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Abstract

Recently, Charikar and Siminelakis (2017) presented a framework for kernel density
estimation in provably sublinear query time, for kernels that possess a certain
hashing-based property. However, their data structure requires a significantly
increased super-linear storage space, as well as super-linear preprocessing time.
These limitations inhibit the practical applicability of their approach on large
datasets.
In this work, we present an improvement to their framework that retains the same
query time, while requiring only linear space and linear preprocessing time. We
instantiate our framework with the Laplacian and Exponential kernels, two popular
kernels which possess the aforementioned property. Our experiments on various
datasets verify that our approach attains accuracy and query time similar to Charikar
and Siminelakis (2017), with significantly improved space and preprocessing time.

1 Introduction

Kernel density estimation is a fundamental problem with many applications in statistics, machine
learning and scientific computing. For a kernel function k : Rd × Rd → [0, 1], and a set of points
X ⊂ Rd, the kernel density function of X at a point y ∈ Rd is defined as:2

KDEX(y) =
1

|X|
∑
x∈X

k(x, y).

Typically the density function is evaluated on a multiple queries y from an input set Y . Unfortunately,
a naïve exact algorithm for this problem runs in a rectangular O(|X||Y |) time, which makes it
inefficient for large datasets X and Y . Because of this, most of the practical algorithms for this
problem report approximate answers. Tree-based techniques [GS91, GM01, GB17] lead to highly
efficient approximate algorithms in low-dimensional spaces, but their running times are exponential
in d. In high-dimensional spaces, until recently, the best approximation/runtime tradeoff was provided
by simple uniform random sampling. Specifically, for parameters τ, ε ∈ (0, 1), it can be seen that
if X ′ is a random sample of O

(
1
τ

1
ε2

)
points from X , then KDEX′(y) = (1 ± ε) KDEX(y) with

constant probability3 as long as KDEX(y) ≥ τ .

This approximation/runtime tradeoff was recently improved in [CS17], who proposed a framework
based on Hashing-Based Estimators (HBE). The framework utilizes locality-sensitive hash (LSH)

∗Authors ordered alphabetically.
2We note that all algorithms discussed in this paper easily extend to the case where each term k(x, y) is

multiplied by a positive weight wx ≥ 0, see e.g., [CS17].
3The probability of correct estimation can be reduced to 1 − δ for any δ > 0 at the cost of increasing the

sample size by a factor of log(1/δ). Since the same observation applies to all algorithms considered in this
paper, we will ignore the dependence on δ from now on.
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Table 1: Comparison of runtime and space bounds. Notation: τ ∈ (0, 1) denotes a lower bound for
KDE values; d denotes the dimension; ε ∈ (0, 1) denotes the approximation error.4

Algorithm Query Time # Stored hashes

Random Sampling O(d/τ · 1/ε2) O(1/τ · 1/ε2)
HBE O(d/

√
τ · 1/ε2) O(1/τ3/2 · 1/ε4)

This paper O(d/
√
τ · 1/ε2) O(1/τ · 1/ε2)

functions [IM98], i.e., randomly selected functions h : Rd → U with the property that for any
x, y ∈ Rd, the collision probability Prh[h(x) = h(y)] is “roughly” related to the kernel value
k(x, y). HBE reduces the evaluation time to (about) O

(
1√
τ

1
ε2

)
. A recent empirical evaluation of

this algorithm [SRB+19] showed that it is competitive with other state of the art methods, while
providing significant (up to one order of magnitude) runtime reduction in many scenarios.

One drawback of HBE approach, however, is its space usage, which is super-linear in the dataset
size. Specifically, the algorithm constructs O

(
1√
τ

1
ε2

)
hash tables, and stores the hash of each data

point in each table. Consequently, the additional storage required for the hashes is proportional
to the number of tables times the number of data points. As mentioned above, we can uniformly
subsample the dataset down to O

(
1
τ

1
ε2

)
points, leading to an overall space usage of O

(
1

τ3/2
1
ε4

)
,

which is O
(

1√
τ

1
ε2

)
times that of the simple random sampling approach. The increase in storage

also effects the preprocessing time of the HBE data structure, which requires O
(

1
τ3/2

1
ε4

)
hashes

computations due to having to store every point in every table. As τ and ε can be very close to zero
in practice, these drawbacks may pose a substantial bottleneck in dealing with large datasets.

Our results. In this paper we show that the super-linear amount of storage is in fact not needed
to achieve the runtime bound guaranteed by the HBE algorithm. Specifically, we modify the HBE
algorithm in a subtle but crucial way, and show that this modification reduces the storage to (roughly)
O
(
1
τ

1
ε2

)
, i.e., the same as simple random sampling. Table 1 summarizes the performance of the

respective algorithms. Our main result is the following theorem.

Theorem 1. Let k(x, y) be a kernel function, for which there exists a distributionH of hash functions
and M ≥ 1 such that for every x, y ∈ Rd,

M−1 · k(x, y)1/2 ≤ Pr
h∼H

[h(x) = h(y)] ≤M · k(x, y)1/2. (1)

There exists a data structure for Kernel Density Estimation with the following properties:

• Given a dataset X ⊂ Rd and parameters τ, ε ∈ (0, 1), we preprocess it in O
(

1
τ ·

THM
3

ε2

)
time, where TH is the time to compute a hash value h(x).

• The space usage of the data structure isO
(

1
τ ·

(SX+SH)M3

ε2

)
, where SX is the space needed

to store a point x ∈ X , and SH is the space needed to store a hash value h(x).

• Given a query point y such that KDEX(y) ≥ τ , we can return with constant probability a

(1± ε)-approximation of KDEX(y) in O
(

1√
τ
· (Tk+TH)M3

ε2

)
time, where Tk is the time to

compute a kernel value k(x, y).

We empirically evaluate our approach on the Laplacian kernel k(x, y) = e−‖x−y‖1/σ and the expo-
nential kernel k(x, y) = e−‖x−y‖2/σ . Both are commonly used kernels, and fit into the framework as

4For simplicity, the bounds in the table assume that the kernel takes O(d) time to compute, and that a hash
value takes O(d) time to compute. The kernels we consider have these properties (for bandwidth σ = Ω(1)).
See Theorem 1 for the full parameter dependence.
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they satisfy the requirements of Theorem 1 with M = O(1), Tk = O(d), TH = O(min{d, d/σ})
and SH = O(min{d log(1/σ), d/σ}), with high probability (over h ∼ H). Our experiments confirm
the analytic bounds and show that our approach attains a similar query time to approximation tradeoff
as HBE, while using significantly less space and preprocessing time.

Our techniques. Our algorithm builds on the HBE approach of [CS17]. Recall that the algorithm
selects L = Θ

(√
1/τ · 1/ε2

)
LSH functions h1 . . . hL, and creates L hash tables, such that for

each i = 1 . . . L, each point x ∈ X is placed in the jth table in bin hj(x). To estimate KDEX(y),
the algorithm selects one point from each bin h1(y) . . . hL(y), and uses those points for estimation.
To achieve the performance as in Table 1, the algorithm is applied to a random sample of size
s = O(1/τ · 1/ε2). The total space is therefore bounded by O(sL) = O(1/τ3/2 · 1/ε4).

A natural approach to improving the space bound would be to run HBE on a smaller sample.
Unfortunately, it is easy to observe that any algorithm must use at least Ω(1/τ · 1/ε2) samples
to guarantee (1 ± ε)-approximation. Therefore, instead of sub-sampling the whole input to the
HBE algorithm, we sub-sample the content of each hash table independently for each hash function
hj , i = 1 . . . L. Specifically, for each hash function hj , we include a point x ∈ X in the jth hash table
with probability 1/(s

√
τ). This reduces the expected number of stored hashes to O(

√
τL). If we

start from a sample of size s = Θ(1/τ · 1/ε2), then
√
τL = O(s), yielding the desired space bound;

at the same time, each point is included in at least one hash table with constant probability, which
means that at least Ω(1/τ · 1/ε2) points will be included in the union of the hash tables with high
probability. Perhaps surprisingly, we show that this increases the variance of the overall estimator by
only a constant factor.

For an intuition of why subsampling by a factor
√
τ does not distort the kernel values by much,

consider a simple setting where ε is a constant, n = 1/τ , and there is only one data point x that is
very close to the query y (contributing ≈ 1) while all other points are far from y (contributing ≈ 0).
In this case, the original HBE algorithm would collect the point x from every bin h1(y) . . . hL(y),
where L =

√
1/τ . In contrast, if we subsample by a factor

√
τ , then x is expected to survive in one

table, and thus our algorithm is still likely to identify one such bin in expectation. Conditioned on
this event, the estimate of the algorithm is approximately correct. See more details in Section 3.

1.1 Related work

There is a vast amount of work on fast kernel density estimation in low dimensions, including the
seminal Fast Gauss Transform [GS91] and other tree-based methods [GM01, GB17]. However, as
mentioned above, they entail an exponential dependence on the input dimension. The tree-based
ASKIT algorithm [MXB15] avoids this dependence and is suitable for the high-dimensional regime.
However, it lacks rigorous guarantees on the approximation quality. The empirical evaluation
in [SRB+19] showed that HBE is consistently competitive with ASKIT, and in some settings
outperforms it by an order of magnitude.

Another important line of research has focused on sparsifying (reducing the size) of the input pointset
while preserving kernel density function values. This can be accomplished by constructing core-
sets [Phi13, ZJPL13, PT18] or related approaches [CWS12, SRB+19]. Although effective in low
dimensions, in high dimensions such approaches require Ω(1/ε2) samples (for an additive error
of ε > 0 [PT18]), which is the same as the simple random sampling approach.5 We note that the
sparsification approach can be combined with our improvement, as we can run our algorithm on a
core-set instead of the original data set, and retain the core-set size while speeding up the query time.

In addition to the aforementioned works of [CS17, SRB+19], LSH-based estimators have been
applied in [CXS18, LS18b, WCN18, LS18a] to a variety of machine learning tasks.

2 Preliminaries

Kernel Density Estimation. Consider a kernel map k : Rd × Rd → [0, 1]. The kernel density
estimation problem can be formally stated as follows.

5However, core-sets preserve all KDE values with high probability, while simple random sampling only
preserves the KDE of any individual query with high probability.
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Definition 2. Let X = {x1, . . . , xn} ⊂ Rd be an input dataset, and ε, τ ∈ (0, 1) input parameters.
Our goal is to construct a data structure such that for every query point y ∈ Rd that satisfies
KDEX(y) ≥ τ , we can return an estimate K̃DE(y) such that with constant probability,

(1− ε)KDEX(y) ≤ K̃DE(y) ≤ (1 + ε)KDEX(y).

An exact computation of KDEX(y) performs n kernel evaluations. By standard concentration
inequalities, the above approximation can be achieved by evaluating the kernel y with only O( 1

τ
1
ε2 )

points chosen uniformly at random from X , and returning the average. As a result, we can assume
without loss of generality (and up to scaling ε by a constant) that n = O( 1

τ
1
ε2 ).

LSHable kernels. Locality-Sensitive Hashing (LSH) is a widely used framework for hashing
metric datasets in a way that relates the collision probability of each pair of points to their geometric
similarity. Kernel maps for which such hashing families exist are called “LSHable” [CK15]. The
precise variant we will need is defined as follows.
Definition 3. The kernel k is called ( 1

2 ,M)-LSHable if there exists a family H of hash functions
h : Rd → {0, 1}∗, such that for every x, y ∈ Rd, Equation (1) holds.6

Laplacian and Exponential kernels. The Laplacian kernel is k(x, y) = e−‖x−y‖1/σ , where σ > 0
is the bandwidth parameter. The exponential kernel is defined similarly as k(x, y) = e−‖x−y‖2/σ

(the difference is in use of the `2-norm instead of the `1-norm). For our purposes the two are
essentially equivalent, as they give the same analytic and empirical results. We will mostly focus on
the Laplacian kernel, since as we will see, it is ( 1

2 , 1)-LSHable. As a corollary, a random rotation of
the dataset [DIIM04, CS17] can be used to show that the Exponential kernel is ( 1

2 , O(1))-LSHable.

3 The Data Structure

We begin by recalling the HBE-based KDE data structure of [CS17]. For simplicity consider the
case M = 1. During preprocessing, they sample L = O( 1√

τε2
) hash functions h1, . . . , hL from the

LSH family H , and store hj(xi) for every i = 1, . . . , n and j = 1, . . . , L. The preprocessing time
is O(TH · n√

τε2
), and the space usage (in addition to the dataset) is O(SH · n√

τε2
), where TH is the

time needed to evaluate the hash value of a point, and SH is the space needed to store it. Recalling
we have assumed that n = O( 1

τ
1
ε2 ), these become O(TH · 1

τ1.5ε4 ) and O(SH · 1
τ1.5ε4 ) respectively.

Given a query point y, let bj(y) := {xi : hj(xi) = hj(y)} be the set (“bin”) of data points whose
hj-hash is the same as that of y. The estimator picks a uniformly random data point x from bj(y)

and computes Zj = 1
n |bj(y)| ·

√
k(x, y). If bj(y) is empty, then Zj = 0. The final KDE estimate is

K̃DE(y) = 1
L

∑L
j=1 Zj . The query time is O((TH + Tk)/(

√
τε2)), where Tk is the time it takes to

evaluate k on a single pair.

Our data structure is similar, except that for every hj , we store the hash of every data point only with
probability δ = 1/(n

√
τ). Therefore, on average we only compute and store a constant number of

hashes of each data point, yielding expected preprocessing time of O(TH/(τ · ε2)) and space usage
of O(SH/(τ · ε2)). The exact algorithm is given in Algorithm 1. Theorem 1, whose proof appears in
the appendix, shows this still returns a sufficiently good estimate of KDEX(y).

Example. Let us give an illustration of the different approaches on the setting mentioned in the
introduction. Suppose ε = Θ(1) and n ≈ 1/τ . Consider a setting in which the query point is very
close to a unique data point and very far from the rest of the data points. Concretely, k(x1, y) ≈ 1,
while k(xi, y) ≈ 0 for every i > 1. The KDE value is KDEX(y) ≈ τ . Naïve random sampling
would have to sample Ω(1/τ) points in order to pick up x1 and return a correct estimate.

6The HBE framework of [CS17] accommodates (β,M)-LSHable kernels, that satisfy M−1 · k(x, y)β ≤
Prh∼H [h(x) = h(y)] ≤ M · k(x, y)β , where β can take any value in [ 1

2
, 1), and lower β is better. Since the

kernels we consider attain the optimal setting β = 1
2

, we fix this value throughout.
7This can be implemented in expected time O(L) by sampling L̃ ∼ Binomial(n, L

n
), and then sampling a

uniformly random subset of size L̃.
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Algorithm 1 : Space-Efficient HBE
Proprocessing:

Input: Dataset X ⊂ Rd of n points; kernel k(·, ·); LSH family H; integer 1 ≤ L ≤ n.
For j = 1, . . . , L:

Sample a random hash function hj from H .
Let Xj ⊂ X be a random subset that includes each point with independent probability L

n .7
For every x ∈ Xj , evaluate and store hj(x).

Query:

Input: Query point y ∈ Rd.
For j = 1, . . . , L:

Sample a uniformly random point x(j) from bj(y) = {x ∈ X ′j : hj(x) = hj(y)}.
Let Zj ← k(x(j),y)·|bj(y)|

L·Prh∼H [h(x(j))=h(y)]
.

Return 1
L

∑L
j=1 Zj .

In the HBE algorithm of [CS17], essentially in all hash tables x1 would be the unique data point in
the same bin as y, leading to a correct estimate 1

L

∑L
j=1

1
n |bj(y)|

√
k(x1, y) ≈ τ . However, note that

all terms in the sum are equal (to τ ), which seems to be somewhat wasteful. Indeed, it would suffice
to pick up x1 in just one hash table instead of all of them.

In our method, x1 would be stored in δL ≈ 1 hash tables in expectation, say only in h1, and
in that table it would be the unique data point in b1(y). In the other tables (j > 1) bj(y)
would be empty, which means the estimator evaluates to zero. The resulting KDE estimate is
1
L

(
1
nδ |bj(y)|

√
k(x1, y) +

∑L
j=2 0

)
≈ τ , which is still correct, while we have stored a hash of x1

just once instead of L times.

3.1 LSH for the Laplacian Kernel

The Laplacian kernel k(x, y) = e−‖x−y‖1/σ is a popular kernel, which fits naturally into the above
framework since it is ( 1

2 , 1)-LSHable. For simplicity, let us assume w.l.o.g. that in the dataset we
need to hash, all point coordinates are in [0, 1]. This does not limit the generality since the Laplacian
kernel is shift-invariant, and the coordinates can be scaled by inversely scaling σ.

The LSHablility of the Laplacian kernel follows from the Random Binning Features construction of
Rahimi and Recht [RR07] (see details in the appendix). The expected hash size is O(d log(1/σ)),
and the hash evaluation time is O(d). We also give a variant (described below) with better hash size
and evaluation time for σ ≥ 1. Together, the following lemma holds.

Lemma 4. There is an LSH family Hσ such that for every x, y ∈ Rd, Prh∼Hσ [h(x) = h(y)] =
e−‖x−y‖1/(2σ). The expected hash size is SHσ = O(min{d log(1/σ), d/σ}) bits. The expected
hashing time is THσ = O(min{d, d/σ}).

The hashing family for the case σ ≥ 1 is given as follows. Sample ρ ∼ Poisson(d/(2σ)). Then
sample ξ1, . . . , ξρ ∈ {1, . . . , d} independently and uniformly at random, and ζ1, . . . , ζρ ∈ [0, 1]
independently and uniformly at random. These random choices determine the hash function h. Next
we describe h. Given a point x to hash, for every i = 1, . . . , ρ set bi = 1 if xξi > ζξi and bi = 0
otherwise. The hash h(x) is the concatenation of b1, . . . , bρ. It is not hard to verify (see appendix)
that Prh[h(x) = h(y)] = e−‖x−y‖1/(2σ).

Using the LSH family from Lemma 4 in Theorem 1 yields the following concrete data structure.

Corollary 5 (Data structure for Laplacian KDE). For the Laplacian kernel, there is a data structure
for the KDE problem with expected space overhead O(min{d log(1/σ), d/σ}/(τε2)), expected
preprocessing time O(min{d, d/σ}/(τε2)), and query time O(d/(

√
τε2)).
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Table 2: Properties of the datasets used in our experiments.

Name Description Number of points Dimension

Covertype forest cover type 581, 012 55
Census U.S. census 2, 458, 285 68
GloVe word embeddings 1, 183, 514 100
MNIST hand-written digits 60, 000 784

4 Empirical Evaluation

We empirically evaluate our data structure for the Laplacian kernel.8 For brevity, we will refer to
the random sampling method as RS. The experimental results presented in this section are for the
the Laplacian kernel k(x, y) = e−‖x−y‖1/σ. The results for the Exponential kernel are qualitatively
similar are included in the appendix.

Choice of datasets. While the worst-case analysis shows that the HBE approach has asymptotically
better query time than RS, it is important to note that RS can still attain superior performance in
some practical settings. Indeed, the recent paper [SRB+19] found this to be the case on various
standard benchmark datasets, such as GloVe word embeddings [PSM14]. To reflect this in our
experiments, we choose two datasets on which [SRB+19] found HBE to be superior to RS as well
as to state-of-the-art methods, and two datasets on which RS was found to be superior. The former
two are Covertype [BD99] and Census9, and the latter two are GloVe [PSM14] and MNIST [LC98].
Their properties are summarized in Table 2.

Experimental setting. We implement and evaluate Algorithm 1. Note that it is parameterized by the
number of hash tables L, while its analysis in Theorem 1 is parameterized in terms of τ, ε, where we
recall that L = Θ(1/(

√
τε2)). For practical implementation, parameterizing by L is more natural

since it acts as a smooth handle on the resources to accuracy tradeoff – larger L yields better KDE
estimates at the expense of using more time and space. τ, ε need not be specified explicitly; instead,
for any τ, ε that satisfy L = Ω(1/(

√
τε2)), the guarantee of Theorem 1 holds (namely, for every

query whose true KDE is at least τ , the KDE estimate has up to ε relative error with high probability).

We compare our method to the HBE method of [CS17], as well as to RS as a baseline. The plots for
HBE and our method are generated by varying the number of hash functions L. The plots for RS
are generated by varying the sample size. Note that neither method has any additional parameters to
set. For each method and each parameter setting, we report the median result of 3 trials. For each
dataset we choose two bandwidth settings, one which yields median KDE values of order 10−2, and
the other of order 10−3.10 The bandwidth values and their precise method of choice are specified in
the appendix. The appendix also includes accuracy results for varying bandwidth values (Fig. 9).

Evaluation metrics. We evaluate the query time, space usage and preprocessing time. In all of the
plots, the y-axis measures the average relative error (which directly corresponds to ε) of the KDE
estimate, over 100 query points randomly chosen from the dataset. In the query time plots, the x-axis
counts the number of kernel evaluations per query, which dominates and serves as a proxy for the
running time. In the space usage plots, the x-axis counts the number of stored hashes. We use this
measure for the space usage rather than actual size in bits, since there are various efficient ways to
store each hash, and they apply equally to all algorithms. We also note that the plots do not account
for the space needed to store the sampled dataset itself, which is the same for all methods. RS is not
displayed on these plots since it has no additional space usage. In all three methods the preprocessing
time is proportional to the additional space usage, and is qualitatively captured by the same plots.

Results. The query time plots consistently show that the query time to approximation quality tradeoff
of our method is essentially the same as [CS17], on all datasets. At the same time, the space usage
plots show that we have achieve a significantly smaller space overhead, with the gap from [CS17]
substantially increasing as the target relative error becomes smaller. These findings affirm the direct
advantage of our method as specified in Table 1.

8Our code is available at https://github.com/talwagner/efficient_kde.
9Available at https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990).

10In all the considered settings, the average KDE value is within a factor of at most 2 from the median KDE.
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Figure 1: Covertype dataset, typical KDE values of order 10−2.

Figure 2: Covertype dataset, typical KDE values of order 10−3.

Figure 3: Census dataset, typical KDE values of order 10−2.

Figure 4: Census dataset, typical KDE values of order 10−3.
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Figure 5: MNIST dataset, typical KDE values of order 10−2.

Figure 6: MNIST dataset, typical KDE values of order 10−3.

Figure 7: GloVe dataset, typical KDE values of order 10−2.

Figure 8: GloVe dataset, typical KDE values of order 10−3.
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A Proof of Theorem 1

Theorem 1 is a strengthening of the main results of [CS17]. Let us first describe their analysis.

Fix a datasetX = {x1, . . . , xn} ⊂ Rd, a query point y ∈ Rd, and a kernel map k : Rd×Rd → [0, 1].
For every i = 1, . . . , n, let wi = k(xi, y).

Let H be a family of hash functions from Rd to an arbitrary range U . For every xi, denote its
collision probability with y by pi = Prh∼H [h(xi) = h(y)]. Let bh(y) = {i : h(xi) = h(y)} be the
set of points with the same hash as y. Suppose we have M ≥ 1 and β ∈ [ 12 , 1) such that for every i,
M−1 · wβi ≤ pi ≤M · w

β
i . (It is instructive to think of the case M = 1 and β = 1

2 .)

The KDE estimator of [CS17] is Z = wi·|bh(y)|
n·pi , where i is chosen uniformly at random from bh(y).

If bh(y) is empty, then Z = 0.

Theorem 6 ([CS17]). E[Z] = KDEX(y), and Var[Z] ≤M3 ·KDEX(y)2−β .

Since the dependence of Var[Z] on E[Z] is strictly better than quadratic, one can use this estimator
to estimate KDEX(y) with a smaller number of samples than naïve random sampling. In particular,
if τ > 0 is a lower bound KDEX(y), then in order to get a multiplicative (1± ε)-approximation, the
sufficient number of samples is Var[Z]/(εE[Z])2 = O(M3/(τβε2)). If the kernel admits an LSH
family with good parameters β and M , then this is better than random sampling, which would require
O(1/(τε2) samples. This is the driving force behind the HBE method of [CS17].

To obtain Theorem 1, we hash each point only with probability δ = 1/(nτ1−β), where τ ≤
KDEX(y). Formally, let r1, . . . , rn be i.i.d. Bernoulli random variables with Pr[ri] = δ. Let

b′h(y) = {i : h(xi) = h(y) and ri = 1}

be sparsified counterpart of bh(y). Our modified KDE estimator is Z ′ =
wi·|b′h(y)|
n·δ·pi , where i is chosen

uniformly at random from b′h(y). If b′h(y) is empty, then Z ′ = 0. We prove the following.

Theorem 7. E[Z ′] = KDEX(y), and Var[Z ′] ≤ (M3 +M) ·KDEX(y)2−β .

Proof. Our proof closely follows that of Theorem 6. Starting with the expectation,

E[Z ′] =
1

nδ
E

wi
pi/|b′h(y)|

=
1

nδ
E

r1,...,rn
h∼H

E
i∈b′h(y)

[
|b′h(y)|wi

pi

]
=

1

nδ
E

r1,...,rn
h∼H

∑
i∈b′h(y)

wi
pi

=
1

nδ

n∑
i=1

wi
pi

Pr
r1,...,rn
h∼H

[i ∈ b′h(y)]

=
1

nδ

n∑
i=1

wi
pi

Pr
r1,...,rn
h∼H

[i ∈ bh(y) & ri = 1]

=
1

n

∑
i=1

wi

= KDEX(y).
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Next we bound the variance:

Var[Z ′] ≤ E[(Z ′)2]

=
1

n2δ2
E
[

w2
i

p2i /|b′h(y)|2

]
=

1

n2δ2
E

r1,...,rn
h∼H

E
i∈b′h(y)

[
|b′h(y)|2w

2
i

p2i

]

=
1

n2δ2
E

r1,...,rn
h∼H

|b′h(y)|
∑

i∈b′h(y)

w2
i

p2i


=

1

n2δ2
E

r1,...,rn
h∼H

∑
j

[j ∈ b′h(y)]
∑
i

[i ∈ b′h(y)]
w2
i

p2i


=

1

n2δ2

∑
i

w2
i

p2i

∑
j

E
r1,...,rn
h∼H

[[j ∈ b′h(y)][i ∈ b′h(y)]]

=
1

n2δ2

∑
i

w2
i

p2i

∑
j

Pr
r1,...,rn
h∼H

[j ∈ b′h(y) & i ∈ b′h(y)].

We split the last term into two expressions:

1

n2δ2

∑
i

w2
i

p2i

∑
j:j 6=i

Pr
r1,...,rn
h∼H

[j ∈ b′h(y) & i ∈ b′h(y)], (2)

and
1

n2δ2

∑
i

w2
i

p2i
E

r1,...,rn
h∼H

[i ∈ b′h(y)]. (3)

To upper bound Eq. (2), we observe that, since j 6= i,

Pr
r1,...,rn
h∼H

[j ∈ b′h(y) & i ∈ b′h(y)] = δ2 Pr
h∼H

[j ∈ bh(y) & i ∈ bh(y)] ≤ δ2pj .

Therefore, Eq. (2) is upper bounded by 1
n2

∑
i
w2
i

p2i

∑
j pj . This expression is bounded in the proof

of Theorem 6 in [CS17], and we now reproduce the argument for completeness. We observe that

Pr[j ∈ bh(y) & i ∈ bh(y)] ≤ Pr[j ∈ bh(y)] = pj and, using the bounds wβi
M ≤ pi ≤ Mwβi ,

conclude that
1

n2

∑
i

w2
i

p2i

∑
j

pj ≤
M3

n2

∑
i

w2−2β
i

∑
j

wβj .

To prove Var[Z] ≤M3 KDEX(y)2−β , it is sufficient to show

1

n2

∑
i

w2−2β
i

∑
j

wβj ≤

(
1

n

∑
i

wi

)2−β

.

This follows from the inequalities 1
n

∑
i w

2−2β
i ≤

(
1
n

∑
i wi
)2−2β

and 1
n

∑
j w

β
j ≤

(
1
n

∑
i wi
)β

.
The first inequality holds for any β that satisfies 0 ≤ 2− 2β ≤ 1 and the second inequality holds for
any 0 ≤ β ≤ 1. That is, both inequalities hold if 1

2 ≤ β ≤ 1.

To upper bound Eq. (3) we observe that Er1,...,rn
h∼H

[i ∈ b′h(y)] = piδ and therefore Eq. (3) is upper

bounded by 1
n2δ

∑
i
w2
i

pi
≤ M

n2δ

∑
i w

2−β
i . Since

∑
i w

2−β
i ≤

∑
i wi = n · KDEX(y) and δ =

1/(nτ1−β) ≥ 1/(n ·KDEX(y)1−β), this is upper bounded by M ·KDEX(y)2−β , as needed.

To derive Theorem 1, set β = 1/2. By the above theorem, the estimator Z ′ is unbiased and satisfies
Var[Z ′] = 2M3/τ1.5. Therefore, in order to obtain a (1 ± ε)-approximation for KDEX(y), it is
sufficient to return the average over L = O(M3/(

√
τε2) independent samples of the estimator.
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Preprocessing time: To be able to draw samples from the estimator, we need to hash a subset of
the n pointset x1, . . . , xn. The expected size of the subset is δn = 1/

√
τ . The time needed to hash a

single point is TH . We need to repeat this L times (once for each sample of the estimator we would
draw int he query phase). The total preprocessing time complexity becomes

1/
√
τ · TH · L = O

(
1

τ
· THM

3

ε2

)
.

Space usage: In order to draw a single sample from the estimator, we store the hash of each point
xi for which ri = 1. We also need to fully store xi itself, since if we draw it from b′h(y) during the
query phase, we would need to evaluate k(xi, y) in order to compute Z ′. The expected numbers
of these points is δn = 1/

√
τ , so for a single sample we store in expectation (SX + SH)/

√
τ bits,

where SX is the storage size of a data point, and SH is the storage size of a hash value. Repeating
this L times, the total storage size is

SX + SH√
τ

· L = O

(
1

τ
· (SX + SH)

ε2

)
bits.

Query time: To draw a sample from the estimator, we need to hash the query point y. This
takes time TH . Furthermore, given the hash value, we need to sample a random element from the
corresponding bucket b′h(y) and evaluate the random variable Z ′. This takes time Tk. Thus, we spend
TH + Tk time to draw a single sample from the estimator. Since we do that L times, the total query
time is

L · (TH + Tk) = O

(
1√
τ
· (TH + Tk)M3

ε2

)
as promised.

B KDE Data Structure for the Gaussian Kernel

For the Gaussian kernel k(x, y) = e−‖x−y‖
2/σ2

, the best LSHability result we are aware of is based
on the ball-carving LSH of [AI06].
Theorem 8 ([AI06]; see also Theorem 11 in [CS17]). For any R > 0 there exists a distribution H
of hash functions such that for any x, y ∈ Rd with ‖x− y‖2 ≤ R the following bounds hold.

e−‖x−y‖
2
2 · e−O(R4/3 logR) ≤ Pr

h∼H
[h(x) = h(y)] ≤ e−‖x−y‖

2
2 · eO(R4/3 logR).

The time complexity of computing a hash value h(x) is d · eO(R4/3 logR). Finally, the probability
Prh∼H [h(x) = h(y)] is non-increasing in the distance ‖x− y‖2.

It can be used to give the following time and space efficient data structure for Gaussian KDE.
Theorem 9. Given n points y1, . . . , yn ∈ Rd and parameters 1 ≥ τ ≥ 1

n2 and 1 ≥ ε ≥ 1
n2 , we can

build a data structure in space 1
τ ·

no(1)

ε4 that efficiently answers KDE(x) queries for the Gaussian
kernel k(x, y) = e−‖x−y‖

2
2 . In particular, given a query point x ∈ Rd with KDE(x) ≥ τ , we can

approximate KDE(x) within the multiplicative factor of 1 + ε in time O(d) · log
3 n
ε2 + 1√

τ
· n

o(1)

ε4 .

Proof. The proof proceeds in two steps. First apply Theorem 1 to the above LSHability result. We
use Theorem 8 and set R = (log n)2/3. We get that the hashing scheme H satisfies

e−‖x−y‖
2
2 · n−o(1) ≤ Pr

h∼H
[h(x) = h(y)] ≤ e−‖x−y‖

2
2 · no(1)

for all x, y ∈ Rd with ‖x − y‖2 ≤ R = (log n)2/3. Furhermore, the hashing can be performed in
d · no(1) time.

We can get rid of the assumption that ‖x− yi‖2 ≤ R for all i = 1, . . . , n as follows. Observe that, if
‖x − yi‖2 > R, then Prh∼H [h(x) = h(yi)] ≤ e−R

2

no(1) ≤ e−(logn)
4/3

no(1) ≤ n−ω(1). We used
the fact that the probability Prh∼H [h(x) = h(yi)] is non-increasing in the distance ‖x− yi‖2. This
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implies that with probability 1− nω(1) we have that all i with h(x) = h(yi) satisfy ‖x− yi‖2 ≤ R.
Since all our samples yi satisfy h(x) = h(yi), we lose at most a neglibile factor in the probability of
success.

We can get a KDE algorithm by setting M = no(1), TH = dno(1), SX = SH = O(d log n) and
Tk = O(d).

In the second step, we improve the dependence on d by dimension reduction. In particular, we reduce
the space by projecting the points from the d dimensional space to O(log3 n)

ε2 dimensional space. The

extra term O(d) · log
3 n
ε2 in the time complexity comes from the time needed to perform the projection.

We randomly project the points yi and the point x to O(log n)/δ2 dimensional space for δ =
ε

2 ln(1/(ετ)) . This preserved all distances ‖x− yi‖ within the multiplicative factor of 1± δ. After the
projection, the contribution from a point yi to the KDE value becomes exp(−(1 ± δ)‖x − yi‖22).
Consider the case ‖x− yi‖22 ≥ 2 ln(1/(ετ)). The contribution of such a point yi after the projection
is ≤ exp(−‖x− yi‖22/2) ≤ ετ . Thus, the average contribution from such point to the KDE value
after the projection is ετ , which can be subsumed by the 1+εmultiplicative approximation. Consider
the case ‖x− yi‖22 < 2 ln(1/(ετ)). In this case we observe that after the projection the contribution
exp(−(1±δ)‖x−yi‖22) = exp(−‖q−pi‖22) exp(±δ‖x−yi‖22) differs from the original contribution
by a multiplicative factor of at most exp(δ‖x−yi‖22) ≤ 1+O(ε) since δ‖x−yi‖22 ≤ ε ≤ 1. Therefore,
in this case too we introduce a multiplicative error of at most 1 + ε.

This allows us to reduce the dimensionality of the pointset from d to
O(log n)

δ2
=
O(log n) log(1/(ετ))2

ε2
≤ O(log3 n)

ε2

for the purpose of estimating KDEX(y).

C Laplacian Kernel LSH

In this section we fully describe the LSHability of the Laplacian kernel, as per Lemma 4. Recall that
we assume w.l.o.g. that all point coordinates are in [0, 1]. For the sake of clarity, we will describe
LSH families H such that Prh∼H [h(x) = h(y)] = e−‖x−y‖1/σ. The ( 1

2 , 1)-LSHable property then
follows simply by doubling the bandwidth σ.

For σ < 1 we use the Random Binning Features of Rahimi and Recht [RR07], which we now recall.
Start with the one-dimensional case d = 1. Sample c from the Gamma distribution with shape 2 and
scale σ. The probability density function of this distribution is p(x) = σ−2 · x · e−x/σ . Then, impose
on the real line a one-dimensional uniform grid of side length c, shifted by a uniformly random
s ∼ [0, c). The random choices of c and s determine the hash function h. Given a point x ∈ [0, 1], h
maps it to the grid cell containing it.

One can verify that Prh[h(x) = h(y)] = e−|x−y|/σ for every x, y ∈ [0, 1] [RR07], and that the time
to evaluate h(x) is O(1). Furthermore, the number of grid cells intersecting the interval [0, 1] is
Θ(1/c). Since 1/c has an inverse-Gamma distribution, its expected value is 1/σ, hence there are
Θ(1/σ) grid cells in expectation, and thus the expected space to store a hash value is log(1/σ)+O(1)
bits. Finally, for an arbitrary dimension d, we simply perform the above for each dimension
independently, and concatenate the resulting hashes. We then have Prh[h(x) = h(y)] = e−‖x−y‖1/σ

with hash evaluation time O(d) and expected hash size O(d log(1/σ)).

For σ ≥ 1, we use the LSH family described in Section 3.1. Start with the one-dimensional case
d = 1. For a uniformly random ζ ∈ [0, 1], let b(x) = 1 if x > ζ and b(x) = 0 otherwise, and
similarly b(y) = 1 if y > ζ and b(y) = 0 otherwise. Then we have Pr[b(x) = b(y)] = 1− |x− y|.
In the arbitrary dimensional case x, y ∈ [0, 1]d, applying this to a uniformly random dimension
ξ ∈ {1, . . . , d} yields Pr[b(x) = b(y)] = 1

d

∑d
ξ=1(1 − |xξ − yξ|) = 1 − 1

d‖x − y‖1. If we repeat
this ρ independent times, where ρ is a fixed non-negative integer, and let h(x) be the concatenation of
the b(x)’s of the ρ repetitions (and similarly define b(y)), then Pr[h(x) = h(y)] = (1− 1

d‖x− y‖1)ρ.
Finally, choosing ρ ∼ Poisson(d/σ) yields

Pr[h(x) = h(y)] =

∞∑
ρ=0

e−d/σ · (d/σ)ρ

ρ!
· (1− 1

d‖x− y‖1)ρ = e−‖x−y‖1/σ.
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Table 3: Bandwidth settings used in our experiments.

Dataset Estimate of median Bandwidth for Bandwidth for
NN distance (φ) KDE values ∼ 10−2 KDE values ∼ 10−3

Covertype 0.005 20 · φ 10 · φ
Census 0.01 5 · φ 3 · φ
GloVe 4.48 0.5 · φ 0.25 · φ
MNIST 38.1 1 · φ 0.5 · φ

D Additional Exprimental Details

Bandwidth selection. The rule of thumb suggested in [JDH99] for bandwidth selection is to take
the median distance of a query point to its nearest neighbor in the dataset. We estimate this parameter
for each dataset and denote it by φ. Since its effect of the KDE values is inconsistent between the
various datasets, we scale it by a constant so as to make the typical KDE values be within a certain
order of magnitude. Specifically, we experiment with two orders of magnitude, 10−2 and 10−3. (Note
that larger typical values are essentially trivial to estimate by standard concentration inequalities,
while for smaller values an approximation is largely uninformative). The specific numbers used are
listed in Table 3. Note that the listed values of φ are estimated after shifting and scaling each dataset
such that all point coordinates in are in [0, 1].

Accuracy with varying bandwidth. Figure 9 displays the accuracy on the Covertype and Census
datasets for varying bandwidth values. The results are with L = 250 (i.e., each KDE value is
estimated using 250 kernel evaluations). It shows that the accuracy of our method is similar to
HBE, and significantly better then RS (whose accuracy improves and converges to the hashing-based
methods as the the bandwidth grows and the KDE values become bounded away from 0). At the
same time, the space usage of our method is smaller than HBE by a factor of L = 250.

Figure 9: Accuracy with L = 250 and varying bandwidth, for the Covertype (left) and Census (right)
datasets. The space usage (not displayed in the plot) of HBE is larger by a factor of 250 than ours.

Exponential kernel. Section 4 presented empirical results for the Laplacian kernel, and mentioned
that similar results are achieved for the Exponential kernel. Some of these results are depicted in the
figures below. The results for both hashing-based methods (HBE and ours) are obtained by a random
rotation of the dataset11 followed by the algorithm presented in the main text. Ground-truth KDE and
RS are computed directly on the original `2-distances.

11It is known that the `2-distances after a random rotation are approximately equal, with high probability, to
the `1-distances before the projection.
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Figure 10: Covertype dataset, Exponential kernel, typical KDE values of order 10−2.

Figure 11: Covertype dataset, Exponential kernel, typical KDE values of order 10−3.

Figure 12: Census dataset, Exponential kernel, typical KDE values of order 10−3.

Figure 13: Census dataset, Exponential kernel, typical KDE values of order 10−4.
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