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TL;DR

We introduce Flowtree:

* Fast nearest neighbor search algorithm for Optimal Transport
* a.k.a. Earth Mover Distance, Wasserstein-1 distance

e Analytically: Linear running time, worst-case approximation bound
* Empirically: Speeds up SOTA by up to 7.4 times
* Code publicly available on github:



Optimal Transport

Distance between points x and y:

Euclidean, Manhattan, ...




Optimal Transport

Distance between point sets X and Y?




Optimal Transport

Distance between point sets X and Y?

Choose distributions Dy on X and Dy onY

e For this talk: uniform distributions

OT(X,Y) = value of minimum-cost flow

from X to Y with demands Dy and Dy

= mFin z lx —yll - F(x,y) s.t. Fis adistribution on XXxY
XEX, YEY with marginals Dy and D,



Motivation: “Word Mover Distance”

Kusner et al. (2015): Use OT as distance between text documents
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OT Nearest Neighbor Search

Exact computation does not scale — \§\
_), \‘\\ \\‘
Approximate algorithms: \\
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Algorithm



Starting Point: Quadtree
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Optimal Transport on a Quadtree

Compute: Optimal flow on tree




Optimal Transport on a Quadtree

Compute: Optimal flow on tree

Return: Flow cost in tree distance

2 weight(e) - Fr(e)

Tree edge e

Even faster: £{-embedding!

[Kleinberg-Tardos 00, Charikar '02,
Indyk-Thaper ‘03, Le et al. 19, ...]




Our Algorithm: Flowtree

Evaluate optimal tree flow in original metric space

Side ’\
length

Return: z lx =yl - Fr(x,y)

xXeX,yeyY




Flowtree: Properties

* Running time:
* Quadtree: Linear, £1 embedding

* Flowtree: Linear, does not give embedding

* Nearest neighbor search approximation:
* Quadtree: O(log(d - A) - log(s - n))-approx.
* Dependence on 711 is necessary

* Flowtree: O(log(d - A) - log s)-approx.

* Flowtree in uniform case: 0(log2 S)—approx.
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Experiments

20newsgroups dataset



Individual Algorithm Evaluation
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recall@k = % queries whose true nearest neighbor is ranked in top-k returned points



Pipeline Experiments

Fast (milliseconds) Slower (seconds)
Crude approximation Fine approximation
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Pipeline Experiments: Recall@1
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Pipeline Experiments: Recall@5
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Conclusion

We introduce Flowtree:

* Fast nearest neighbor search algorithm for Optimal Transport
* a.k.a. Earth Mover Distance, Wasserstein-1 distance

e Analytically: Linear running time, worst-case approximation bound
* Empirically: Speeds up SOTA by up to 7.4 times

* Code publicly available on github:
https://github.com/ilyaraz/ot estimators




