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Stochastic quantisation

1 Discrete (weighted) Besov spaces
We denote by Λ𝜀=(𝜀ℤ)d for 𝜀=2−N, N ∈ℕ0, the rescaled lattice ℤd and by ΛM,𝜀=𝜀ℤd∩𝕋M

d =
𝜀ℤd ∩ �−M

2 ,
M
2 �

d its periodic counterpart of size M >0 such that M/(2𝜀)∈ℕ. For notational
simplicity, we use the convention that the case 𝜀=0 always refers to the continuous setting. For
instance, we denote by Λ0 the full space Λ0=ℝd and by ΛM,0 the continuous torus ΛM,0=𝕋M

d .
With the slight abuse of notation, the parameter 𝜀 is always taken either of the form 𝜀=2−N for
some N ∈ℕ0, N ⩾N0, for certain N0∈ℕ0 that will be chosen later, or 𝜀=0. Various proofs below
will be formulated generally for 𝜀∈𝒜≔{0,2−N;N∈ℕ0,N⩾N0} and it is understood that the case
𝜀= 0 or alternatively N =∞ refers to the continuous setting. All the proportionality constants,
unless explicitly stated, are independent of M, 𝜀.

Denote Λ̂𝜀 ≔ (𝜀−1𝕋)d. For f ∈ ℓ 1(Λ𝜀) and g ∈ L1(Λ̂𝜀) we define the Fourier and the inverse
Fourier transform as

ℱf (k)≔𝜀d �
x∈Λ𝜀

f (x)e−2𝜋ik⋅x, ℱ−1g(x)≔�
Λ̂𝜀

g(k)e2𝜋ik⋅xdk,

where k∈Λ̂𝜀 and x∈Λ𝜀. These definitions can be extended to discrete Schwartz distributions in
a natural way, we refer to [3] for more details. In general, we do not specify on which lattice the
Fourier transform is taken as it will be clear from the context.

Consider a smooth dyadic partition of unity (𝜑j)j⩾−1 such that 𝜑−1 is supported in a ball around 0
of radius 1

2 , 𝜑0 is supported in an annulus, 𝜑j(⋅)=𝜑0(2− j⋅) for j⩾0 and if |i− j|>1 then supp𝜑i∩
supp𝜑j =∅. For the definition of Besov spaces on the lattice Λ𝜀 for 𝜀= 2−N, we introduce a
suitable periodic partition of unity on Λ̂𝜀 as follows

𝜑j
𝜀(k)≔{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{
𝜑j(k), j<N −J,
1− �

j<N−J
𝜑j(k), j=N −J, (1)

where k∈Λ̂𝜀 and the parameter J∈ℕ0, whose precise value will be chosen below independently
on 𝜀∈𝒜, satisfies 0⩽N −J⩽J𝜀≔inf { j: supp𝜑j⊈[−𝜀−1/2,𝜀−1/2)d}→∞ as 𝜀→0. We note that
by construction there exists ℓ ∈ℤ independent of 𝜀=2−N such that J𝜀=N −ℓ .

Then (1) yields a periodic partition of unity on Λ̂𝜀. The reason for choosing the upper index as
N − J and not the maximal choice J𝜀 will become clear in Lemma ? below, where it allows us to
define suitable localization operators needed for our analysis. The choices of parameters N0 and J
are related in the following way: A given partition of unity (𝜑j)j⩾−1 determines the parameters J𝜀
in the form J𝜀=N −ℓ for some ℓ ∈ℤ. By the condition N −J⩽J𝜀 we obtain the first lower bound
on J. Finally, the condition 0⩽N −J implies the necessary lower bound N0 for N, or alternatively
the upper bound for 𝜀=2−N ⩽2−N0 and defines the set 𝒜.

We stress that once the parameters J,N0 are chosen, they remain fixed. Then (1) yields a periodic
partition of unity on Λ̂𝜀.
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Reason for choosing the upper index as N −J and not the maximal choice J𝜀: it allows us to define
suitable localization operators needed for our analysis.

The choices of parameters N0 and J are related in the following way: A given partition of unity
(𝜑j)j⩾−1 determines the parameters J𝜀 in the form J𝜀=N − ℓ for some ℓ ∈ℤ. By the condition
N − J ⩽ J𝜀 we obtain the first lower bound on J. The condition 0⩽N − J implies the necessary
lower bound N0 for N, or alternatively the upper bound for 𝜀=2−N ⩽2−N0 and defines the set 𝒜.
We stress that once the parameters J,N0 are chosen, they remain fixed.

Remark that according to our convention, (𝜑j
0)j⩾−1 denotes the original partition of unity (𝜑j)j⩾−1

on ℝd, which can be also read from (1) using the fact that for 𝜀=0 we have J𝜀=∞.

Now we may define the Littlewood–Paley blocks for distributions on Λ𝜀 by

Δj
𝜀 f ≔ℱ−1 (𝜑j

𝜀ℱ f ),

which leads us to the definition of weighted Besov spaces. In the sequel, 𝜌 denotes a polynomial
weight of the form

𝜌(x)= //hx//−𝜍=(1+ |hx|2)−𝜍/2 (2)

for some 𝜍>0 and h>0. The constant h shall be fixed in order to produce a small bound for
certain terms. Such weights satisfy the admissibility condition 𝜌(x)/𝜌(y)≲𝜌−1 (x − y) for all x,
y∈ℝd. For 𝛼∈ℝ, p,q∈[1,∞] and 𝜀∈[0,1] we define the weighted Besov spaces on Λ𝜀 by the
norm

‖ f ‖Bp,q
𝛼,𝜀(𝜌)=((((((((((((((( �

−1⩽ j⩽N−J
2𝛼jq ‖Δj

𝜀 f ‖Lp,𝜀(𝜌)
q

)))))))))))))))
1/q

=((((((((((((((( �
−1⩽ j⩽N−J

2𝛼jq ‖𝜌Δj
𝜀 f ‖Lp,𝜀

q

)))))))))))))))
1/q

,

where Lp,𝜀 for 𝜀∈𝒜∖{0} stands for the Lp space on Λ𝜀 given by the norm

‖ f ‖Lp,𝜀=((((((((((((𝜀d �
x∈Λ𝜀

| f (x)|p))))))))))))
1/p

(with the usual modification if p=∞). Analogously, we may define the weighted Besov spaces
for explosive polynomial weights of the form 𝜌−1. Note that if 𝜀=0 then Bp,q

𝛼,𝜀(𝜌) is the classical
weighted Besov space Bp,q

𝛼 (𝜌). In the sequel, we also employ the following notations

𝒞𝛼,𝜀(𝜌)≔B∞,∞
𝛼,𝜀 (𝜌), H𝛼,𝜀(𝜌)≔B2,2

𝛼,𝜀(𝜌).

We will frequently use the following auxiliary results whose proofs can be found in Appendix A.1
in [1].

Lemma 1. Let 𝛼∈ℝ, p,q∈[1,∞]. Fix n>|𝛼| and assume that 𝜌 is a weight such that

‖𝜌‖B∞,∞
n+1,𝜀(𝜌−1)+‖𝜌−1‖B∞,∞

n+1,𝜀(𝜌)≲1

uniformly in 𝜀. Then

‖ f ‖Bp,q
𝛼,𝜀(𝜌)∼‖𝜌 f ‖Bp,q

𝛼,𝜀,

where the proportionality constant does not depend on 𝜀.
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This is useful to transfer the results for the unweighted setting to the weighted one.

Lemma 2. Let 𝛼∈ℝ, p, p′,q,q′∈ [1,∞] such that p, p′ and q,q′ are conjugate exponents. Let
𝜌 be a weight as in Lemma 1. Then

// f ,g//𝜀≲‖ f ‖Bp,q
𝛼,𝜀(𝜌)‖g‖Bp′,q′

−𝛼,𝜀(𝜌−1)

with a proportionality constant independent of 𝜀. Consequently, Bp′,q′
−𝛼,𝜀(𝜌−1)⊂(Bp,q

𝛼,𝜀(𝜌−1))∗.

Lemma 3. Let 𝜀∈𝒜. Let 𝛼,𝛼0,𝛼1,𝛽,𝛽0,𝛽1∈ℝ, p, p0, p1,q,q0,q1∈[1,∞] and 𝜃∈[0, 1] such
that

𝛼=𝜃𝛼0+(1−𝜃)𝛼1, 𝛽=𝜃𝛽0+(1−𝜃)𝛽1,
1
p = 𝜃

p0
+ 1−𝜃

p1
, 1

q = 𝜃
q0

+ 1−𝜃
q1

.

Then

‖ f ‖Bp,q
𝛼,𝜀(𝜌𝛽)⩽‖ f ‖Bp0,q0

𝛼0,𝜀 (𝜌𝛽0)
𝜃 ‖ f ‖Bp1,q1

𝛼1,𝜀 (𝜌𝛽1)
1−𝜃 .

2 Setup for stochastic quantization of Φ2,3
4

Based on arguments from the theory of PDEs, we intend to construct the Euclidean Φ4 quantum
field theory on ℝ3. This is a probability measure 𝜈 on the space of Schwartz distributions 𝒮′(ℝ3)
which is formally represented by

𝜈(d𝜑)∼exp{{{{{{{{{{{{{{{{{{{{−2�
ℝ3 [[[[[[[[[[𝜆4 |𝜑(x)|4+ m2

2 |𝜑(x)|2+ 1
2|∇𝜑(x)|2]]]]]]]]]]dx}}}}}}}}}}}}}}}}}}}}d𝜑,

where m2∈ℝ is the mass and 𝜆>0 is the coupling constant. The above expression is only formal,
because powers of distributions are not well defined in general. The measure 𝜈 is associated to
the corresponding stochastic quantization equation

(∂t+m2−Δ)𝜑+𝜆𝜑3−∞𝜑=𝜉, (t, x)∈ℝ+×ℝ3, (3)

where 𝜉 is a space-time white noise on ℝ3 and the term −∞𝜑 stands for the so-called mass
renormalization. This permits to make sense of the nonlinearity in (3) and in turn to obtain an
honest probability measure 𝜈 as the invariant measure of (3).

For notational simplicity, we let m2=𝜆=1 in the sequel. For d∈{2,3}, let Λ𝜀=(𝜀ℤ)d for 𝜀=2−N,
N∈ℕ0, be the rescaled lattice ℤd and let ΛM,𝜀=((𝜀ℤ)/(Mℤ))d be the periodic lattice with mesh
size 𝜀 and side length M with M/(2𝜀)∈ℕ. We denote by Δ𝜀 the lattice Laplacian on Λ𝜀

Δ𝜀f (x)≔𝜀−2�
i=1

d

( f (x+𝜀ei)−2 f (x)+ f (x−𝜀ei)), x∈Λ𝜀,

where (ei)i=1, . . . ,d is the canonical basis of ℝd. Let 𝒬𝜀≔1−Δ𝜀, ℒ𝜀=∂t+𝒬𝜀 and we write ℒ for
the continuum analogue of ℒ𝜀.
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We approximate the stochastic quantization equation (3) by the finite dimensional lattice model

ℒ𝜀𝜑M,𝜀+𝜑M,𝜀
3 −3cM,𝜀𝜑M,𝜀=𝜉M,𝜀, x∈ΛM,𝜀. (4)

Here cM,𝜀 are renormalization constants diverging as M →∞ and 𝜀→0 and 𝜉M,𝜀 is the discrete
and periodic approximation of a space-time white noise 𝜉 on ℝd

𝜉M,𝜀(t, x)≔𝜀−d⟨𝜉M(t, ⋅),1|⋅−x|⩽𝜀/2⟩, (t, x)∈ℝ×ΛM,𝜀,

with 𝜉M being the periodization of 𝜉

𝜉M(h)≔𝜉(hM), where hm(t, x)≔1�−M
2 ,

M
2 �

d(x) �
y∈Mℤd

h(t, x+ y), h∈L2(ℝ×ℝd).

Then (4) is a finite-dimensional SDE in a gradient form and it has a unique invariant measure 𝜈M,𝜀
given by

𝜈M,𝜀(d𝜑)∼exp{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{−2𝜀d �

x∈ΛM,𝜀

�14 |𝜑x|4+
−3cM,𝜀+1

2 |𝜑x|2+
1
2|∇𝜀𝜑x|2�}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

}}}} �
x∈ΛM,𝜀

d𝜑x, (5)

where ∇𝜀 denotes the discrete gradient

∇𝜀f (x)≔� f (x+𝜀ei)−2 f (x)
𝜀 �

i=1, . . . ,d

satisfying the corresponding integration by parts

⟨Δ𝜀f ,g⟩M,𝜀=−⟨∇𝜀f ,∇𝜀g⟩M,𝜀,

where by ⟨⋅, ⋅⟩M,𝜀 we denoted the duality associated to L2(ΛM,𝜀).

Global existence of solutions to (4) can be proved along the lines of Khasminskii nonexplosion
test [2, Theorem 3.5] whereas invariance of the measure (5) follows from Itô's formula together
with the integration by parts.

Our goal is to show that there exists a choice of the renormalization constants (cM,𝜀)M,𝜀 such
that the family of probability measures (𝜈M,𝜀)M,𝜀 extended to 𝒮′(ℝd) is tight. Consequently,
there exists a subsequence converging weakly in the sense of probability measures to some 𝜈
and this is the candidate for the Euclidean quantum field theory on ℝd. It can be additionally
proved that every such accumulation point 𝜈 is translation invariant, reflection positive and non-
Gaussian and satisfies a stretched exponential integrability. In order words, it satisfies part of the
Osterwalder–Schader axioms for a Euclidean quantum field theory. Furthermore, an integration
by parts formula can be established and it leads to the hierarchy of Dyson–Schwinger equations
for Euclidean correlation functions.

3 On the regularity of the renormalized cube & C.
Recall our discrete setting:

𝜀=2−N,M=2N′ Λ𝜀,M=((𝜀ℤ)∩[−M/2,M/2))d, Λ𝜀,M
∗ =((ℤ/M)∩[−1/2𝜀,1/2𝜀))d.
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And the definition of the process X, which is the stationary solution to

ℒ𝜀X𝜀,M=𝜉𝜀,M.

It has the random Fourier series representation (with correct factors of M):

X(t, x)= 1
Md/2 �

k∈Λ𝜀,M
∗

exp(2𝜋ik ⋅ x)�
−∞

t
e−(m2+k̂2)(t−s)d𝛽s

(k)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
≔X̂(t,k)

where (computation with the discrete Laplacian)

k̂2=�
i=1

d

[2𝜀−1sin(𝜋𝜀ki)]2≈(2𝜋)2|k|2

for |k|≪𝜀−1.

We want to discuss the Besov regularity of ⟦X3⟧(t, x).

Let's start by reproving that X∈C([0,T],𝒞−𝜅(Λ𝜀,M)) for some small 𝜅 with 𝒞−𝜅=B∞,∞
−𝜅 . This

is useful to have a blueprint for the general argument.

We will use the Besov embedding

B∞,∞
−𝜅 ⊂B2p,2p

d/2p−𝜅

and the Kolmogorov lemma to estimate the Hölder norm in time (another Besov embedding in
disguise).

Lemma 4. (Kolmogorov) Let (Xt)t∈[0,T] a continuous stochastic process with values in the Polish
space ℰ then

𝔼[[[[[[[[[[[[(((((((((((( sup
t>s∈[0,T]

‖Xt − Xs‖ℰ
|t − s|𝛼−𝜅 ))))))))))))

p

]]]]]]]]]]]]≲𝜅 sup
t>s∈[0,T]

𝔼��‖Xt − Xs‖ℰ
|t − s|𝛼 �

p
� (6)

for any small 𝜅>0 and p⩾1 and 𝛼∈(0,1).

Proof. Let us sketch how does it work. Decompose [0,T] into dyadic intervals [tkn, tk+1
n ] with

tkn=T 2−nk for k=0, . . . , 2n and consider the quantity

Q(X)≔�
n⩾0

1
22n �

k=0

2n−1

[[[[[[[[[[‖Xtk+1
n − Xtkn‖ℰ

|tk+1
n − tkn|𝛼 ]]]]]]]]]]

p

for some 𝛼∈(0,1), p⩾2. Reasoning with telescopic sums over dyadic generations one arrives to
deduce that

‖Xt − Xs‖ℰ
|t − s|𝛼 ⩽ �

n:|t−s|⩽2−n

‖Xtkn+1
n − Xtkn

n ‖ℰ
|tkn

n − tkn
n |𝛼 +

�Xtkn′ +1
n − Xtkn′

n �ℰ
|tkn′

n − tkn′
n |𝛼

where t,s are dyadic numbers in 𝔻={tkn} and (kn)n and (kn′)n are integers depending on t,s. Since
each term in the r.h.s. is bounded by

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{�

k=0

2n−1

[[[[[[[[[[‖Xtk+1
n − Xtkn‖ℰ

|tk+1
n − tkn|𝛼 ]]]]]]]]]]

p

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}}}}
1/p

⩽[22nQ(X)]1/p
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and they are at most n⩽log |t − s|, we have

�‖Xt − Xs‖ℰ
|t − s|𝛼 �

p
⩽|t − s|𝜅p Q(X)1/p

for some 0<𝜅<𝛼. So we deduce that

[[[[[[[[[[ sup
t>s∈𝔻

‖Xt − Xs‖ℰ
|t − s|𝛼−𝜅 ]]]]]]]]]]

p
≲Q(X)

and by considering a continuous version of X we can extend this to all t> s∈[0,T]. Then taking
expectations and using Fubini:

𝔼[[[[[[[[[[[[ sup
t>s∈[0,T]

‖Xt − Xs‖ℰ
|t − s|𝛼−𝜅 ]]]]]]]]]]]]

p
≲�

n⩾0

1
22n �

k=0

2n−1

𝔼[[[[[[[[[[‖Xtk+1
n − Xtkn‖ℰ

|tk+1
n − tkn|𝛼 ]]]]]]]]]]

p

from which we obtain finally the basic estimate (6) for any small 𝜅>0 and p⩾1 and 𝛼∈(0,1). □

We need to estimate 𝔼‖X(t)− X(s)‖𝒞−𝜅
2p in terms of |t − s|.

𝔼‖X(t)− X(s)‖𝒞−𝜅
2p ≲𝔼‖X(t)− X(s)‖

B2p,2p
d/2p−𝜅

2p (Besov embedding)

≲�
i⩾−1

2(d−2p𝜅)i𝜀d �
x∈Λ𝜀,M

𝔼|ΔiX(t, x)−ΔiX(s, x)|2p (Fubini)

≲p �
i⩾−1

2(d−2p𝜅)i𝜀d �
x∈Λ𝜀,M

�𝔼|ΔiX(t, x)−ΔiX(s, x)|2�p (Hypercontractivity)

≲pMd �
i⩾−1

2(d−2p𝜅)i�𝔼|ΔiX(t, 0)−ΔiX(s, 0)|2�p (Stationarity)

Therefore consider 𝕀≔𝔼|ΔiX(t, 0)−ΔiX(s, 0)|2.

ΔiX(t, 0)−ΔiX(s, 0)= 1
Md/2 �

k∈Λ𝜀,M
∗

exp(2𝜋ik ⋅ x)�
s

t
e−2(m2+k̂2)(t−u)d𝛽s

(k)

+ 1
Md/2 �

k∈Λ𝜀,M
∗

exp(2𝜋ik ⋅ x)�e−2(m2+k̂2)(t−s)−1�||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
≲|(m2+k̂2)(t−s)|𝛼∈(0,1)

�
−∞

s
e−2(m2+k̂2)(s−u)d𝛽s

(k)

Consider the first term: by Ito (for t> s)

𝕀= 1
Md �

k∈Λ𝜀,M
∗

[𝜑(2−ik)]2e−(m2+k̂2)(t−s)�
s

t
e−2(m2+k̂2)(t−u)du

≲ 1
Md �

k∈Λ𝜀,M
∗

[𝜑(2−ik)]2

(m2+ k̂2)
|(m2+ k̂2)(t − s)|𝛼∈(0,1)

≲ 1
Md �

k∈Λ𝜀,M
∗

[𝜑(2−ik)]2

(m2+k2)
k2𝛼(t − s)𝛼≲�

(−𝜀−1,𝜀−1)d
dk [𝜑(2−ik)]2

(m2+k2)
≲2i(d−2+2𝛼)(t − s)𝛼
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and similarly for the other term.

So

𝔼‖X(t)− X(s)‖𝒞−𝜅
2p ≲Md �

i⩾−1
2i(d/2−1+d/p−𝜅+𝛼)2p(t − s)𝛼p≲Md(t − s)𝛼p

when

𝜅> d −2
2 + d

p +𝛼.

From this one deduces that

X∈C([0,T],𝒞−𝜅)

almost surely.

For ⟦X3⟧ the computation is more laborious. Consider the fixed time moments.

Δi⟦X3⟧(t, x)= 1
M3d/2 �

k1,k2,k3

𝜑(2−i(k1+k2+k3))e2𝜋i(k1+k2+k3)⋅x⟦X̂(t,k1)X̂(t,k2)X̂(t,k3)⟧

a computation with Wick's theorem gives (the sunset diagram)

𝔼|Δi⟦X3⟧(t, x)|2= 1
M3d �

k1,k2,k3

[𝜑(2−i(k1+k2+k3))]2𝔼|X̂(t,k1)|2𝔼|X̂(t,k2)|2𝔼|X̂(t,k3)|2

≈�dk1dk2dk3
[𝜑(2−i(k1+k2+k3))]2

(m2+k1
2)(m2+k2

2)(m2+k3
2)

≈�
a,b,c

�dk1dk2dk3
[𝜑(2−i(k1+k2+k3))]2

(m2+k1
2)(m2+k2

2)(m2+k3
2)

𝕀k1≈2a,k2≈2b,k3≈2c

≈�
a,b,c

2−2a−2b−2c�dk1dk2dk3 [𝜑(2−i(k1+k2+k3))]2𝕀k1≈2a,k2≈2b,k3≈2c

Assume an order among |k1|, |k2|, |k3|, since the integral is symmetric, it is enough to consider
a≳b≳c. Then since k1+k2+k3≈2i we only have two possibilities. Either

a) k1≈ k2≈2a ≳ k3= 2c ≳2i. In this case note that k2+ k1≈2c, so the sum over k2 gives a
contribution of the order 2cd, the sum over k1 a contribution of order 2ad and the sum over
k3 a contribution of order 2cd. Together with the behaviour of the propagator this gives
(for d<4)

�
a≳c≳i

2−4a−2c22cd+ad≲ �
a≳c≳i

23cd−6c

and which can be bounded, when d<3 as

≲2(3d−6)i≈20i.

7



b) k1≈ 2a ≈ 2i ≳ k2≳ k3. In this case note that, denoting q = k1+ k2+ k3≈ 2i we have 2b ≈
k2+k3≈q−k1 so the sum over k1 gives a contribution of the order 2b, the sum over k2 order
2c and also the sum over k3 is of order 2c . Together with the behaviour of the propagator
this gives (for d⩾2)

�
i≈a≳b≳c

2−2a−2b−2c2bd+2cd≲ �
i≈a≳b

2−2a−4b+3bd≳�
i≈a

2−6a+3ad≈2(3d−6)i≈20i.

Both cases are fine for d=2 but diverge logarithmically in 𝜀−1 for d=3.

For d=2, time regularity can be argued as above so we end up with

⟦X3⟧∈C([0,T],𝒞−𝜅),

for 𝜅>0 in d=2.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (end of Monday's lecture)

In d=3 we will need to consider instead a distributional norm in the time variable. Alternatively
we can apply ℒ−1 to ⟦X3⟧ and define the stationary tree

X ≔ℒ−1⟦X3⟧=�
−∞

t
e−(m2−Δ)(t−s)⟦X3⟧(s)ds.

Now we have

𝔼|ΔiX (t, x)|2= 1
M3d/2 �

k1,k2,k3

[𝜑(2−i(k1+k2+k3))]2×

×�
−∞

t
�

−∞

s e−�m2+(k1+k2+k3)
2�(2t−s−s′)−(m2+k̂1

2)(s−s′)−(m2+k̂2
2)(s−s′)−(m2+k̂3

2)(s−s′)

(m2+ k̂1
2)(m2+ k̂2

2)(m2+ k̂3
2)

dsds′

= 1
M3d/2 �

k1,k2,k3

[𝜑(2−i(k1+k2+k3))]2×

× 1
�m2+(k1+k2+k3)

2�(m2+ k̂1
2)(m2+ k̂2

2)(m2+ k̂3
2)�4m2+ k̂1

2+ k̂2
2+ k̂3

2+(k1+k2+k3)
2
�

So now the same argument as before gives (for d<4)

𝔼|Δi⟦X3⟧(t, x)|2≲2(d−2)i�
c≳i

2c(d−2)�
a≳c

2ad−6a

≲2(d−2)i�
c≳i

2c(2d−8)≲�
c≳i

2c(3d−10)

(othe other case can be treated similarly) and when d=3 this implies that

X ∈C([0,T],𝒞1/2−𝜅)

for some small 𝜅>0.

Let us remark that, as X =⟦X3⟧, even X is not well defined in d=4.
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These computation are not uniform as M →∞ due to the constant in the initial bounds. For this
reason we have to use weighted spaces. For example:

𝔼‖X(t)‖𝒞−𝜅(𝜌)
2p ≲𝔼‖X(t)‖

B2p,2p
d/2p−𝜅(𝜌)

2p (Besov embedding)

≲�
i⩾−1

2(d−2p𝜅)i𝜀d �
x∈Λ𝜀,M

𝔼|𝜌(x)ΔiX(t, x)|2p (Fubini)

≲p�
i⩾−1

2(d−2p𝜅)i𝜀d �
x∈Λ𝜀,M

𝜌(x)2p�𝔼|ΔiX(t, x)|2�p (Hypercontractivity)

≲p �
i⩾−1

2(d−2p𝜅)i�𝔼|ΔiX(t, 0)|2�p((((((((((((((( �
x∈Λ𝜀,M

𝜌(x)2p

))))))))))))))) (Stationarity)

and now since

�
x∈Λ𝜀,M

𝜌(x)2p<1

for any algebraic decay exponent for 𝜌, provided p is large enough. This gives now the uniform
bound.

These arguments can be used to prove that in d=2

⟦X𝜀,M
n ⟧∈C([0,T];𝒞𝜀

−𝜅(𝜌))

almost surely with bounds uniform in 𝜀,M in Lp spaces, i.e.

sup
𝜀,M

𝔼��⟦X𝜀,M
n ⟧�C([0,T];𝒞𝜀

−𝜅(𝜌))
p �<+∞.

This is enough for stochastic quantisation. With some more work one can show that the stochastic
objects converge as 𝜀→0, M→∞ (with suitable embeddings in 𝒮′(ℝd)) in

C([0,T];𝒞−𝜅−𝛿(𝜌1+𝛿))

for any 𝛿>0.

4 The construction of the Euclidean Φ2
4 theory

In order the explain the main ideas of the contruction in a simpler setting, we restrict ourselves
now to d =2. Our aim is find a decomposition of (4) where all the quantities can be controlled
uniformly in M, 𝜀. In the first step, we isolate the term coming from the noise as it is expected to
be the most irregular in the limit M→∞, 𝜀→0. Recall that in d =2, (𝜉M,𝜀)M,𝜀 only has uniform
bounds in a weighted Besov space of regularity −2−𝜅 for every 𝜅>0. This regularity becomes
worse in 3 dimensions and we will see later that creates further difficulties and additional ideas
are needed to complete the proof. To remove this irregularity, we solve the corresponding linear
counterpart of (4) and let XM,𝜀 be its stationary solution, that is,

ℒ𝜀XM,𝜀=𝜉M,𝜀. (7)
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By Schauder estimates, (XM,𝜀)M,𝜀 is bounded uniformly in the weighted function space C𝒞−𝜅(𝜌𝜎)
a.s. for 𝜅,𝜎>0 arbitrary and 𝜌 as in (2).

Decomposing 𝜑M,𝜀=XM,𝜀+𝜂M,𝜀 we expect 𝜂M,𝜀 to be more regular. It satisfies

ℒ𝜀𝜂M,𝜀+(XM,𝜀
3 −3cM,𝜀XM,𝜀)+3(XM,𝜀

2 −cM,𝜀)𝜂M,𝜀+3XM,𝜀𝜂M,𝜀
2 +𝜂M,𝜀

3 =0. (8)

The advantage is that choosing cM,𝜀≔𝔼[XM,𝜀
2 (t)] the terms

⟦XM,𝜀
2 ⟧≔XM,𝜀

2 −cM,𝜀, ⟦XM,𝜀
3 ⟧≔XM,𝜀

3 −3cM,𝜀XM,𝜀, (9)

are bounded uniformly in M, 𝜀 in C𝒞−𝜅(𝜌𝜎) a.s. In particular, the terms defined in (9) are the
second and third Wick power of the Gaussian random variable XM,𝜀. Then by Schauder estimates
we expect (𝜂M,𝜀)M,𝜀 to be bounded uniformly in C𝒞2−𝜅(𝜌𝜎), hence it is function valued and all
the products in (8) are well-defined.

4.1 Weighted energy estimate

As the next step, we want to derive a weighted energy estimate for 𝜂M,𝜀 and make it uniform
in M, 𝜀. To this end, we test (8) by 𝜌4𝜂M,𝜀, or alternatively we apply the chain rule to calculate
1
2∂t‖𝜌2𝜂M,𝜀‖L2,𝜀

2 . We obtain

1
2∂t‖𝜌2𝜂M,𝜀‖L2,𝜀

2 +‖𝜌𝜂M,𝜀‖L4,𝜀
4 +‖𝜌2𝜂M,𝜀‖L2,𝜀

2 +‖𝜌2∇𝜀𝜂M,𝜀‖L2,𝜀
2

=−⟨𝜌4𝜂M,𝜀, ⟦XM,𝜀
3 ⟧+3⟦XM,𝜀

2 ⟧𝜂M,𝜀+3XM,𝜀𝜂M,𝜀
2 ⟩𝜀.

The L4,𝜀-norm on the left hand side is obtained from the cubic term, the L2,𝜀-norm from the mas-
sive term −𝜂M,𝜀, and finally the norm of the gradient comes after integration by parts from the
term −Δ𝜀𝜂M,𝜀. Observe that by Lemma 1 and Lemma ?, the two last terms on the left hand side
can be estimated from below by the H1−𝜅(𝜌2)-norm of 𝜂M,𝜀 for 𝜅>0 small so that the above
rewrites as

1
2∂t‖𝜌2𝜂M,𝜀‖L2,𝜀

2 +‖𝜌𝜂M,𝜀‖L4,𝜀
4 +‖𝜌2𝜂M,𝜀‖H1−𝜅,𝜀

2 (10)

≲−⟨𝜌4𝜂M,𝜀, ⟦XM,𝜀
3 ⟧+3⟦XM,𝜀

2 ⟧𝜂M,𝜀+3XM,𝜀𝜂M,𝜀
2 ⟩𝜀. (11)

All the terms on the left hand side will be crucially used to control the right hand side. More
precisely, it is necessary to absorb into the left hand side the norms of 𝜂M,𝜀 needed in the estimates
of the right hand side. The final estimate can only depend in a polynomial way on the given data,
namely, the uniform in M, 𝜀 estimates of

𝕏M,𝜀≔(XM,𝜀, ⟦XM,𝜀
2 ⟧, ⟦XM,𝜀

3 ⟧)∈[CT𝒞−𝜅,𝜀(𝜌𝜎)]3
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for 𝜅,𝜎>0 small and an arbitrary T ∈(0,∞). This is achieved by combining the basic results
for discrete Besov space from Section 1 with weighted Young inequality in a suitable way. The
key role is especially played by the L4-norm because it permits to balance the loss of weight on
the right hand side. This is due to the fact that the noise terms 𝕏M,𝜀 always require a part of the
weight to be bounded uniformly in M, 𝜀.

For the sequel, we fix the parameters 𝜅,𝜎>0 small as well as a weight 𝜌 as in (2) and a small
parameter 𝜄∈(0,1) so that 𝜌𝜄∈L4,0. This technical assumption will help us with several embed-
dings to close the desired energy estimate.

First, we apply Lemma 1, the duality (Lemma 2), the embedding H1−𝜅,𝜀(𝜌2)=B2,2
1−𝜅⊂B1,1

𝜅 (𝜌4−𝜎)
which holds provided 𝜌2−𝜎∈L2,𝜀 and the weighted Young inequality, to bound for an arbitrary
𝛿∈(0,1)

|⟨𝜌4𝜂M,𝜀, ⟦XM,𝜀
3 ⟧⟩𝜀|≲ ‖𝜌𝜎⟦XM,𝜀

3 ⟧‖𝒞−𝜅,𝜀‖𝜌4−𝜎𝜂M,𝜀‖B1,1
𝜅,𝜀

≲‖𝜌𝜎⟦XM,𝜀
3 ⟧‖𝒞−𝜅,𝜀‖𝜌2𝜂M,𝜀‖H1−𝜅,𝜀⩽Q(𝕏M,𝜀)+𝛿‖𝜌2𝜂M,𝜀‖H1−𝜅,𝜀

2 . (12)

Here and in the sequel, Q(𝕏M,𝜀) always denotes a polynomial in the uniform norms of 𝕏M,𝜀 and
it may change from line to line. Due to the small constant 𝛿, the last term on the right hand side
of (12) can be absorbed into (10).

Starting similarly for the second term in (11) and using the estimate for powers from Lemma ? as
well as the interpolation from Lemma 3 with 𝜃= 1−3𝜅

1−𝜅 , the embedding from Lemma ?, we obtain

|⟨𝜌4𝜂M,𝜀, 3⟦XM,𝜀
2 ⟧𝜂M,𝜀⟩𝜀|≲ ‖𝜌𝜎⟦XM,𝜀

2 ⟧‖𝒞−𝜅,𝜀‖𝜌4−𝜎𝜂M,𝜀
2 ‖B1,1

𝜅,𝜀

≲‖𝜌𝜎⟦XM,𝜀
2 ⟧‖𝒞−𝜅,𝜀‖𝜌1+𝜄𝜂M,𝜀‖L2,𝜀‖𝜌3−𝜄−𝜎𝜂M,𝜀‖H2𝜅,𝜀

≲‖𝜌𝜎⟦XM,𝜀
3 ⟧‖𝒞−𝜅,𝜀‖𝜌1+𝜄𝜂M,𝜀‖L2,𝜀

1+𝜃‖𝜌2𝜂M,𝜀‖H1−𝜅,𝜀
1−𝜃

≲‖𝜌𝜎⟦XM,𝜀
3 ⟧‖𝒞−𝜅,𝜀‖𝜌𝜂M,𝜀‖L4,𝜀

1+𝜃‖𝜌2𝜂M,𝜀‖H1−𝜅,𝜀
1−𝜃

⩽Q(𝕏M,𝜀)+𝛿(‖𝜌𝜂M,𝜀‖L4,𝜀
4 +‖𝜌2𝜂M,𝜀‖H1−𝜅,𝜀

2 ).

In the same spirit, the last term is bounded as

|⟨𝜌4𝜂M,𝜀, 3XM,𝜀𝜂M,𝜀
2 ⟩𝜀|≲ ‖𝜌𝜎XM,𝜀‖𝒞−𝜅,𝜀‖𝜌4−𝜎𝜂M,𝜀

3 ‖B1,1
𝜅

≲‖𝜌𝜎XM,𝜀‖𝒞−𝜅,𝜀‖𝜌𝜂M,𝜀‖L4,𝜀
2 ‖𝜌2−𝜎𝜂M,𝜀‖H2𝜅,𝜀

≲‖𝜌𝜎XM,𝜀‖𝒞−𝜅,𝜀‖𝜌𝜂M,𝜀‖L4,𝜀
2 ‖𝜌1+𝜄𝜂M,𝜀‖L2,𝜀

𝜃 ‖𝜌2𝜂M,𝜀‖H1−𝜅,𝜀
1−𝜃

⩽Q(𝕏M,𝜀)+𝛿(‖𝜌𝜂M,𝜀‖L4,𝜀
4 +‖𝜌2𝜂M,𝜀‖H1−𝜅,𝜀

2 ).
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Finally, this brings us to the estimate

1
2∂t‖𝜌2𝜂M,𝜀‖L2,𝜀

2 +‖𝜌𝜂M,𝜀‖L4,𝜀
4 +‖𝜌2𝜂M,𝜀‖H1−𝜅,𝜀

2 ⩽Q(𝕏M,𝜀) (13)

which we exploit further in the next section in order to deduce tightness of the approximate
invariant measures (5).

4.2 Extension operators

In order to construct the Euclidean quantum field theory as a limit of lattice approximations, we
need a suitable extension operator that allows to extend distributions defined on the lattice Λ𝜀
to the full space ℝd. To this end, we fix a smooth, compactly supported and radially symmetric
nonnegative function w∈Cc

∞(ℝd) such that suppw⊂B1/2 where B1/2⊂ℝd is the ball centered at
0 with radius 1/2 and ∫ℝd w(x)d x=1. Let w𝜀(⋅)≔𝜀−dw(𝜀−1 ⋅) and define the extension operator
ℰ𝜀 by

ℰ𝜀 f ≔w𝜀∗𝜀 f , f ∈𝒮′(Λ𝜀).

With a slight abuse of notation we used the same notation ∗𝜀 as for the convolution on the lattice
Λ𝜀 to denote the operation

(w𝜀∗𝜀 f )(x)≔𝜀d �
y∈Λ𝜀

w𝜀 (x− y) f (y), x∈ℝd,

which defines a function on the full space ℝd. The following result is proved in Section A.4 in [1].

Lemma 5. Let 𝛼∈ℝ, p,q∈[1,∞] and let 𝜌 be a weight. Then the operators

ℰ𝜀:Bp,q
𝛼,𝜀(𝜌)→Bp,q

𝛼 (𝜌)

are bounded uniformly in 𝜀.

4.3 Tightness

Let 𝜑M,𝜀 and XM,𝜀 be stationary solutions to (4) and (7), respectively, defined on a common proba-
bility space (Ω,ℱ,ℙ). These solutions can be obtained by solving (4) and (7) with random initial
conditions sampled from the probability measures (5) and

1
ZM,𝜀

exp{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{−2𝜀d �

x∈ΛM,𝜀

�−3cM,𝜀+1
2 |𝜑x|2+

1
2|∇𝜀𝜑x|2�}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

}}}} �
x∈ΛM,𝜀

d𝜑x,

respectively, where ZM,𝜀 denotes a normalizing constant. As above, we define 𝜂M,𝜀≔𝜑M,𝜀− XM,𝜀
and observe that it is a stationary solution to (8) so that the weighted energy estimate (13) holds
true. Taking expectation and using stationarity therefore implies

𝔼‖𝜌𝜂M,𝜀‖L4,𝜀
4 +𝔼‖𝜌2𝜂M,𝜀‖H1−𝜅,𝜀

2 ⩽𝔼Q(𝕏M,𝜀)≲1, (14)
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where the implicit constant is independent of M, 𝜀. In particular, it is important to note that the
form of the polynomial Q does not depend on M, 𝜀: the only dependence of Q(𝕏M,𝜀) on these
parameters comes through the norms of 𝕏M,𝜀 and the qunatity is uniformly bounded in expecta-
tion.

All the involved objects 𝜑M,𝜀,𝕏M,𝜀,𝜂M,𝜀 are extended periodically to the full lattice Λ𝜀. In order
to establish tightness of the measures (5), that is, the laws of 𝜑M,𝜀 at an arbitrary time, we make
use of the extension operator ℰ𝜀 defined in Appendix 4.2, which further permits to extend 𝜑M,𝜀
as a distribution on Λ𝜀 to a distribution on the full space ℝ2.

Theorem 6. The family of laws of (ℰ𝜀𝜑M,𝜀(0))M,𝜀 is tight on 𝒞−2𝜅(𝜌2+𝜅). Every accumulation
point 𝜈 is the candidate Euclidean Φ2

4 quantum field theory.

Proof. Lemma 5 below and (14) lead to

𝔼‖ℰ𝜀XM,𝜀(0)‖𝒞−𝜅(𝜌𝜎)
2 ≲1, 𝔼‖ℰ𝜀𝜂M,𝜀(0)‖H1−𝜅,𝜀(𝜌2)

2 ≲1

and consequently

𝔼‖ℰ𝜀𝜑M,𝜀(0)‖𝒞−𝜅(𝜌2)
2 ≲𝔼‖ℰ𝜀XM,𝜀(0)‖𝒞−𝜅(𝜌𝜎)

2 +𝔼‖ℰ𝜀𝜂M,𝜀(0)‖H1−𝜅,𝜀(𝜌2)
2 ≲1.

Since the embedding 𝒞−𝜅(𝜌2)⊂𝒞−2𝜅(𝜌2+𝜅) is compact, the result follows. □
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