Scalable Nearest Neighbor
Search for Optimal Transport

Arturs Backurs Yihe Dong Piotr Indyk llya Razenshteyn Tal Wagner
TTIC Microsoft MIT Microsoft MIT
Research Research

ICML 2020

TL;DR

We introduce Flowtree:

* Fast nearest neighbor search algorithm for Optimal Transport
* a.k.a. Earth Mover Distance, Wasserstein-1 distance

e Analytically: Linear running time, worst-case approximation bound
* Empirically: Speeds up SOTA by up to 7.4 times
* Code publicly available on github:

Optimal Transport

Distance between points x and y:

Euclidean, Manhattan, ...

Optimal Transport

Distance between point sets X and Y?

Optimal Transport

Distance between point sets X and Y?

Choose distributions Dy on X and Dy onY

e For this talk: uniform distributions

OT(X,Y) = value of minimum-cost flow

from X to Y with demands Dy and Dy

= mFin z lx —yll - F(x,y) s.t. Fis adistribution on XXxY
XEX, YEY with marginals Dy and D,

Motivation: “Word Mover Distance”

Kusner et al. (2015): Use OT as distance between text documents

Document 1

Obama
speaks
to
the
media
in
lllinois

A greets
Obama /
\0 k
President SpeaKs
Chicago media
.—.
press
Illinois R4
>

word embedding © 0O O

Document 2

The
President
greets
the

OT Nearest Neighbor Search

Exact computation does not scale — \§\
_), \‘\\ \\‘
Approximate algorithms: \\
\‘\\
\ \
Linear time Best of both Quadratic time \ \
Crude approximation Fine approximation \‘
\
\
‘\
Means [Kusher et al. ‘15] Flowtree: R-WMD [Kusneretal. “15]
o 1/ H H
TF-IDF [Luhn ‘571 Slower” linear time 7 [Atasu-Mittelholzer ‘19]

Fine approximation

Quadtree [Charikar’02,
Indyk-Thaper '03]

Sinkhorn [Cuturi “13]

Algorithm

Starting Point: Quadtree

Side ¢
length

;{

Optimal Transport on a Quadtree

Compute: Optimal flow on tree

Optimal Transport on a Quadtree

Compute: Optimal flow on tree

Return: Flow cost in tree distance

2 weight(e) - Fr(e)

Tree edge e

Even faster: £{-embedding!

[Kleinberg-Tardos 00, Charikar '02,
Indyk-Thaper ‘03, Le et al. 19, ...]

Our Algorithm: Flowtree

Evaluate optimal tree flow in original metric space

Side ’\
length

Return: z lx =yl - Fr(x,y)

xXeX,yeyY

Flowtree: Properties

* Running time:
* Quadtree: Linear, £1 embedding

* Flowtree: Linear, does not give embedding

* Nearest neighbor search approximation:
* Quadtree: O(log(d - A) - log(s - n))-approx.
* Dependence on 711 is necessary

* Flowtree: O(log(d - A) - log s)-approx.

* Flowtree in uniform case: 0(log2 S)—approx.

1

underestimates

true OT

Experiments

20newsgroups dataset

Individual Algorithm Evaluation

Fast (milliseconds) Slower (seconds)
Crude approximation Fine approximation
recall@k recall@k
1 A SAEARRAA o 1 OO OO OO OO0 0—0—0—0—0—0—0—0
0.95 0.95
0.22 ms -=Mean
0.9 0.9 ——Flowtree
8.0 ms ——TF-IDF y
085 o 1.46 s —R-WMD
8.4 ms —+Overlap ' 2.23 5 ==ACT-1
0.8 0.8 Sinkhorn-1
13 ms Quadtree ' Y a
0.75 Sinkhorn-3
0.75
A O A R I N (I (S NI (R N NS (R (N
PR E LWL S AP RSP S 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
k k

recall@k = % queries whose true nearest neighbor is ranked in top-k returned points

Pipeline Experiments

Fast (milliseconds) Slower (seconds)
Crude approximation Fine approximation

4 N \
Dataset > Fast crude Slow fine Exact :> N?a rest
approx. HBRloxs neighbor
- N J
N Y, /

Pipeline Experiments: Recall@1

0.25 -

4
-
-
-

0.20

Running time (sec)

0.05 -

0.00

0.10 -

R- WMD Smkhom 1 Smkhom 3 Flowtree only

1st:

Quadtree

2nd: . R-WMD [Kusner et al. “15]

. ACT-]_ [Atasu-Mittelholzer’19]
O Sinkhorn-1 (cuturiaz)
[] Sinkhorn-3

3rd: [Exact

New: [Flowtree

x3.7 speed up

Pipeline Experiments: Recall@5

0.25 -

|I |I IH IH]

0.20

o
=
W

Running time (sec)

0.05 -

0.00

0.10 A

R- WMD Slnkhom 1 Slnkhom 3 Flowtree only

1st:

Quadtree

2nd: . R-WMD [Kusner et al. “15]

. ACT—l [Atasu-Mittelholzer’19]
O Sinkhorn-1 (cuturiaz)
[] Sinkhorn-3

3rd: [Exact

New: [Flowtree

x7.4 speed up

Conclusion

We introduce Flowtree:

* Fast nearest neighbor search algorithm for Optimal Transport
* a.k.a. Earth Mover Distance, Wasserstein-1 distance

e Analytically: Linear running time, worst-case approximation bound
* Empirically: Speeds up SOTA by up to 7.4 times

* Code publicly available on github:
https://github.com/ilyaraz/ot estimators

