
For	this	poster,	we	use	a	simplified	sketch	due	to	Indyk,	Razenshteyn,	Wagner	(2017).

Ø Lossier than	Indyk &	Wagner	(2017)	by	𝑂(log log 𝑛),	but	simpler	and	captures	main	ideas.

The	dataset	𝑋 is	represented	by	a
hierarchical	clustering	tree.

Tree	edges	are	annotated	with	binary
precision	bits	of	point	coordinates	in	𝑋.

How	to	compress	the	tree?

Prior	work:	“Bottom-out	Compression”	
Remove	every	non-branching	path	from	the	tree,
except	its	top edges.

Ø Stores	most	significant	bits	of	each	cluster.
Ø Preserves	global	cluster	structure.

This	preserves	distances	within	𝑋:

but	not	the	nearest	neighbor	of	a	
new	query	point	𝑦:

This	work:	“Middle-Out	Compression”
Remove	every	non-branching	path	from	the	tree,
except	its	top	and	bottom	edges.

Ø Also	stores	least	significant	bits	of	each	cluster.
Ø Also	preserves	local	cluster	structure.

Approximate	nearest	neighbor	algorithm	for	a	query	point	𝑦 ∈ ℝ,:
• Search	for	𝑦 down	the	tree,	by	the	bits	on	the	tree	edges,	until	reaching	a	leaf.
• Return	the	point	in	𝑋 represented	by	that	leaf.

• How	to	handle	missing	bits	in	the	tree?	Guess	they	are	the	same	as	𝑦.
• Guessed	right?	Yay! The	algorithm	learned	the	right	absolute	location	of	𝑋 from	𝑦.

• Guessed	wrong?	It’s	okay.	The	algorithm	doesn’t	know	it	learned	𝑋	wrong,	but	any	
point	from	now	on	is	a	good	approximate	nearest	neighbor.

www.youtube.com/watch?v=0rhdOt9bOHE

What	is	the	space	complexity	of	the	(Euclidean)
Approximate	Nearest	Neighbor	problem?

Problem:	Compress	a	dataset	𝑋 = 𝑥0,… , 𝑥3 ⊂ ℝ, into	a	small	size	data	structure	
(sketch)	that	can	answer	 1 + 𝜖 -approximate	nearest	neighbor	queries:

Given	 𝑦 ∈ ℝ,,			return 𝑖∗ ∈ {1, … , 𝑛} s.t. 𝑦 − 𝑥=∗ ≤ 1 + 𝜖 ⋅ min
=∈{0,…,3}

‖𝑦 − 𝑥=‖.

Benefits	of	compression:
• Time: Speed-up	linear	scan	of	data.
• Space: Fit	on	memory-limited	devices	like	GPUs	(Johnson,	Douze,	Jégou (2017)).
• Communication: Facilitate	distributed	architectures.

Context:
• Nearest	neighbor	classifiers	are	popular	in	Machine	Learning	(eg.	Efros (2017)).
• Large	body	of	empirical work	on	the	above	problem	(see	survey	at	Wang	et	al.	(2016)).
• Yet,	no	better	theoretical bounds	than	the	dimension	reduction	theorem	due	to	

Johnson	&	Lindenstrauss (1984) were	previously	known.

Problem	1	– Approximate	Nearest	Neighbor:
Answer	query	with	success	probability	1 − 1/𝑛E 0 .

Problem	2	– Approximate	Distance	Queries:
Compress	𝑋 such	that	for	any	query	set	𝑌 ⊂ ℝ, with	𝑞 query	points,	the	sketch	can	

estimate	all	distances	 𝑥 − 𝑦 for	𝑥 ∈ 𝑋 and	𝑦 ∈ 𝑌,	up	to	distortion	 1 ± 𝜖 .

*	For	simplicity,	the	bounds	stated	in	this	poster	assume	that	all	points	coordinates	in	𝑋 are	
represented	by	𝑂(𝑙𝑜𝑔 𝑛)	bits.	See	the	paper	for	the	full	dependence	on	all	parameters.
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Introduction

Our	Results

Method Size	in bits per	point*	 What	can	it approximate?
No	compression 𝑂 𝑑 log 𝑛 Distances	between	any	𝑦 and	all 𝑥 ∈ 𝑋

Johnson &	
Lindenstrauss (1984) 𝑂

logM 𝑛
𝜖M

Distances	between	any	𝑦 and	all 𝑥 ∈ 𝑋

Kushilevitz,	Ostrovski,	
Rabani (2000) 𝑂

log 𝑛
𝜖M ⋅ log 𝑅

Distances	between	any	𝑦 and	all 𝑥 ∈ 𝑋,
assuming	 𝑥 − 𝑦 ∈ 𝑟, 𝑅𝑟

Indyk &	Wagner	
(2017;	2018) 𝑂

log 𝑛
𝜖M

Distances		between	all 𝑥, 𝑦 ∈ 𝑋,
no	out-of-sample	query	support

This	work 𝑂
log 𝑛
𝜖M ⋅ log 1 𝜖⁄ Nearest neighbor	of	any	𝑦 in 𝑋

Reference #	queries Size	in bits per	point*

Molinaro,	Woodruff,	
Yaroslavtsev (2013) 𝑞 ≥ 𝑛 Ω

logM 𝑛
𝜖M

matches the	Johnson-Lindnestrauss
(1984) upper	bound	for	𝑞 = 𝑛E 0 .

This	work 1 ≤ 𝑞 ≤ 𝑛
𝑂

log 𝑛
𝜖M (log 𝑞 + log 1 𝜖⁄ )

Ω
log 𝑛
𝜖M ⋅ log 𝑞

Overview	of	Techniques
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𝑦

Ground	truth 𝑋 and	𝑦

𝑦

safe	zone	not	containing		𝑦,	due	to	storing	local	cluster	structure;
ensures	every	point	in	the	cluster	is	roughly	equally	close	to	𝑦

algorithm	will	return	an		
arbitrary	point	from	this	
cluster	as	the	nearest	
neighbor…	which	is	okay

same	up	to	small	distortion

algorithm	decompressed	𝑋
according	to	𝑦,	but	it	is	wrong

Overview	of	Analysis
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