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Introduction Overview of Techniques

What is the space complexity of the (Euclidean) For this poster, we use a simplified sketch due to Indyk, Razenshteyn, Wagner (2017).

Approximate Nearest Neighbor problem?

» Lossier than Indyk & Wagner (2017) by O(loglogn), but simpler and captures main ideas.

Problem: Compress a dataset X = {x1, ..., x,,} € R% into a small size data structure

(sketch) that can answer (1 + €)-approximate nearest neighbor queries: The dataset X is represented by a o

hierarchical clustering tree. 1
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Given y € R%, return i* € {1,...,n} s.t. ||[y—x;<]| < (1 +€)- min }Hy — x;]|.

i€{1,..,n Tree edges are annotated with binary

precision bits of point coordinates in X. o

Benefits of compression:

* Time: Speed-up linear scan of data.

 Space: Fit on memory-limited devices like GPUs (Johnson, Douze, Jégou (2017)).
« Communication: Facilitate distributed architectures.

How to compress the tree? w0

Prior work: “Bottom-out Compression” — —

Context: Remove every non-branching path from the tree,
* Nearest neighbor classifiers are popular in Machine Learning (eg. Efros (2017)). except its top edges. —)
* Large body of emplrlc:';\l work on the above Problem (see survey at Wang et al. (2016)). > Stores most significant bits of each cluster. ' missing
* Yet, no bettgr theoretical bounds than theodlmensmn reduction theorem due to » Preserves global cluster structure. = bits
Johnson & Lindenstrauss (1984) were previously known.
Our Results This preserves distances within X: O On  NETEEpEETEE) .0 O
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Problem 1 — Approximate Nearest Neighbor: but not the nearest neighbor of a e
Answer query with success probability 1 — 1/n%. new query point y: ey, ORI Corpcssion J Decompression JMEEIOY, oF

Method Size in bits per point* What can it approximate?

No compression O(dlogn)

Johnson & 0 (1082 n)

Distances between any y and all x € X

Lindenstrauss (1984) > Distances between any yand all x € X
€

» Also stores least significant bits of each cluster. bits

Distances between any y and all x € X, > Also preserves local cluster structure.

c2 -logR) assuming ||x — y|| € [r, Rr]

Kushilevitz, Ostrovski, 0 (logn

This work: “Middle-Out Compression”
Remove every non-branching path from the tree,
except its top and bottom edges.
— missing
Rabani (2000)

Indyk & Wagner 0 (log n) Distances betweenallx,y € X,
2017; 2018 2 no out-of-sample query support . .
( ) 1 € Pie QEETY SEPP Overview of Analysis
. ogn : :
This work 0 ( 2 log(l/e)) Nearest neighbor of any y in X Approximate nearest neighbor algorithm for a query point y € R¢:

* Search for y down the tree, by the bits on the tree edges, until reaching a leaf.

Problem 2 — Approximate Distance Queries: e Return the point in X represented by that leaf.

Compress X such that for any query set Y ¢ R% with g query points, the sketch can

. . . . ] P ,
estimate all distances ||x — y|| for x € X and y € Y, up to distortion (1 + €). How to handle missing bits in the tree? Guess they are the same as y.

] T ) * Guessed right? Yay! The algorithm learned the right absolute location of X from y.
Reference # queries Size in bits per point*

; Ground truth X and y t | dictort Decompressed X and y
Molinaro, Woodruff. . log“n\ matches the Johnson-Lindnestrauss ® % ——) © 0%
Yaroslavtsev (2013) €2 (1984) upper bound for g = n0@, ® o ® o

 @Guessed wrong? It’s okay. The algorithm doesn’t know it learned X wrong, but any
point from now on is a good approximate nearest neighbor.

This work 1<qg<n

logn Ground truth X and
() ( 5 ¥ lOg CI) ...... p— Y algorithm decompressed X Decompressedﬁand Y
€ ® ... o according to y, but it is wrong .. .0. algorithm will return an
: .. : : : : : ® L L y < > arbitrary point from this

* For simplicity, the bounds stated in this poster assume that all points coordinates in X are safe zone not containing y, due to storing local cluster structure; cluster as the nearest

represented by O(ZOQ Tl) bits. See the paper for the full dependence on all parameters. ensures every point in the cluster is roughly equally close to y neighbor... which is okay
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