
Brief Announcement: Eccentricities via Parallel Set Cover
Tal Wagner

MIT

talw@mit.edu

ABSTRACT
The eccentricity of a node in a graphG (V ,E) is its maximal shortest-

path distance to any other node. Shun (KDD 2015) suggested a

simple heuristic for computing all eccentricities in an input graph,

based on two-phase parallel BFS from a small sample of nodes.

It was shown to outperform state-of-the-art algorithms by up to

orders of magnitude. This empirical success stands in apparent

contrast to recent theoretical hardness results on approximating all

eccentricities (Backurs et al., STOC 2018).

This note aims to formally explain the performance of this heuris-

tic, by drawing a connection to the streaming Set Cover algorithm

of Demaine et al. (DISC 2014). We use it to suggest a variant with

similar work and depth bounds, which is guaranteed to compute

almost all eccentricities exactly, if the graph satisfies a condition

we call small eccentric periphery. The condition can be ascertained

for all real-world graph used in Shun (KDD 2015) and in our ex-

periments. Experimental results demonstrate the validity of the

analysis and the empirical advantage of our proposed variant.

1 INTRODUCTION
The eccentricity of a node in a graph is defined as the longest

shortest-path distance to any other node reachable from it. Com-

puting all node eccentricities is known to have many useful applica-

tions in large-scale graph mining [9, 11, 12]. A simple approach to

this task is to perform a breadth-first search (BFS) from each node

in a graph. This requires O (nm) work on a graph with n node and

m edges, which is prohibitively costly for real-world large-scale

graphs. As a result, a large body of research has been dedicated

to developing approximate or heuristic algorithms, both in the-

ory [2, 5, 6, 10] and in practice [8, 9, 11].

In a recent work, Shun [11] conducted an empirical study of

state-of-the-art algorithms for computing all eccentricities in undi-

rected graphs. The study also included a simple heuristic, referred

to henceforth as k-BFS2. It samples k uniformly random nodes

as sources, and computes a full BFS from each source. Then it selects

the k nodes with the largest distance to any source, and performs a

second phase of BFS with those k nodes as sources. The eccentricity

of every node is estimated as its largest distance to any source from

either the first or the second phase. The experimental results in [11]

showed that k-BFS2 performs surprisingly well, outperforming all

other methods by large margins. These findings naturally raise

questions about a possible formal analysis of this method.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6184-2/19/06.

https://doi.org/10.1145/3323165.3323168

Arguably, the most standard approach to analyzing approxima-

tion algorithms is by proving worst-cast multiplicative approxima-

tion bounds on the estimates they produce. However, for graph

eccentricities, a recent line of work known as fine-grained com-
plexity was able to establish complexity-theoretic hardness for

improving the current theoretical state-of-the-art algorithms [1, 2].

To circumvent this barrier, we take the path of introducing a struc-

tural assumption on the input graph, which can be empirically

ascertained for many real-world graphs.

Our Results. We cast the problem of computing all eccentricities as

a Set Cover instance with limited access to the input. This draws

a close connection between k-BFS2 and the streaming Set Cover

algorithm of [7]. As a result, we suggest a variant called k-BFSSC,
with similar work and depth bounds, which is guaranteed to com-

pute the exact eccentricities of almost all nodes, as long as the

input graph satisfies a property we call small eccentric periphery.
This property can be ascertained with good parameters for all real-

world graphs used in the experiments of [11] as well as in ours.

We also give a robust variant which computes (1 − δ)-approximate

eccentricities for almost all nodes, under a relaxed condition.

k-BFSSC is derived from k-BFS2 by a drop-in replacement of

its top-k selection step with an off-the-shelf parallel greedy Set

Cover algorithm (eg. [3, 4]), leaving the two BFS phases unchanged.

The implication is twofold: it serves as evidence that our analysis

indeed captures what makes k-BFS2 work in practice, and also that

our proposed variant is plausible for implementation and practical

use. The latter point is particularly relevant since k-BFS2 is highly
successful in practice, and our experiments show that our variant

can significantly improve its performance.

Preliminaries and Notation. We assume that the input graphG (V ,E)
has n labeled nodes and is undirected, unweighted and connected.

The shortest-path distance between two nodes v,u ∈ V is denoted

by∆(v,u). The eccentricity ofv is defined as e (v) = maxu ∈V ∆(v,u).

2 k-BFS2 BY SET COVERING
Our variant of k-BFS2 is called k-BFSSC and is given in Al-

gorithm 1. It provably returns accurate eccentricity estimates for

graphs that satisfy a property we call small eccentric periphery.

Definition 2.1. A graphG (V ,E) has eccentric periphery of size κ
if κ is the smallest integer such that there exists U ⊂ V of size κ,
such that for every v ∈ V , e (v) = ∆(v,u) for some u ∈ U .

Put simply, this property states that all node eccentricities can

be realized as distances to a subset of κ nodes. As a warm-up, one

may observe that a path, star, clique and perfect binary tree all have

eccentric peripheries of size 2, regardless of their size, whereas a

cycle on n nodes has eccentric periphery of size n if n is even, or

1

2
(n + 1) if n is odd.

Obviously if the input graph has eccentric periphery of size κ,
then there is a realization of k-BFS2 with any k ≥ κ that computes

Session 1 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

43

Algorithm 1 : k-BFSSC
Input: Graph G (V ,E), integer k > 0

Output: Eccentricity estimate ê (v) for every v ∈ V

U1 ← k uniformly random nodes // Phase 1
foreach u ∈ U1:

Compute a BFS started at u
foreach v ∈ V :

Ãv ← {u ∈ U1 : e (u) = ∆(u,v)} // based on BFS results
I ← Set Cover instance with elements U1 and sets {Ãv }v ∈V
C ← cover for I // using parallel greedy Set Cover algorithm
U2 ← the set of nodes such that C = {Au : u ∈ U2} // Phase 2
foreach u ∈ U2:

Compute a BFS started at u
foreach v ∈ V :

return ê (v) = maxu ∈U1∪U2
∆(v,u) // based on BFS results

all eccentricies exactly, given the right choice of BFS sources. The

question is how to identify those sources, and more specifically,

how does k-BFS2 apparently succeed in finding them.

To answer this, we point out that if the all-eccentricities problem

is viewed as a Set Cover instance, then k-BFS2 is seen to be closely

related to the streaming Set Cover algorithm of [7]. By making this

connection exact, we obtain k-BFSSC with the following guarantee.

Theorem 2.2. Suppose G (V ,E) has eccentric periphery of size at
most κ. Let ε > 0. Then for k = Õ (ε−1κ logn), k-BFSSC runs in
O (k · |E |) expected work andO (diam(G) · logn + log3 (kn)) expected
depth, and with high probability computes the exact eccentricities of
all but an ε-fraction of the nodes in V .

The applicability of the above result hinges on whether the small

eccentric periphery property occurs in real-world graph. Here it

is worth noting that the property can be ascertained for all 8 real-

world graphs considered in [11],
1
as a byproduct of the experiments

therein. In particular, whenever k-BFS2 computes a (1− ε)-fraction
of the eccentricities exactly, it certifies that the eccentric periphery

has size at most εn + 2k . Thus, 7 of the graphs in [11], containing

between 1M to 4M nodes, were shown to have eccentric periphery

size of only few thousands (between 0.1% to 0.6% of their nodes).

For two of them the size is as small as 128 nodes. The 8th graph has

eccentric periphery containing 4.4% of its nodes. These are upper

bounds obtained as a byproduct, and it remains possible that the

true parameters are even smaller.

2.1 Set Cover Formulation
Recall that in the Set Cover problem, we are given a set of elements

E and a collection of subsets S ⊂ 2
E
. We call C ⊂ S a cover if

E ⊂ ∪A∈CA. The goal is to find a cover of minimum size.

Computing all eccentricites can be cast as a Set Cover instance

as follows. For every u ∈ V define Au = {v ∈ V : e (v) = ∆ (v,u)},
i.e.,Au is the subset of nodes whose eccentricity is attained by their

distance to u. The Set Cover instance is formed by the elements

E = V and sets S = {Au : u ∈ V }. Given U ⊂ V , define eU (v) =
maxu ∈U ∆ (u,v) for everyv ∈ V , and consider eU (v) as an estimate

1
This count does not include four additional graphs for which the true eccentricities

were not computed in [11] due to their large size.

for e (v). Consider the set of sets CU = {Au : u ∈ U }. We see that

if CU covers v (i.e., v ∈ Au for some Au ∈ CU), then e (v) = eU (v).
Therefore, computing all eccentricities exactly as {eU (v) : v ∈
V } reduces to solving the above Set Cover instance with a cover

CU . Furthermore, the optimal cover size is precisely the eccentric

periphery size, as per Definition 2.1.

Let us highlight the non-standard computational constraints of

this Set Cover setting, that arise if it is to be used for computing all

eccentricities. Given the index u ∈ V of a set Au , it is prohibitive to
compute which elements are contained in Au , since that already
requires computing all eccentrities. Given an element v ∈ V , it is
expensive but non-prohibitive to compute which subsets contain

it, since that requires a single full BFS started at v . Hence we can
afford it for only a small number of elements.

2.2 Relation to DIMV
While we are not aware of any Set Cover algorithms that were

explicitly designed for these constraints, there is in fact one that

meets them: the streaming Set Cover algorithm of [7], referred

to henceforth as DIMV. This is somewhat incidental, and indeed

other streaming Set Cover algorithms do not meet these constraints.

Another interesting fact is that k-BFS2 turns out to be closely

related to DIMV, as we explain next.

DIMV is a combination of two modules: The set sampling mod-

ule simply includes random sets in the output cover. The element
sampling module chooses a small random sample of elements, and

computes a cover only for the sample using an offline black-box

algorithm (eg. greedy). Note that set sampling is a vanilla module

that need not know anything about which sets cover which ele-

ments, while the more informed element sampling module only

needs to know which sets cover the elements in the sample. Thus

both of them meet the model constraints specified above. The key

observation is that k-BFS2 corresponds to a combination of set and

element sampling, as follows:

1. The first phase runs a BFS from each nodeu in a random sample

U1. This implicitly computes which subsets {Av }v ∈V cover u.

2. The second phase computes U2 as the k nodes that maximize

eU1
(v). This is akin to computing a cover CU2

ofU1.
2

Thus we interpret the top-k selection step in k-BFS2 as a heuris-
tic Set Cover step. Indeed, the node v∗ with the largest estimate

eU1
(v∗) satisfies e (u∗) = ∆(u∗,v∗) for some u∗ ∈ U , and thus Av∗

covers u∗. However, the node in V with the second-largest eU1
(v)

estimate might redundantly cover u∗ again, and so on, ultimately

leaving some elements uncovered.

To avoid such degeneracy, and make the connection to DIMV

exact (which would allow us to leverage its formal analysis), all

we need is to replace the covering heuristic by an actual Set Cover

algorithm. Fortunately, this is a well-studied problem in parallel

computing. In particular, we can use the parallel greedy algorithm

of [3], which guarantees an approximation factor of O (log |E |)

2
Note that the final estimates of k-BFS2 are eU

1
∪U

2
(v), which correspond to the

cover CU
1
∪ CU

2
rather than just CU

2
. Hence each u ∈ U1 plays a dual role of a

sample element to cover in the second phase, and a set Au in the final cover. The

first phase is thus seen to concurrently function as both element sampling and set

sampling, though our analysis will only rely on the element sampling role.

Session 1 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

44

(a) Oregon-1010526 (b) p2p-Gnutella30 (c) loc-Brightkite

Graph Name
Properties Eccentric k k-BFS2 k-BFSSC−full Cover size (k, ϕ)-BFS2 k-BFSSC

Nodes Edges Diam. Avg. e (v) periphery size CR ARE CR ARE (ϕ) CR ARE CR ARE

Oregon-1010526 11,174 23,409 10 7.15 ≤ 32
16 0.969 0.004 1 0 2 0.945 0.007 0.999 9 · 10−5

64 1 0 1 0 2 0.945 0.007 0.999 9 · 10−5

p2p-Gnutella30 36,646 88,303 11 8.69 ≤ 1024
16 0.802 0.022 0.988 0.001 3 0.731 0.032 0.961 0.004
64 0.960 0.004 0.998 2 · 10−4 5 0.869 0.015 0.964 0.004

loc-Brightkite 56,739 212,945 18 11.75 ≤ 16
16 1 0 1 0 2 0.958 0.004 0.958 0.004
64 1 0 1 0 4 0.968 0.003 0.999 4 · 10−4

(essentially optimal unless P = NP) and has been tested for imple-

mentation [4]. This leads to k-BFSSC and to Theorem 2.2.

One may ask whether such degeneracy in the covering step of k-
BFS2 in fact shows up in practice, or in other words, whether we

expect k-BFSSC to improve over k-BFS2 empirically. Indeed, this

exact phenomenon has been recently discussed in [8], who report

observing it in many large real-world graphs, and take heuristic

measures to mitigate its adverse effect on the accuracy of k-BFS2.
Our Set Cover based approach avoids it in a principled manner.

3 EXPERIMENTS
As input graphs, we use three real-world graphs from the Stanford

Network Analysis Project (available at http://snap.stanford.edu/

data/). In each graph we use only the largest connected component

(which contains almost all nodes), and treat all edges as undirected.

For an informed comparison, we introduce two more algorithmic

variants. Note that while k-BFS2 uses k sources in the second phase,

k-BFSSC uses only ϕ sources, where ϕ is the cover size computed

by the greedy Set Cover algorithm based on the first phase. It is

often the case that ϕ is much smaller than k . To equate the total

work, we introduce the variant k-BFSSC−full, which is similar to k-
BFSSC except that in the second phase it uses the greedy strategy

to choose a possibly redundant set cover of size exactly k . Thus,
both k-BFS2 and k-BFSSC−full use a total of 2k BFS sources, k in

each phase, differing in how the second phase sources are chosen.

k-BFSSC uses a total of k+ϕ sources, k in the first phase andϕ in the

second. To complete the picture, we also include the variant (k,ϕ)-
BFS2, which uses k sources in the first phase and ϕ sources in the

second, chosen by the same rule as k-BFS2, i.e., by a top-ϕ selection

step. For this variant, ϕ is an external parameter which we set

according to the results of k-BFSSC, for the sake of comparison

between them.

The x-axis in the attached figures counts the number of BFS

invocations, as a proxy for the total work. The y-axis measures

their average relative error. All algorithms were run with k = 2
i

for i = 0, 1, ..., 10, though for visual clarity, the x-axes are truncated

when all plots have stabilized. Some additional numbers are given

in the attached table. In addition to the average relative error (ARE),

it contains the correctness ratio (CR), which is the fraction of nodes

whose eccentricity was computed exactly, and an upper bound on

the eccentric periphery size of each graph.

The results show that k-BFSSC−full dominates the other algo-

rithms and converges faster to near-zero error. The greedy Set

Cover selection rule for the BFS sources in the second phase is

significantly preferrable to top-k selection, improving the accuracy

by up to an order of magnitude.

REFERENCES
[1] A. Abboud, V. V. Williams, and J. Wang. Approximation and fixed parameter

subquadratic algorithms for radius and diameter in sparse graphs. In SODA, 2016.
[2] A. Backurs, L. Roditty, G. Segal, V. V. Williams, and N. Wein. Towards tight

approximation bounds for graph diameter and eccentricities. In STOC, 2018.
[3] G. E. Blelloch, R. Peng, and K. Tangwongsan. Linear-work greedy parallel ap-

proximate set cover and variants. In SPAA, 2011.
[4] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and i/o efficient set

covering algorithms. In SPAA, 2012.
[5] M. Cairo, R. Grossi, and R. Rizzi. New bounds for approximating extremal

distances in undirected graphs. In SODA, 2016.
[6] S. Chechik, D. Larkin, L. Roditty, G. Schoenebeck, R. Tarjan, and V. V. Williams.

Better approximation algorithms for the graph diameter. In SODA, 2014.
[7] E. D. Demaine, P. Indyk, S. Mahabadi, and A. Vakilian. On streaming and com-

munication complexity of the set cover problem. In DISC, 2014.
[8] K. Iwabuchi, G. Sanders, K. Henderson, and R. Pearce. Computing exact vertex

eccentricity on massive-scale distributed graphs. In IEEE International Conference
on Cluster Computing (CLUSTER), 2018.

[9] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Hadi:

Mining radii of large graphs. ACM TKDD, 5(2):8, 2011.
[10] L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the

diameter and radius of sparse graphs. In STOC, 2013.
[11] J. Shun. An evaluation of parallel eccentricity estimation algorithms on undirected

real-world graphs. In KDD, 2015.
[12] F. W. Takes and W. A. Kosters. Computing the eccentricity distribution of large

graphs. Algorithms, 6(1):100–118, 2013.

Session 1 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

45

