These are some very incomplete notes, on what I plan to discuss in the tutorials. Please be
mindful that these notes are updated along the way and that they were not checked carefully
for typos and mistakes; proceed at your own risk and when in doubt refer to the cited material.

General Background on Littlewood-Paley theory

Notation

S(R%), S'(R?) for the Schwartz space of rapidly decreasing smooth functions and their
dual space of tempered distributions

For p€S(RY) F(¢)=¢, F ' (¢)=¢=(p)" the Fourier and inverse Fourier transform with
the usual extension to S'(R?) via duality.

I write A < B if there is a constant C >0 s.t. A< CB; and A 5B to emphasise that the
constant depends on k. I write A ~ B if there are constants c, C >0 such that cA<B< CA.

I always assume p(x) = (x)"¢ for some ¢, where (x) = (1+|x]*)1/? and note that
) UP sx=- (1)
We will fix ¢ > d for the remainder of these notes.

I use the convention

I ey = lof e = [10f 1P () dx,

which has the advantage that it naturally extends to the case p = oo, that is ||f|lz=~(,) =
sup,ere|pf1(x).

Things I will give without proof:

Result about Fourier multipliers (2); I only include the Bernstein Lemma (Lemma 1)
Existence of the partition of unity with the required properties

Independence of the partition of unity (though this is partially resolved in Lemma 17)
and the fact that the Besov spaces are Banach

compactness of the embedding in the finite volume/with appropriate weights (Remark 8)

Difference characterisation of Besov spaces see (6), I do the example for the L?~based
spaces and maybe for p=g=co.

Interpolation of Besov spaces (may be sketched if time allows/ people are interested)

Uniform bounds for the extension operator (requires more background than I have time
for); I only discuss general properties and how we may come up with this



+ In week 2, I might discuss the proofs of some Lemmas in [4], some possible options are
the interpolation Lemma A.5, the wavelet representation Lemma A.9, the estimates for
the localisers Lemma A.12 and one of the commutators from section A.3.

1 Functions with compactly supported Fourier transform.

As a basic reference for this section, see e.g. [1, Section 2.1].

For functions with compact support in Fourier space, derivatives act like dilations. In particular,
for functions spectrally supported on an annulus, we have equivalence of the norms |[D*ul|;» for
all k, made more precise in the following Lemma.

Lemma 1. [1, Lemma 2.1] Let C be an annulus, B be a ball in R%. Then there is a constant C >0
such that for any k€N 5o and 1< p<g<oo, and u€ LP(R?) it holds that

ked(1-1
« If supp(it) c AB, then | D uy|l1a:= sup|g-x 19%usll g < CK*1A 5 q)uuAuLp,

« If supp(it) c AC, then C™* " A¥|uyll o < IDFupll o< CF AR upll .
Proof. Let € C°(R?) be such that ¢=1 on B, then i1(£) = ¢(A7')4(&) and therefore
3%u=0%+u, where fi:=F H(H(A')), f:=£.
Thus, from Young's inequality for any % + lr =1+ %,

l0“uplla< 10 fallrllualle.

We compute
[ilx)=F A1) (x) =1 F 1 (9) (Ax) = 27f (Ax),
so then for any g€ Cc""(le), p, k€N 5, and |a|=k
10°g (Ax) 1= [19%g (A-)) (x)Pdx =2 [ 9% (Ax)) Pdx =27~ [10°g () Pdy = 2~ gl
Therefore,
19l = A%10%(f (1)) () larcay =20 Fjaf
and by Hélder's and Young's inequality for any r>1

r-1
r

r r-1 r r
lgllz-< ligliz="liglzr=< liglize+lIgllza< (gl +lIglz)".

Combined with [|gll1 < [|(1 +1x1%)¢ gll;=ll(1 +1x1*) 9|1, this yields for g =%,

(17%)d+k (1flr>d+k

19%fallzr < A Cll(L+1x)?9°fl|p=< A CI(L+A)*(()6) s



and since ¢ is compactly supported, [|(1+A)?((-)%})||;2< C* for some C > 0. Inserting the condi-

tion 1- lr = % —% yields the first claim.

For the second claim, proceed similarly, write (possible for any positive even degree monomial)

EPF= ) AP ALENY
lal=k

and writing gz§€ C®(R?) with gzgs 1onC and gzg(Bg(O)) =0 for some ¢ >0 sufficiently small. Then,
we can proceed as before, with

um Y furotu oA (D

-2k
lal=k €]

76)

so that

|§|20{
« |§|72k

« 1

F(for %) = Ag(i) A

(i£)*=A

and thus by definition of (Ay) 4,

| |2a
Z Aa|§|—2k:1

lal=k

which brings us to the same situation as before. m

More generally, also Fourier multipliers behave as homogeneous functions see e.g. [1, Lemma
2.2], i.e. if for any |a| < k there are constants C, such that

0% (&)< Colél™ ™,
then with o(D)u:=F1(c(§)a(£)) it holds for supp () c AC,
lo (D) ullzp< CA™|[ully. (2)

Besov spaces make use of these scaling properties by decomposing distributions into functions
with compact support in Fourier space. Fourier multipliers commute, i.e.

o1(D)ox(D)u=0y(D) 1 (D) .
We use the shorthand (1-A)%=(1-D?)?".

2 Littlewood-Paley decomposition and Besov spaces

We first define everything in the continuous space and then briefly mention how to adapt the
definition to the discrete setting. We will discuss weighted Besov spaces in week 2 only.



To localise functions in frequency space, we require a partition of unity. That such a partition
exists can be found in [1], we take this for granted here.

Proposition 2. There are smooth functions y,p:R%— [0,1] and an annulus C such that
i. supp(¢)cC, supp(y)<cB={lx|<1/2}.
ii. Y (&) + Y .00(2778) =1, for all E€R?
iii. Whenever |j-j'|=2, it holds that supp(¢(27/))n supp((p(Z‘j,)) =Q

iv. foranyj=1,supp(¢(27/))nsupp(y)=2.

Definition 3. Given a partition of unity as in Proposition 2, we define the associated Little-
wood—Paley—projectors as

Ai:=x(D), Aj=¢(27D), j=0.
We also write p_1=y and ¢j=@(27/-) for j=0, and write
Ki=F"'(¢j(D)),  j=z-1,

for the resulting convolution kernels in position space.

For any distribution we can then write for any u€ S (R%),

u= Z Aju= Z Kj»u. 3)

j=-1 j=-1

where convergence is to be understood in S'(R?).

Note that Aju is now a function supported on a ball (for j=-1) or on an annulus (for j=0), which
enables the use of the scaling properties from Lemma 1.

We readily verify by properties of the Fourier transform and interpolation,

- (p-1)

Ki=27Ko(2x),  IKflipons2 7 - (4)

From (3) we finally define the Besov spaces.

Definition 4. For any s€R, p,q€[1,00] and u€ S (R?) define

5 gsipn d )Y
lullps (rey= I{2¥1A jullppray}jz-1lleazy = Z 2 ”Aju”LP(]Rd) , (5)
j=-1



and the Besov space B;)q(JRd) ={ue€ S'(R%); ||u||B; (R < oo}

Remark 5.
+ The specific norm U5 (R) depends on the partition of unity, but all such norms are
equivalent (see also Lemma 17) and the space Bf,’q(JRd) does not depend on the specific

choice.

« The space (B;,,q(JRd), ”'”B[Slq(]Rd)) is a Banach space.
Let us quickly note that the parameter s€R indeed measures regularity in the usual sense.

Theorem 6. For any s,a€R and u€ S (R%)

2
lullg,, ~ 111 = A)* 2 ullpy .

Proof. Recall that the projectors A; are Fourier multipliers and as such commute with (1-A)%/2,

Moreover,

OP(1E1+ 1)< Gp1gP + 1)
Since supp(F (A-ju)) c B, it follows from Lemma 1,
A1 (1= A)*Pullp=11(1= A)*2(A_yw)llpe S IA-1ulpe.
For j 20, supp(F (Aju)) c2/C so that by (2), with (1-A)*/2=0(D) for o(x) = (1+|x|*)*/?
11 = 2)*2(Aju) e = 2714 ull .
Inserting this in the definition of the norms yields

I(1-A)Pfees ) 26OV @Y Al ) = llulsy,
jz-1

and the other inequality follows from (1-A)"%/2(1-A)%*/2=1 and thus applying the previous
result to (1-A)%%y,

g, =11 = 8) /(1= 8)*ullpy, < 1(1- D) ullgg z. .
Embeddings.

Since ¢9(Z) - t%(Z) for q; < g, we directly see Bf,’ql(]Rd) i B;,,qz(le).

Moreover, for s; < s1, 29% < 29V 50 that B;fq(]Rd) o B;,fq(]Rd).



Motivated by the Sobolev embeddings (trading integrability for regularity), can look for more
embeddings:

Lemma 7. Let 1spyjspysoo, 1sqis gpsoo. If sy sl—d(%—p—) then

B

S (R o B2 (RY).

P2, fJ2(

Proof. From Lemma 1, since Aju is supported on a ball of radius 2/,

1 1

jd(L-L
1A ullr2< C2 ("1 "2)||Aju||Lﬁl-

By direct computation

JqZ S2+
Il =" 27%A il < Z 2 G ud jul
2 2 _

—]qz S1=
<sup?2 Gi7) ZZWHA i < Iulgs  gay
J
1

provided sy < s; - d(E _E) Now the claim follows from ||u||BS1 LRY < IIMIIB;;ql(JRd). o

Remark 8. On a finite volume (or appropriate weighted spaces), then the embedding is compact
whenever the inequalitys are strict; that is whenever

d d

S9< S1, and sp—-—<s§——.

D2 j 41

End of Tuesday's session

2.1 Relation to Sobolev and Holder spaces

Recall the definitions of the Sobolev norms

lullfrs:=11(1=A)*ullf2ga),  SER
and

lully = D 10Uy gay,  KEN.

lalsk

One can check that W?$=HS. We will see that Besov spaces “fill the gap” between the Holder
spaces C% for @ €R and the Sobolev spaces WK, for p€[1,00] and k€N

We don't prove these relations; see [1, Theorem 2.36] for details.

More precisely, for any s€ (0,1), the norms satisfy the following difference characterisations

lu(y+-) = ullpprey \9 d
”u||lq35q~”u”2”+f <1( = )) o (6)

yls yl* |yl



with the obvious modification for ¢ =co. In particular,
BS, o(RY)=C5(RY),  sER\Z,
where for s€(0,1), we rely on Theorem 6. By a direct computation

B35(RY) =H'(RY), (7)
and for s¢Z,
B ,(R%) = WP(RY).

Remark 9. For s€Z, there is no equality but W*P(R) chJ)P(JRd). Take e.g. the space B, oo =C!
which contains all Lipschitz continuous functions, which are only almost everywhere differnti-
able compared to the space W which requires the existence of a weak derivative.

Example. We sketch how to show Bf,(R?) = L>(R?%). Combined with Theorem 6, this will
imply (7). Since S(R?) is dense in L2(R?) it is sufficient to consider u€ S(R?), in which case the
following equality holds in L*(R?),

Z Aju=u.

j=-1
Hence,

||u||i2(]Rd)= Z <AjU,Aj'u>L2(]Rd)= Z ||Aju||i2(]Rd)+ Z (Aju, Aj’Ll}LZ(]Rd).
Jz-1 Jjz-1 J#j
Jj=-1

By definition, (Aju, Aju) 12(rd) =0 if |j - j'I=2, so by Holder's and Young's inequality,

Z (AjU,Aj'U)LZ(]Rd)= Z (AjU,Aj'U)LZ(]Rd)

Jti lj=Jj1=1
Ji>-1

=2 Z (Aju, Aj+1u>L2(]Ra') <2 Z ||Aju||L2||Aj+IMHLZ

j=-1 j=-1
2 2
< AU+ Y A ul

jz-1 jz-1

Thus,

2 2 2
M2z gay <3 IAulE2 < llulo .
j=-1

For the opposite inequality, by monotone convergenve and since }°;. ; ¢;=1

lulgo, = Y [ Jos(OPa(®)FdE

j=-1

<[ JAOR Y lpf©)PdE< [ Ja(E)PdE= lulzqga,

j=-1

2.2 Interpolation.

Besov spaces are the natural interpolation spaces for the Sobolev spaces WP(R9).



Lemma 10. [4, Lemma A.3]For i=1,2 let s;€R, p;, q;€[1,00]. With

i=£+1_9 i=£+1;9 sp=0s1+ (1-6)sy,
po pr P2 9 9@ q

it holds that

IIfIIBSe |If|I351 IIfIIBSz -
92

Proof. Assume p;, ;€[ 1,00) (with essentially only notational differences for the case p;, g;= ).

Applying Holder's inequality to the conjugate exponents and i 9) we have

IIALfIILp—IIALf (x)|Pdx = I|Alf(x)|9P|A1f(x)|(l 0Py

S(I|Ajf(x)|;ﬂ1dx)9p/f>1 (J‘lAjf(prz)(l—e)p/pz

so then again by Holder now for = 5 ~ and —>— - e)q

I, = D 25MAL Iy

jz-1

<Y 29 [ (x)rdx) " ( [iag o)

jz-1

=3 @S WAL 25 WAL )0

j=-1

9/ @ -0)q/q:
( Z 215q1||Alf||L,,1) ( Z ZISQZHAJ”LPZ) . o

jz-1 jz-1

Remark 11.

« The interpolation in s corresponds directly to the interpolation of the weights (1 +|£%)/2
and (1+|&%)%/2,

+ Note that the interpolation result does not hold in this generality for the Sobolev spaces
WPk see eg. [2].

+  We might also have time next week to show [4, Lemma A.5], which states that
||f||3117;qs$ I 1Bz + IV f I3
2.3 Duality

The Besov spaces B;jz(]Rd) for s=0, are genuine distribution spaces, so that we cannot define
point evaluations x — u(x) for uEB;’q(le). However, since B;’q(le) c S'(RY), testing against
nice test functions, ¢ € S(R?) is well defined via the dual pairing

u(@) :=g wdy {Us @) s(R)



It turns out that asking for ¢ to be a Schwartz function is more restrictive than necessary, and
that we can define the u(f) already for f€ B, ]Rd)

Lemma 12. For p,q€[1,00] with Hélder conjugates p’, q'€[1,00], the bilinear map
(o) Bpyx By g — R (uf)— Z s ®d)Djth Ajf ) sra 8)
lj-J1s1

is continuous in the sense that
Ku, fHI< ||ullBl;,sq([Rd)||f||3;,yq,(]Rd)-
In particular for p, q# {1,0}, we have

(Bp.g)" =Byl
Proof. The proof is again by Holder's inequality, see e.g. [1, Proposition 2.29] O

Remark 13. We can also understand the Lemma as follows: In order to define the “mean” (i.e.
the integral) of a product fu, it is sufficient that f € B}, and u€ B} o o for some s1+5,20.

To define a pointwise product (the paraproduct), we will later require s; + s, >0.

3 Besov spaces on the Lattice

To deal with the small scale problems, it is convenient to first work on a finite lattice, so we need
to adapt the Littlewood—-Paley theory to the discrete setting, in such a way that we recover the
continuous theory as the lattice spacing vanishes and the volume cut-off is removed.

For some NEIN, N =N, let ¢ =27V and define the (infinite) lattice A, = ¢Z¢, and for M >0 such
that M /2¢ €N, the finite lattice A, p-A,n T where T = —[ -M, M)? is the d-dimensional

Torus of size M. We emphasise that all constants (unless explicitely stated otherwise) are inde-
pendent of both ¢, M.

The discrete Littlewood—-Paley projectors

Recall the notation introduced on Monday: Let Ap:=F(A,)=(e7'T)% Since F(A,) =A.=(¢7'T)4,
we only require a finite number of Littlewood—Paley projectors to cover the full frequency spec-
trum of disbtributions f €S'(A,). Therefore, we now only require a finite number of functions
in our partition of unity. More precisely, we define a modified partition of unity via

9;(£), j<N-J .
0/(&)=11- ) ¢i(¢) j=N-7, §€A

j<N-3

where here JEN is to be chosen such that

o 0sN-F<7F.: —1nf{]€Z supp(qoj);t[ oo 28) } Notethatjg—woandthat]g N - ¢ for

some ¢ €Z (since e =27N)



« Cannot take J=J, because the largest frequency is not exactly 2/ but 2/C|

+ Note also that 0 < N - J means that ¢ >0 cannot be too large, i.e. we need to choose
N = N,.

From there, can define the discrete Littlewood—Paley blocks as before
NS = Frl(ef(27)f)
where we recall the definition of the discrete Fourier transform

(Faf)(x)= Y f(R)e b, (FRIf)(R)= [, f () Pdx.

keA,

The discrete Besov—norms are then defined in complete analogy to (5),

. 1/q
||f||B;;<]Rd)=( > ZquuAjfn,‘fp,f) ,

-1<jSN-J
with
] 1p 1 1/p
||f||Lw=(e Y |f(x)|") (fZ Ao dn)lf (x)lP) : ©)
XEA, yen, ¢

with the obvious definition for the Sobolev and Hélder spaces using the discrete gradien

Remark 14. The results for the continuous Besov spaces (interpolation, embedding, relation
to Sobolev and Holder spaces) transfer to these discrete spaces, with constants uniformly in the
lattice spacing ¢>0.

End of Friday's session

4 Paradifferential calculus

Some references for this part include [1, 5] for the general theory and [8] for results on the
weighted spaces (however note the different convention ||f||Lp(p) =f IfIPdp = f If IPp(x)dx used
there).

We cannot hope to define a meaningful product on all distributions, consider e.g.
1
1:6=8  §-x=0 x-PV(;) -1

o)

o dx is the principal value distribution. If we want all of these to

where PV (¢) =lim,_, f‘x|<g
be true, then

0=(5‘x)-PV<%)#5~<x~PV(%)>=5‘1=5

10



so any such product cannot be associate. More precisely one can show the Schwartz impossib-
ility theorem: There is no associative algebra 4 over R sucht that

« S (R%cAis a subvector space
o lu=1gRe
« there is a linear operator acting like the differential on S'(R9)

« for functions, the multiplication reduces to the usual pointwise multiplication; that is for

any f,g€S(RY) cS'(RY), frag=(fg):= (x> f(x)g(x))

While this means we cannot expect to define a useful product for all the distributions, certain
products are still possible: The more singular one factor, the more regular we need the other
factor to be.

For u€ S(R?) and f €S (R?) we can try to find conditions under which the (formal) rhs of

f‘UZZ AlfA]u

JiJ

is meaningful; importantly: the product AjfAju is always well-defined as the product of ana-
lytic functions; however their sum might fail to converge.

Due to the support properties of the Littlewood—Paley projectors, (since 2/-1B + 2/C c 2/C) it
makes sense to decompose the product in the overlapping and disjoint frequency parts

fu= > AfAju+ Y AfAyu

lj-Jj1=<1 lj-J1=2

= > AfAu+ Y SiafAu+ Y Siqulf

lj-j1<1 jz-1 j=-1
where

Sjgi= Z Aj’g=2de_1(2j')*g
1<j<j

which is well defined. This suggests the following decomposition of the product

fu=f<u+fou+f>u (10)

where

f<u:= Z SioifAju,  frui=u<f, feou:= Z AifAju. (11)

jz-1 lj-Jj1=<1

We call fwu:=f<u+f>uthe paraproduct and f - u the resonant product.

Theorem 15. For any g€[1,00], —+—=—, —+—=% and s=s1+ s, €R it holds

i If < ulgz <1 f sl

i ||f <ullg; = IIfIIBg el whenever s; <0,

11



. - o
ii. ||f uIIB[sJ’f||f||B;},ql||u||B;§m, whenever s= sy + s3>0.

: s d 52 d 11 1 111
—+—==<1,—4+—=—-¢ +
In particular, for f € B,  (R?) and u€ By, , (R®) where ot 1, i 1 and s;+s2>0,

the product defined by (10) is well-defined and with s:= s A s, we have
Il fullss, < IIfIIB;}’quIUIIB;;qZ-

Remark 16.

« In other words, theorem 15 states that the paraproduct f x u is always well-defined
with a regularity no worse than s; As;. The product f < u behaves like u at the large
frequencies (so the regularity is the regularity of u) while f only provides a frequency
modulation; see the figure I steal from Max's lectures below

\VAY2 VAV

Figure 1. Figure 2.

D

Figure 3.

« The resonant part f - u can only be defined in general if s; + s, >0, which is essentially
sharp (at least in this generality); e.g. B;- 9,B; where B, is a Brownian motion cannot be
defined as a continuous bilinear operation on a distribution space (see [6, Proposition
1.29]). This shows that this restriction on the regularity is indeed required and not a
technical issue of this particular way to extend the usual product.

« The reason why we include all j, " sucht that |j - j|< 1 in the “diagonal”/resonant part is
related to the partition of unity. The only a priori information we have is that there is a
ball B and an annulus C such that

2C,  1j-j1>1

supp(Aijjfu)c{ 0B i fl<1.

In other words, in the resonant part, the microscopic (i.e. high-frequency) oscillations
of both f and u can accummulate and contribute to the large scale (i.e. low—frequency)
behavior, possibly causing preventing the defining series from converging.

+ In terms of the C*=Bg . spaces, the theorem reads as follows: For o, f€R,
If < glg=Iiflz=liglp for any fEL™, geCP,

If > glla+p=IIflleligllp for f<0, f €C* and gect,

12



If > gllasp < Iflllglly for a+f>0 f€C* and geC?,

Note that the first paraproduct in this expansion is the most singular term whenever
B <0 as there is no improvement in regularity coming from f.

« One can check that while f>u, f <u and f - u depend on the specific choice of the
partition of unity, the product fu does not; e.g. by approximation with smooth functions.

« For this definition to be reasonable, it should satisfy the Leibniz/product rule for differ-
entials whenever the product is defined. This can be checked easily using the facts that
the derivative is a continuous operator S'(R%) — §'(R?) and the (partial) sums converge
in §'(R%).

« If @>0, then the map C°(R?) x C°(RY) — C°(RY): (f,g) > fg=f<g+f-g+f>ghasa

continuous extension as a map By, 4 % B, ¢,— By 4. (i.e. the product we defined extends
the usual pointwise product)

+ Note that we see from (8), that for smooth functions,

ff(x)g(x)dx=<f,g>= > <Af,Ajg>=<1,f°g>=f(fog)(x)dx-

li-jls1

In other words, the only contribution to the mean is coming from the resonant part of
the product.

Observe that S;_1fAju, Sj_-1ul\jf are spectrally supported on an annulus of radius 2/C while

Aif Aju for |j - j1<1 has spectral support on a ball 2/B. Hence, the terms in (11) will always
be of the form u=7}. | u;for some u; with compact support in Fourier space. To this end

we need some auxilliary results.

j2-1

Lemma 17. Let {u;}j>-1 be a family of distributions such that for some ball B and an annulus A
it holds that

supp(F(u-1)) B supp(F(uj)) c2/A. (12)

If for some p,q€[1,00],

; . 1/q
{2 lwllze} -1ller= ( Y Wuujnzp) <o,

j=-1

then u:=Y ujGB;’q(le) cS'(RY) and

jz-1

lullss < {27z} ol

Proof. The assumptions on the spectral support of u; imply that there is a an N€IN such that
|l—]| =N= Aiuj=0.

Therefore,

Z Aiuj

lj-il<N

< Y Aups Y lufiplKilps Y iy

?  lj-il<N |j-il<N |j-il<N

IAullp=

13



where we used again the representation of the Littlewood-Paley—-projectors in terms of convo-
lution kernels,

~d<P’1)

Ki=2"Ko(2'x),  IKfpoys2 7 keER.

By the computation above

. . q
lullfs = 25UAulfs Y 2”q( Y ||u,~||Lp)

iz-1 iz-1 j-il<N
(i-])s 0] i
<[ Y 22y,
iz-1 \|j-i<N

N q
<2%V||lax b”[q(z),
where

2PN, j=-1 _[11iI<N
“"‘{o jeer BT s

so that

Y = (Z Ty j|<N}||u,~||Lp) =) biiai=bxa
i i

lj-il<N
By Young's convolution inequality
llax bllyacz) < llallallbllr < llallpa= {2z j = =1}lge.

which gives the claim. O
Lemma 18. For s<0, ||ullp; ~ I{2”1Sjullp }j>-1lls.

Proof. Writing Aju=S;.1u- Sju we have
||AjU||Lp$ ||Sj+1u||Lp+ ||Sju||Lp
so that

g, < {27182l Yol

holds for any s€R. For the missing (and more interesting) inequality, using s<0 so that 2°V/ “N<q
for j'<j,

ISllp< Y 1A ullp< Y 250 DA ul .

J<J J<J
Therefore,
iqs q sj’ 1
S 29SO yojeo 29 1A Ul | = llas bl
Jj=-1 j=-1 \j=-1

where a;= 25j,||Aj'u||Lp and bj=1;c and (axb);=3 ;. , aj by-j. So by Young's inequality

llax bliga< llallallbller < llallea = I{2¥1Aull o}l ps. o

14



Remark 19. Lemma 17 also shows that the definition of the Besov norm is independent of the
specific choice for the partition of unity.

Proof of Theorem 15. We claim that there is a ball B and an annulus C such that for any jz-1
and j =-1 such that |j - j'|<1,

supp(]:(Sj,LfAju))CZJé, supp(]:(Aijjfu))csz. (13)
Indeed, by properties of the Fourier transform

F(Sji-if Aju) = F(Sj-1f ) = F(Ajg)

so that using supp(¢+ ) csupp(¢) +supp () we have
supp(F(Sj-1f Aju)) <2/ 1B +2/C c2/C.

Here, we used by definition of the partition of unity, there is an annulus C such that %B +CcC.
The second estimate follows in the same way.

Starting with i), thanks to the support properties just shown,

q Lemma 17 A q
< ) 2 fAul.

$9 i>—
B2 Jjz-1

Y (Siafdu)

If < ullfs, =
B

p.q h

j=-1

To estimate the rhs, apply Holder's inequality,
1Sj-1f Ajullp < 1Sj-1f e 1A jull 2
and again the convolution kernel representation of the projectors,

1Si-1f e < IK-alip I f Nl SIHF Nl

Combined,

q j q q j q q q
If <l = ) 27N0S;af Al < I ) 2" AulEp =S WiplAuly
R P jz-1

Regarding (ii), we argue in the same way, now instead using Lemma 18 with s; <0,

> 29S8, f Al Y (21S; 1 flle) (252 A jull p2) ?

j=-1 j=-1

. q/q . q/q2
s( Y 2l f ||E}n) (Z 252q2}||A,-u||222)

Jjz-1 jz-1
< s sy .
~”f”Bp},ql||””Bp§,,,2
Finally, the estimate on the resonant term follows using (13), so that

j,Vj$(—N > Ag(Aj’fAju>=0.
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Expanding the definitions

(feu)= Z Ae(fou)= Z Z Z Ae(Aj-if Aju),

r=-1 t=-1 j=-1 |k|s1

So then we estimate,

AF ol = Y 1A kf gl Ajullyre

lkl<1
jzt-N
s N 2 IS QIALf i) (2IA )
lkl<1
jzt-N
<26y zsw(z 2131||Aj—kf||LP1)(Zj””Aj“”L"Z)
j=t-N Ikl<1

where we used j-£=-N and s=0 in the second to last line. To again apply Young's inequality,
define

aj= L2 Al y | 2A il by=Tson2%,
lki<1

so that the previous computation shows with |||, < oo for s<0,

I4
2 1A (f = wlle} < las bilpa < Nall Bl < lallpo < 1 s N2 - o

Remark 20. If g, g1, g2 # o, modulo keeping track of more indices, the argument can be used
verbatim to show that the sequences of partial sums

N N
{ Z Sj-]\fAjU} s { Z Z Aka]u} s
NeN NeN

j=-1 j=-1 k<1

are Cauchy and thus convergent in the same Besov space.

End of Monday's session

Short interlude: We discussed why we need both the stochastic estimates and the paraproducts
to make sense of the SPDE for ¢3 3, and why we need to include weighted Besov spaces as well.

5 Weighted Besov spaces

Since the GFF grows logarithmically at (spacial) infinity, control in the infinite volume requires
weighted spaces. Here, we just briefly explain how the previous unweighted results can be
adapted to the weighted setting. All properties we discussed previously for the Besov spaces
transfer verbatim, replacing Hélder's inequality in L? by Hélder's inequality in the weighted
LP(p) spaces.
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Define the weighted Besov space

B q(p):={f €S’ (RY); Iflls; () <o},

where

1y = X 20 - Y 21

j=-1 j=-1

The difference characterisation (6) transfers verbatim, that is for s€ (0,1),

lp(f (y+-) —f)uZpdy_

n+sq

£ UEs oy~ IS N+ Ly.<1 1y

Adapting the proof of Theorem 15 to this situation we can then show for any p;p,=p essentially
verbatim,

. f< u||B;?q(p)5”f”LPl(pl)”u”B;;q(pZ)
o f=< ullg, (p) = ”f”B;},ql(pl)”u”B;iqz(pz) whenever s; <0,
o Ife ullBs (p) = ”f”B;i,ql(m)”u”B;i,qz(pz)’ whenever s; + 55> 0.
In the same way, Lemma 12 becomes for any admissible weight p,
Ku, fHI < ”u”B;,ysq(p)”f”B;ryqr(p’l)-
With p;= (x) for i=1,2, the embedding (c.f. Lemma 7) remains intact provided ¢ = £, that is

d d
B;ll,ql (p1) — B;iqz(pz) whenever s; - m =5y— S

The embedding is compact if the inequalities are strict, i.e. s;> s, 1< and s; - pil >8y— p—dz.. (Since
all weighted Besov spaces are equivalent on the torus, this also implies that the embeddings are
compact for R? replaced by T9).

In computations, we may prefer to work with ||pf || B, instead of ||f||B;,’q( p)- It turns out that both
ways to include the weights are equivalent.

Lemma 21. || f||§;’q( " ||pf||,‘§;q.

Proof. Let n€IN such that n>|s|. Writing p= f:=p> f +p- f and splitting the product pf =p <
f +p=f, we use Theorem 15 with 1=pp~! to estimate both terms separately

lip =< fliBs , < llpllz=(po-1y | f 183 o) < IS 11B3, 4 (0)-
while since s+n>0 and s—n<s0, and using the Besov embedding B,',(p) < B,,(p) for s;>s,,

o= flls <10 = fllsg:r < If g rp)llpllszn o1y < U NB; o lIPllezn o1y < 1 1B, )
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where we can check by a direct computation that for any multiindex «,
19%pllge(p1y =llp ™! %Pl < c0o=> Iplizn (p-1y<c0 VnEN.
Combined this shows
lof 1, < 11113, (p)-

The converse follows in the same way with f=p~1(pf)=p~ 1< (pf) +p 1> (pf), from which we
get

1118 4000 < 107" < (P IB3 o001 + 107" = (PF B3 ()
S||p_1IILw(p)IIPfIIB;,q(p) + ”pf”B;,,q”p_IHCZ"(p) < lpfllBg (o)

Here we similarly check that for any n€IN, we have ”p_IHBEJ’m(p) <00, o

Remark 22. Some remarks regarding questions that came up.
«  Weighted Holder inequality: for p;p, = p, we have by the flat version of Holder's inequality
I &lzrcoy = llP1f P2gllre < llpifllzeill p2gllee = 1 f s oy 1811 p2( -

using this inequality in place of the flat inequality leads to weighted estimates for e.g.
the paraproducts.

+  Why we don't use exponential weights. Recall the notation for the convolution kernels
Kj=F(p(277-)) of the Littlewood—Paley projectors. Since ¢ is compactly supported,
K;j decays faster than any polynomial, but not exponentially at co. Recall that we often
used Young's convolution inequality to estimate

1K= fllp < WKl f Nlgp

Now, if we want to have a simliar estimate in the weighted setting,

1K« fpp = [ dx] [ dyp () f ()K= 3)|f

= [ dx

<4 [ay (o) ) (0K -3

P
[y 25 o) K (x-)

=1(p™'K)* (pF)Ibp<llp ™ Kb pf I

so that we want to choose a weight for which ||p’1Kj||L1 = dx(x)[Kj(x) < oo, which is true
for the polynomial weights, but would not be true for exponential weights.
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The Extension operator.
A detailed reference for this part is [7].

We construct the theory on the lattice first, but in the end, we are interested in the continum
limit. This means that we need a way of comparing discrete and continuous distributions, so we
require an operator to bring all the lattice theories {A}¢c4 to the full space R?.

Given any distribution on the lattice, we can define (-)ex:: S'((¢7'T)%¢) — S'(RY) as the usual
periodic extension, that is for g€S'((¢7'T)%) we define for any ¢€ S(R?)

gext(w):=g( > fP(“k))-

ke(e'T)¢

Conversely, for a e '~periodic function, we can define the restriction operator (-)res: S (RY) —
S'(AE). We would like to define gres:=1 A8 Since g is a distribution and the indicator function
is not smooth, this will in general not be well-defined. To overcome this, we can instead try
to mollify the indicator function, i.e. take §=1; »n for some n€ C;° (R?) and let gres:= Y/g. One
last problem remains: the support of this distribution now exceeds 1; so that we can only test
it against test functions defined on R~ this can be fixed by instead testing against the periodic
extension @e, € S(R?) instead of ¢ €S(A,). Combined this leads to the following definition

8res(¢) := (Y €) (Pext) = & (Y Pext),

A direct computation (try to do it) shows (gext)rest =g and that the definition does not depend on
the choice for .

Similarly, a simple way to lift a discrete distribution f €S (A,) to a continuous distribution
fiir €S (R?) is via a Dirac—comb, i.e.

fir=ed Y F(k)8(—K). (14)

keA,

This gives rise to the following relations

, Fae , A
S(Ae) — S(Ay)
(')dirl l(')ext
f
S(RY) 5 §(RY)
and a direct computation shows

(Fza(f))ext=Frafair), (15)

i.e. that the diagram commutes. The biggest problem with the extension from f + f3;; as defined
in (14) is the low regularity of §, which would mean that the extension f3;; can only be controlled
in spaces less regular than we would naturally expect (and thus preventing us from controlling
products like Z X? uniformly in the lattice spacing). Therefore, we instead work with the fol-
lowing extension operator defined already in the lecture

Ef = TFai(Y (Faf)ext)s  FES(AL),

19



which still statisfies (15), provided ¢ is a smear function (as in the definition of (-);e) in the
sense of [7]; that is

Zkezd Y(-k)=1
+ Y=1onsuppy;for jsN-F
«+ technical smallness property of the support of 1/, which ensures that
NESf=ENf  j<N-7J
In contrast to fii, the extended function £°f has compact spectral support and thus £°f € C*(R¢) n

S'(RY) with f(k)=E?(k) whenever k€ 'Z%. Indeed, using the properties of the Fourier trans-
form and (15) we have

&)

Frd(Y°) wraFrd(Faf ext=Fra(¥*) rrafaie(an = Fra(¥*) wa.f
Ad Y (Fray®) (k) f (k) €C™(RY).

keA,

Another advantage is that this definition interplays nicely with the Besov spaces, which we
cannot prove here.

Lemma 23. [7, Lemma 2.24]For s€ER, p,q€[1, 0], the operators

E%Bpq(p) = Bpg(p)

are bounded uniformly in ¢.

More specific material for ®3

Here we discuss some additional background required to close the energy estimates for ¢ =
X +Y + ¢, where (mod UV and IR cut-off),

BX=t BY=-AX]-3M([X])~Y
and for some = which contains unproblematic terms only, the remainder ¢ satisfies
B+ Ap3=-3A[X?] > p-3A[X?] > p+3A*bg + E.

Since all constants in this section are uniform in ¢>0 and M <o I drop the dependency in the
notation to avoid clutter.

1 Wavelet representation and localisation

The main goal of this section is to define a suitable decomposition
foUf +Uf
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such that

+ U.f contains only large frequencies of f; this part will be irregular but no blow up at
spacial co

+ Usf contains only small frequencies of f; this part will be regular but grow logarithmic-
ally at oo.

This will allow to treat the two sources (growth at co and regularity) separately.

1.1 Wavelet decomposition

We are mainly concerned with the localisation operators U. which are defined in terms of wave-
lets. Given a function f € B, (p), we can define

Am(f):=Af (27 Tm), -1<jsN-J mez

One can show [4, Lemma A.9], that is there is a J such that for A= (4; m)_i<j<N-7, meze as defined
above, it holds uniformly in ¢,

If sz, (o) ~ IACf g (py:= sup 2¥ sup p(2777 914 ), (16)
' ' -1<jsN-J  mezd

and the function f can be recovered from A via the wavelet representation

f= Y FalFpriga (). (17)

-1<jSN-7F

From (17) and (16), there is a one-to—one correspondence between sequences
{Ajm(f)} 12 jeN-7,mez4 € baseo(p) and distributions f € B3, ., (p). This allows to define the oper-
ators U- < in terms of the Fourier coefficients A; . We recall the definition of the localisers
U< and U > in terms of the sequence A,

Uf = (Aj,m(uff))—lsjsN—],meZd U = (Aj,m(u§f))—1sjsN—],meZd

where for some positive sequence (Li)k>-1 to be chosen indepent of >0,

Aim(f), ifiml~2% and j> /<Ly for some k€Z._,
0, otherwise

Ajm(U<f ) ¢={ (18)

>

Heuristically, the sequence L defines a notion of “low” and “high” frequencies.

Lemma 24. [4, Lemma A.12] Fix L>0. For real numbers a < <y and a<b< c such that

poob-a_c-b
p-a y-p "
and there is a sequence (Ly)k>-1 depending only on L, p and r such that the localisers defined in (18)
satisfy
a,e 7( B )L
LSS lBee (poy S 2 fa IIfIIBgfw(pb), (19)
. (y-B)L
IAf gz ey <2 PN gy
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Remark 25. In other words, this lemma allows to trade the good spacial behavior of U.f for
improved regularity and vice versa for Usf.

Proof. Using the equivalence of the norm (16),

WA f Bee (o)
sup 2% sup p“(Z_j_jm)Mj,m(Uffﬂ
-1sjsN-F7  mezd . )
= sup sup 2 P Dpab(27Tm)2fipb (27 Tm) A m(f)]

A

kz-1 -2k
Ly<jSN-7
= ||f||Bﬁ,€ (pb)Sup Sup 2_(ﬁ_a)]pa—b(2—]—]m).
e k=-1 m~2k

Ly<jsN-7F

Now for any m ~2¥ since <, a<b, j>Lr we have using the fact that weights p are
non-decreasing

2—(ﬁ—0{)js 2—(ﬁ—a)Lk and pa—b(z—j—j‘m) 5pa—b(2—Lk—]2k) 5pa_b(2k).

Combined,

”uff”Bi’;o(P“) < ”f”Bffw(pb) ]s;l_pl 2_(ﬁ—a)Lkpa—b(2k) < ”f”Bﬁfm(pb) ZEE o~ (f-a)Li+(b-a)cx

where cj = -logy(p(25)) —— co. To arrive at the desired estimates (19) we arrive at the first
condition on Ly,

(B-a)(Ly-L)=(b-a)cxy  for almost every k.
Following similar reasoning for U< we find

WS e oy = 1 e sup 2(r=B)Li=(c=b)ex.

which leads to the second condition
(y=B)(Lk-L) = (c-b)cy.
For both conditions to hold simultaneously, we see that we have to choose

b-

r= = and Li=rck o

Q
o

|
S

Proof of [4, Lemma A.9]. Wavelet representation (17). Let us first fix J: With B;= %[—2j+7, 2/+7d
we choose ¥ such that

supp(gof)ch jEN.
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For j<N -7, Bj~ (27*IT)4c (2NT)? = A, so that for any f€S'(A,), we understand o;Fa.(f) as
a periodic function on (2/*7T)¢. Then, we can compute the coefficients for the Fourier series
expansion as

£ 72 Im £ AE
Aj,m(f)=ij(<pijf>(y>ez 2IImy gy = FA (o Faf) (2 Tm) = A5F (27 Tm),

to write

(9 FF)(2) =2 DN 4y m(£)e = F 1704 (£)) (2):

mezZd

The boundary case j=N - J follows similarly.

Equivalence of norms (16). By definition

Mpse o= sup 27 sup p(27 T A ml)= sup  2Y sup p(27IIAYf (27 Tm)))
' -1sjsN-J  mezd -1sjsN-]  mezd
while

Iflsse,py= sup  2Ysup p(x)IAYf (x)|= sup 27 sup p(2Nm)IASf (27N m)
' -15jsN-J  méeA, -15jsN-J  mezd

In other words, the difference between the two norms comes down to the resolution of the mesh
(being the equal iff j=N -7) and we immediately see that

IMbge (o) <If NBge (o

The other direction requires some work, starting from

1A (x)] < igd IASF () = NS (277 Tm) |+ I0SF (277 Tm)).

To insert the weight, we use (1) for £>0, that is p(x)p(z)'<p(x-y)~". For x€2NZ? we can
find z€27-7 74 such that |x - 277 Im| < ﬁZ"j"j‘l and thus
inf p(x)p(z) 's inf p(x-2)'s(1+]d27 TP 2« C. (20)
2€277777, z€27- 174

Following the same strategy as in the proof of the Bernstein Lemma 1 (that is multiplying by a
function identically 1 on the support of F(Ajf) and estimating the kernel) we find for j<N - ¥

p)IASF (x) = ASf (277 Tm) | < 27T A F Il () (21)

putting all of this together we find

PLIINF ()1 < inf p(x)IATF (x) = Af (277 Tm) 1+ p()IASS (277 Tim)|

< C22 J- YAl p)+p(2‘j‘7m |Aj"f(2‘j‘3lm)|,o(x)p(Z"j‘}m)’1
< C2TNIAH lizoe () + CillAllyse, p)-
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Taking the supremum over all x € A, and chosing J sufficiently large so that ;27771 <1, we
obtain the claim. o

Proof of (21). For notational simplicity, let u:=Ajf and 1=2/ and let me ignore the weight,
trusting that it can be dealt with using (20). We start by rewriting

lu(x)-—u(z)|= ||f01d9Vu(x+ 0(z-x))(z- x)”st |z = x|V ul| L~

To estimate the lhs, we proceed as in the proof of the Bernstein Lemma: There is a ball B such
that F (u) < 2/B, so let g€ C°(R?) that is ¢ =1 on B. Then,

Vu=VGiru Gu=F L (A1),
SO

IVullz= < IVGllp: lull=

and it remains to estimate |[VG,|l < supg<1110°Gyllp:. Repeating the same computations as in the
Bernstein Lemma we have

IVGallp = A.
Therefore, using that |x-27"Tm|</d 27771
AT (x) = Aff (277 Tm) <1277 Tm = x| 27| Af e s 277 A e 0

2 Approximate duality and commutators

[I want to discuss and prove [4, Lemma A.13] and one of the commutators in [4, Lemma A.14]].

Recall that in the energy estimate, we have to control the terms
(P 0. =AIX?] = @)+ (p 0, ~A[X?] > ),

both of which are individually problematic, but thanks to an approximate duality, the combin-
ation of both terms can be controlled. Define for f,g, h€ S(RY) the operator

C(f.gh):=h-(f<g)-f(h-g).

Once can show that for p=p; 0,03, p1, p2, p3€[1, 0] such that%=%+é and a+f+y>0, f+y+#0,

C extends to a trilinear operator on the appropriate Besov spaces with the bounds
”C(fa ga h) ”B‘fg(,ﬂ) < ”f”Bgl”(pl)”g”Boﬁow(pz)”h”B[};z,w(m)
Again for f,g,h€ S(]Rd), we also define

Dy(f.8:h)=(pf.g-hy—(p(f<g),h).
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Note that D essentially measures by how much g > fails to be the dual of g-; we want to show
that this error can be controlled. See also [3].

Lemma 26. (Approximate duality) [4, Lemma A.13] Let p, p; be as before. If a, B, y are such that

. a’y>o
. ﬂ+y<0
o a+f+y>0,

then D, extends to a trilinear operator H*(p;) » CP(py) x HY (p3) — R, with

IDy(f& M S I f I(olIglos 1A (o)

Proof. We can rewrite the operator D, in term of C, defined in (2),

Dy(f,8:h)=(p,C(f.gh))~(p,(f<g)~h —(p.(f<g)<h.

Then we just have to apply the estimates for C and the paraproduct estimates. O
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