions and as their support (which are subsets). We
also denote by `(Q,D) the expectation of `(w,D) over weight vectors w drawn according to the
distribution Q. We quote Cor. 2.2 of Germain et.al. [10],

Corollary 6 ([10]) : For any distribution D, for any set H of weight-vectors, for any distribution
P of support H, for any δ ∈ (0, 1], and any positive number γ the following statement holds with
probability ≥ 1− δ over samples S of size n,

¯̀(Q,D) ≤ 1

1− e−γ

{
1− exp

[
−

(
γ · ¯̀(Q, S) +

1

n
DKL (Q‖P) +

1

n
ln

(
1

δ

))]}
. (9)

The corollary states that the expected number of mistakes over examples drawn according to some
fixed and unknown distribution D over inputs, and over weight-vectors drawn from the box Q uni-
formly, is bounded by the right term, which is a monotonic function of the following sum,

¯̀(Q, S) +
1

nγ
DKL (Q‖P) . (10)

For uniform distributions we have the following,

DKL (Q‖P) =

{
log vol(P)

vol(Q) Q ⊆ P
∞ otherwise

. (11)

Additionally, we bound the empirical training error,

¯̀(Q, S) =
1

n

n∑
i

1

volQ

∫
w∈Q

¯̀(w, (xi, yi)) dw ≤
1

n

∑
i

`

(
inf
w∈Q

yi(x
>
i w)

)
, (12)

where the equality is the definition of ¯̀(Q, S), and the inequality follows by choosing a loss function
`(·) which upper bounds the zero-one loss (e.g. Hinge loss), by bounding an expectation with the
supremum value, and from Lemma 1.

We get that to minimize the generalization bound of (9) we can minimize a bound on (10) which is
obtained by substituting (11) and (12) in (10). Omitting constants we get,

min
Q

1

n

∑
i

`

(
inf
w∈Q

yiw
>xi

)
− 1

nγ
log volQ s.t. Q ⊆ P . (13)

Next, we set P to be a ball of radius R about the origin, and, as in Sec 2, we set Q as a box
parametrized with the vectors u and v. We use the following lemma, of which proof is omitted due
to lack of space,

Lemma 7 If P is a ball of radius R about the origin and Q is a box parametrized using u and v,
we have Q ⊆ P ⇔

∑
k max{v2k,u2

k} ≤ R2 .

Finally, plugging Lemma 7 and Lemma 1 in (13) we get the following prob-
lem, which is monotonically related to a bound of the generalization loss,
minv≥u

1
n

∑m
i=1 `

(
1
2

(
v> (zi,−) + u> (zi,+)

))
− 1

nγ

∑
k log (vk − uk) subject to∑

k max {r(vk), r(uk)} ≤ R2 . To solve the last problem we write its Lagrangian,

max
η

min
v≥u

1

n

m∑
i=1

`

(
1

2

(
v>(zi,−) + u>(zi,+)

))
− 1

nγ

∑
k

log (vk − uk)

+ η
∑
k

max {r(vk), r(uk)} − ηR2 , (14)

where η is the Lagrange multiplier ensuring the constraint. Comparing (14), whose objective is used
in the PAC-Bayesian bound, and our learning algorithm in (6), we observe that the three terms in
both objectives are the same by setting C = 1

nγ and identifying the optimal value of the Lagrange
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Figure 1: Fraction of error on text classification datasets of BoW-M and BoW-S vs SVM (two left plots); and
BoW-M and BoW-S vs AROW (two right plots). Markers above the line indicate superior BoW performance.

multipler with the trade-off constant η = D. In fact, each value of the radius R yields a unique
optimal value of the Lagrange multiplier η. Thus, we can interpret the role of the constant D as
setting implicitly the effective radius of the prior ball P .

Few comments are in order. First, the KL-divergence between distributions is minimized more
effectively if both P and Q are of the same form, e.g. both P and Q are boxes. However, we chose
Q to be a box, as it has a nice interpretation of uncertainty over features, and P to be a ball, as
it decomposes (as opposed to an `∞ ball), which allows simpler optimization algorithms. Second,
as noted above, BoW-S is indeed smoother than BoW-M, yet, from (14) it follows that the latter is
better motivated from the PAC-Bayesian bound, as we want Q ⊆ P . Third, the bound is small if
the volume of the box Q is large, which motivates seeking for large-volume boxes, whose members
perform well.

6 Empirical Evaluation

We evaluated BoW-M and BoW-S on NLP tasks experimenting with all the 12 datasets used by
Dredze et al [6] (sentiment classification in 6 Amazon domains, 3 pairs of 20 newsgroups and 3
pairs of Reuters (RCV1)). We defined an additional task from the 6 Amazon domains (book, dvd,
music, video, electronics, kitchen). Given reviews from two domains, the goal is to identify the do-
main identity. We used all 6×5/2=15 unordered pairs of domains. Additionally, we selected 3 users
from task A of the 2006 ECML/PKDD Discovery Challenge spam data set. The goal is to classify
an email as either a spam or a not-spam. This yielded a total of 30 datasets. For each problem we
selected about 2, 000 instances and represented them with vectors of uni/bi-grams counts. Feature
extraction followed a previous protocol [6, 2]. Each dataset was randomly divided for 10-fold cross
validation. We also experimented with USPS OCR data which we binarized into 45 all-pairs prob-
lems, maintaing the standard split into training and test sets. Given an image of one of two digits,
the goal is to detect which of the two digits is shown in the image.

We implemented BoW-M and BoW-S both with Hinge loss and Huber loss. The performance of the
latter was slightly worse than the former, thus we report results only for the Hinge loss. We also tried
AdaGrad [7] but surprisingly it did not work as well as COMID. We compared BoW with support
vector machines (SVM) [3] and AROW [4] which was shown to outperform many algorithms on
NLP tasks. (Other algorithms we evaluated, including maximum-entropy and SGD with Huber-
loss, performed worse than either of these two algorithms and thus are omitted.) It is not clear at
this point how to incorporate Mercer kernels into BoW, and thus we are restricted to evaluate all
algorithms on data that can be classified well with linear models.

Classifiers parameters (C for SVM, r for AROW and C,D for BoW) were tuned for each task on
a single additional randomized run over the data splitting it into 80%, used for training, and the
remaining 20% of examples were used to choose the parameters. Results are reported for NLP tasks
as the average error over the 10 folds per problem , while for USPS the standard test sets are used.

The mean error for 30 NLP tasks over 10 folds of BoW-M and BoW-S vs SVM is summarized in the
two left panels of Fig. 1. Markers above the line indicate superior BoW performance. Clearly, both
BoW versions outperform SVM obtaining lower test error on most (26) datasets and higher only on
few (at most 3). The right two panels compare the performance of both BoW versions with AROW.
Here the trend remains yet with a smaller gap, BoW-M outperforms AROW in 20 datasets, and is
outperformed in 9, while BoW-S outperforms AROW in 19 datasets and outperformed in 12. Note,
AROW was previously shown [4] to have superior performance on text data over other algorithms.
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Figure 2: No. of USPS 1-vs-1 datasets (out of 45) for which one algorithm is better than the other (see legend)
shown for four levels of label noise during training: 0%, 10%, 20% and 30% (left to right). Higher values
indicate better performance.

The results of the experiments with USPS are summarized in Fig. 2. Each panel shows the number of
datasets (out of 45) for which one algorithm outperforms another algorithm, for four levels of label
noise (i.e. probability of flipping the correct label) during training: 0%, 10%, 20% and 30%.The
four pairs compared are BoW vs SVM (two left panels, BoW-M most left) and BoW vs AROW
(two right panels, BoW-S most right). A left bar higher than a middle bar (in each group in each
panel) indicates superior BoW performance. With no label noise (left group in each panel) SVM
outperforms both BoW algorithms (e.g. SVM attains lower test error than BoW-S on 20 datasets
and higher on 12 datasets, with a tie in 13 datasets). The average test error of SVM is 1.81, AROW
is 1.98 and BoW-S is 1.97. When the level of noise increases both BoW algorithms outperform
AROW and SVM. With maximal level of 30% label noise, the average test error is 16.1% for SVM,
14.8 for AROW, and 6.1% for BoW-S. BoW-M achieves lower test error on 27 datasets (compared
both with SVM and AROW), while BoW-S achieves lower test error than SVM on 38 datasets and
than AROW on 40 datasets. Interestingly, while, in general, BoW-M achieved lower test error than
BoW-S on the NLP problems, the situation is reversed in the USPS data where BoW-S achieves in
general lower test error.

7 Related Work
There is much previous work on a related topic of incorporating additional constraints, using prior
knowledge of the problem. Shivaswamy and Jebara [24] use a geometric motivation to modify
SVMs. Their effort and other related works, first deduce some additional knowledge about the
problem [16, 20, 1], and keep it fixed while learning. In contrast, our method learns together the
classifier and some additional information.

Another line of research is about algorithms that are maintaining a Gaussian distribution over
weights, as opposed to uniform distribution as in our case, either AROW [4] in the online setting
and its predecessors, or Gaussian Margin Machines (GMMs) [5] in the batch setting. Our motiva-
tion is similar to the motivation behind GMMs, yet it is different in few important aspects. (1) BoW
maintains only 2d parameters, while GMM employs d+d(d+ 1)/2 as it maintains a full covariance
matrix. (2) As a consequence, GMMs are not feasible to run on data with more than hundreds of
features, which is further supported by the fact that GMMs were evaluated only on data of dimen-
sion 64 [5]. (3) We use directly a specialized PAC-Bayes bound for convex loss functions [10] while
the analysis of GMMs uses a bound designed for the 0 − 1 loss which is then further bounded. (4)
The optimization problem of both versions of BoW is convex, while the optimization problem of
GMMs is not convex, and it is only approximated with a convex problem. (5) Therefore, we can and
do employ COMID [8] which is theoretically justified and fast in practice, while GMMs are trained
using another technique with no convergence (to local minima) guarantees. (6) Conceptually, BoW
maintains a compact set (box) while the set of possible weights for GMM is not compact. This
allows us to extend our work to other types of sets (in progress), while its not clear how to extend
the GMMs approach from Gaussian distributions to other objects.

8 Conclusion
We extend the commonly used linear classifiers to subsets of the class of possible classifiers, or
in other words uniform distributions over weight vectors. Our learning algorithm is based on a
worst-case margin minimization principle, and it benefits from strong theoretical guarantees based
on tight PAC-Bayesian bounds. The empirical evaluation presented shows that our method performs
favourably with respect to SVMs and AROW, and is more robust in the presence of label noise. We
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plan to study the integration of kernels, extend our framework for various shapes and problems, and
develop specialized large scale algorithms.
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