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1 Wiener Chaos

In this note, we shall follow the second and third chapters of the book of Janson
[Jan97]. There are also some nice, accessible notes by Alberts and Khoshnevisan
available in Section 3 here https://www.math.utah.edu/~davar/math7880/

F18/GaussianAnalysis.pdf. Some additional books to look at are [NN18,
Nua06].

We recall here a theorem stated in the main lectures, known as Isserlis’
Theorem. It is also sometimes called the Wick Theorem, but in this notes, we
shall refer to a more general result, which we will call the Wick Theorem.

Theorem 1.1 (Isserlis’ Theorem). Let X1, . . . , Xn be jointly Gaussian random
varaibles, each with mean 0. Then,

E[X1 · · ·Xn] =

{
0 n odd∑

P∈Mn

∏
(i,j)∈P E[XiXj ] n even

,

where Mn is the set of perfect matchings/pairings P of the set {1, . . . , n}.

On a probability space (Ω,F ,P), A Gaussian Hilbert space H is a com-
plete real vector space consisting of mean-zero Gaussian random variables. Such
a space must be a subspace of L2(Ω,F ,P) since Gaussian random variables have
finite second moment.

For n ≥ 0, define Pn(H) to be the closure in L2(Ω,F ,P) of the vector space

Pn(H) := {p(ξ1, . . . , ξm) : p is a polynomial of degree ≤ n; ξ1, . . . , ξm ∈ H;m <∞}.

For n ≥ 0, define the subspace H :n: inductively as follows: first H :0: = P0(H) =
R (the space of constants), and for n ≥ 1,

H :n: := Pn(H) ∩ Pn−1(H)⊥.

Here, Pn−1(H)⊥ is the orthogonal complement of Pn−1(H) in L2(Ω,F ,P).
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We note here that taking the closure is only necessary when H is infinite-
dimensional. By construction, the spaces (H :n:)n∈N are mutually orthogonal and
closed. The following theorem is known as the Wiener chaos decomposition.
It is fairly straightforward to prove; one just needs to show that the orthogonal
sum on the left is the entire L2 space. The details may be found, for example,
in [Jan97, Theorem 2.6].

Theorem 1.2. We have the orthogonal decomposition

∞⊕
n=0

H :n: = L2(Ω,F(H),P),

where F(H) is the σ-algebra generated by the random variables in H.

Assume that the random variables in H generate F . Then, for n ≥ 0 and
ξ1, . . . , ξn ∈ H, we let πn : L2(Ω,F(H),P) → H :n: denote orthogonal projection
(Recall that this means πn(x) is the unique vector in H :n: such x − πn(x) ∈
(H :n:)⊥. For ξ1, . . . ξn ∈ H, define the Wick product

: ξ1 · · · ξn := πn(ξ1 . . . , ξn).

To state the next theorem, we define a Feynman diagram. A Feynman di-
agram is a graph with n vertices and r ≤ n

2 edges, such that each vertex is
incident to at most one edge. There are r pairs of edges, and n − 2r unpaired
vertices. Let Fn be the set of Feynman diagrams on n vertices. For γ ∈ Fn,
let r(γ) be the number of edges, let E(γ) = {(i, j) : i,j connected} be the set
of edges, and let U(γ) be the set of unmatched vertices. For such a Feynman
diagram and ξ1, . . . , ξn ∈ H, define

v(γ; ξ1, . . . , ξn) =
∏

(i,j)∈E(γ)

E[ξiξj ]
∏

i∈U(γ)

ξi.

We now state the following consequence of Isserlis’ Theorem. Here, we will
refer to it as Wick’s Theorem. This is in fact, a more general version of Isserlis’
Theorem. Indeed, for n ≥ 1, we must have E[: ξ1 · · · ξn :] = 0 by orthogonality.
It is an exercise to verify that the appropriate terms cancel, and we are left the
equality in Isserlis’ Theorem.

Theorem 1.3 (Wick’s Theorem). For ξ1, . . . , ξn ∈ H,

: ξ1 · · · ξn :=
∑
γ∈Fn

(−1)r(γ)v(γ; ξ1, . . . , ξn). (1.1)

Proof. Denote the right-hand side of (1.1) as ψ. We need to show that ψ ∈
H :n: = Pn(H) ∩ Pn−1(H)⊥ and that ψ − (ξ1 · · · ξn) ∈ (H :n:)⊥. Observe first
that ψ ∈ Pn(H), and the only term of degree n in the sum (1.1) is ξ1 · · · ξn. All
other terms in the sum (1.1) involve matching at least two terms and hence are
of order ≤ n − 2. Thus, ψ − (ξ1 · · · ξn) ∈ Pn−2(H) ⊆ Pn−1(H) ⊆ (H :n)⊥. It
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remains to show that ψ ∈ Pn−1(H). Let m ≥ 1 and choose ξn+1, . . . ξn+m ∈ H.
We show that, if m ≤ n − 1, then E[ψξn+1 · · · ξn+m] = 0. We write things out
as follows:

E[ψξn+1 · · · ξn+m] =
∑
γ∈Fn

(−1)r(γ)E[v(γ; ξ1, . . . , ξn)ξn+1 · · · ξn+m]

=
∑
γ∈Fn

(−1)r(γ)
∏

(i,j)∈E(γ)

E[ξikξjk ]E
[ ∏
i∈U(γ)

ξi

m∏
j=1

ξn+j

]
.

Using Isserlis’ Theorem, we see this is 0 if n +m is odd, and if n +m is even,
we obtain

E[ψξn+1 · · · ξn+m] =
∑
γ∈Fn

(−1)r(γ)
∑

P∈Mn+m

P extends γ

∏
(i,j)∈P

E[ξiξj ]

=
∑

P∈Mn+m

∏
(i,j)∈P

E[ξiξj ]
∑
γ∈Fn

P extends γ

(−1)r(γ).
(1.2)

Above, we say that P extends γ if every pair of vertices in P is also a pair in
γ.

Given P ∈ Mn+m, we seek to compute the sum∑
γ∈Fn

P extends γ

(−1)r(γ).

If P has ℓ pairs of vertices (i, j) for i, j ≤ n, then there are 2ℓ elements of γ ∈ Fn

such that Pn extends γ. This is because, for each of the ℓ pairs (i, j) ∈ P with
i, j ≤ n, we have 2 choices: we may keep or remove that pairing for γ. For each
1 ≤ r′ ≤ ℓ, there are

(
ℓ
r′

)
choices of γ ∈ Fn such that P extends γ and r(γ) = r′.

Therefore,

∑
γ∈Fn

P extends γ

(−1)r(γ) =

ℓ∑
r=0

(
ℓ

r

)
(−1)r =

{
1 ℓ = 0

(1 + (−1))ℓ = 0 ℓ > 0.

Hence, by (1.2), we have

E[ψξn+1 · · · ξn+m] =
∑

P∈Mn+m

(i,j)/∈P if i,j≤n

∏
(i,j)∈P

E[ξiξj ].

In words, the sum is over perfect matchings P ∈ Mn+m so that no two vertices
less than n are matched. If m ≤ n − 1, there are no such perfect matchings,
and so the expectation is 0. Hence, we have shown ψ ⊥ Pn−1, so ψ ∈ H :n: as
desired.

In the proof of Theorem 1.3, we have also shown the following:
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Lemma 1.4. For n,m ≥ 1 and ξ1, . . . , ξn+m ∈ H,

E[(: ξ1 · · · ξn :)ξn+1 · · · ξn+m] =
∑

P∈Mn+m

(i,j)/∈P if i,j≤n

∏
(i,j)∈P

E[ξiξj ].

This has the following consequence.

Corollary 1.5. For ξ1, . . . , ξn, η1, . . . , ηm ∈ H, we have

E[(: ξ1 · · · ξn :)(: η1 · · · ηm :)] =

{
0 n ̸= m∑

σ∈S(n)

∏n
i=1 E[ξiησ(i)] n = m,

where Sn is the symmetric group.

Proof. Note that : ξ1 · · · ξn :∈ H :n: and : η1 · · · ηm :∈ H :m:, and if n ̸= m,
H :n: ⊥ H :m:, so the result follows. For n = m, we note that

: ξ1, · · · ξn :⊥ η1 · · · ηm− : η1 · · · ηm :,

and so
E[(: ξ1, · · · ξn :)(: η1 · · · ηn :)] = E[(: ξ1, · · · ξn :)η1 · · · ηn].

The result now follows from Lemma 1.4, noting that the only perfect matching
of 2n vertices so that ξi is not paired with to ξjj for i, j ≤ n are those for which
each ξi is paired with one of the ηj .

Using Theorem 1.3, we explicitly write : ξ1 · · · ξn : for n ≤ 4:

: ξ1 : = ξ1,

: ξ1ξ2 : = ξ1ξ2 − E[ξ1ξ2],
: ξ1ξ2ξ3 : = ξ1ξ2ξ3 − E[ξ1ξ2]ξ3 − E[ξ1ξ3]ξ2 − E[ξ2ξ3]ξ1

: ξ1ξ2ξ3ξ4 : = ξ1ξ2ξ3ξ4 − ξ1ξ2E[ξ2ξ3]− ξ1ξ3E[ξ2ξ4]− ξ1ξ4E[ξ2ξ3]
− ξ2ξ3E[ξ1ξ4]− ξ2ξ4E[ξ1ξ3]− ξ3ξ4E[ξ1ξ2]

+ E[ξ1ξ2]E[ξ2ξ3] + E[ξ1ξ3]E[ξ2ξ4] + E[ξ1ξ4]E[ξ2ξ3]

We can see directly from here that if ξ ∼ N (0, 1), then : ξ2 := ξ2 − 1 = H2(ξ),
: ξ3 := ξ3 − 3ξ = H3(ξ), and : ξ4 := ξ4 − 6ξ2 + 3 = H4(ξ), where Hn is the
nth Hermite polynomial. This is a consequence of the fact that (: ξn :)n≥0 are
orthogonal. In general, we have the following:

Lemma 1.6. If ξ ∼ N (0, σ2), then, for n ≥ 0, : ξn := σnHn

(
ξ
σ

)
.

This observation along with Wick’s Theorem gives us a combinatorial way
of calculating the Hermite polynomials:

Corollary 1.7. For n ≥ 0,

Hn(x) =

⌊n
2 ⌋∑

m=0

(−1)mn!

m!(n− 2m)!2m
xn−2m.

Proof. By Wick’s Theorem, the coefficient of xm in Hn(x) is the number of
Feynman diagrams with on n vertices that leave m vertices unmatched. The
details are left as an exercise.
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2 Equivalence of moments/hypercontractivity

We know from standard analysis (see, for example, [Fol99, Proposition 6.12])
that, for any random variable X, (E[|X|p])1/p ≤ (E[|X|q)1/q whenever 0 ≤ p ≤
q ≤ ∞. That is, higher moments can be used to bound the lower moments. In
Gaussian spaces, we can also do the reverse. That is, lower moments can be
used to bound the higher moments. Let’s see this with a simple example: if

ξ ∼ N (0, σ2), then ξ
d
= σξ0, where ξ0 ∼ N (0, 1). Then, for p > 0,

E[|ξ|p] = σpE[|ξ0|p],

and we see that for q ̸= p, the ratio
∥ξ∥q

∥ξ∥p
does not depend on σ. In particular,

for q, p > 0, there exists a constant C > 0 so that ∥ξ∥q ≤ C(p, q)∥ξ∥p for
all centered Gaussian random variables ξ. Using the results developed in the
previous section, one can actually say something much stronger: For n ∈ N,
such a bound holds for all polynomials of centered Gaussian random variables
of degree at most n. The full proof is somewhat lengthy; we omit it here.
However, Wick’s Theorem and Corollary 1.5 are the key building blocks. See
[Jan97, Theorem 3.50] for a proof.

Theorem 2.1. Let H be a Gaussian Hilbert space. For n ∈ N and p, q > 0,
there exists a constant C(n, p, q) so that, for all X ∈ Pn(H),

∥X∥q ≤ C(n, p, q)∥X∥p.

The typical application of Theorem 2.1 will be for p = 2 and q ≥ 2. This
is because the Itô’s isometry often allows for nice computations of the second
moment.

The property in Theorem 2.1 is sometimes called hypercontractivity.

3 Practice with Wick’s/Isserlis’ Theorem

Let Y = Y (t, x), t > 0, x ∈ Td be the solution to the linear equation

dY = (∆−m2)Y + ξ,

from the main lecture. We have seen that Gaussian free field on Td for d ≥ 2
is invariant for this equation. Recall from the lectures that this is a centred
Gaussian process indexed by test functions φ. First, we will consider the fixed-
time stationary solution to the linear equation and write Y (x) = Y (0, x). We
formally write

⟨Y, φ⟩ =
∫
Td

Y (x)φ(x) dx,

noting that the pointwise values Y (x) are not well-defined. For mass m > 0, we
have the formal covariance function

E[Y (x)Y (y)] =
∑
k∈Zd

1

|k|2 +m2
ei⟨k,x−y⟩

{
= ∞ x = y, d ≥ 2

<∞ otherwise
(3.1)
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Furthermore, it was made in a remark that

E[Y (x)Y (y)] ≲
1

|x− y|d−2+δ
(3.2)

for small δ > 0.
We have seen that we may construct Y by first taking a discrete approxi-

mation Yε, and then send ε ↘ 0. Let φ ∈ C∞(T2) be a smooth test function.
We now wish to study the moments of Y 2

ε and Y 3
ε . In light of Theorem 2.1, we

wish to find the second moment of ⟨Y 2
ε , φ⟩ and ⟨Y 3

ε , φ⟩.
Observe that

E
[
⟨Y 2

ε , φ⟩2
]
≈

∫
Td×Td

E[Yε(x)2Yε(y)2]φ(x)φ(y) dx dy.

The ≈ just comes because we are really taking a sum instead of an integral. By
Isserlis’ Theorem, we may compute the expectation inside the integral:

E[Yε(x)2Yε(y)2] = E[Yε(x)2]E[Yε(y)2] + 2E[Yε(x)Yε(y)]2

In light of (3.1), we see that, for d ≥ 2, E[Yε(x)2]E[Yε(y)2] will diverge as
ε↘ 0, while E[Yε(x)Yε(y)]2 will converge. To remedy this, replace Yε(x)

2 with
: Yε(x)

2 :. By Lemma 1.6, this is equal to Yε(x)
2 −Cε, where Cε is the variance

of Yε(x). Then, by Corollary 1.5,

E[(: Yε(x)2 :)(: Yε(y)
2 :)] = 2E[Yε(x)Yε(y)]2,

And then, by (3.2),

E
[
⟨Y 2

ε , φ⟩2
]
≲

∫
Td×Td

φ(x)φ(y)

|x− y|2d−4+2δ
dx dy.

For this to be finite, we have the condition 2d − 4 < d, which means d < 4.
Hence, this renormalization works in dimensions 2 and 3.

We can do a similar thing with Y 3
ε :

E[⟨Y 3
ε , φ⟩2] ≈

∫
Td×Td

E[Yε(x)3Yε(y)3]φ(x)φ(y) dx dy.

Then, Isserlis’ Theorem tells us

E[Yε(x)3Yε(y)3] = 9E[Yε(x)2]E[Yε(y)2]E[Yε(x)Yε(y)] + 6E[Yε(x)Yε(y)]3,

and the term E[Yε(x)Yε(y)]2 diverges. To remedy this, we may again replace
Yε(x) with : Yε(x)

3 := Yε(x)
3 − 3CεYε(x), and then by Lemma 1.4, we have

E[(: Yε(x)3 :)(: Yε(y)
3 :)] = 6E[Yε(x)Yε(y)]3.

Then,

E[⟨Y 3
ε , φ⟩2] ≲

∫
Td×Td

φ(x)φ(y)

|x− y|3d−6+3δ
dx dy,
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and for this to be finite, we have the condition 3d − 6 < d, which gives d < 3.
Hence, this renormalization for fixed time makes sense in dimension 2, but not
dimension 3.

To remedy this issue in d = 3, we must no longer treat the time t as fixed,
and consider Y = Y (t, x) formally as a distribution on R×Td. Then, we instead
consider smooth functions φ ∈ C∞(R× Tn), so that, formally,

⟨Y, φ⟩ =
∫
R×Td

Y (t, x)φ(t, x) dt dx.

In this setting, the relevant metric is a parabolic distance on R × Td so that
d((t, x), (t′, x′)) =

√
|t− t′|+ |x−x′|d. Then, R×Td essentially becomes a d+2

dimensional space. A similar calculation as above leads to

E[⟨Y 3
ε , φ⟩2] ≲

∫
(R×T2)×(R×T2)

φ(t, x)φ(s, y)

d((t, x), (s, y))3d−6+3δ
dt dx ds dy,

and this is finite if 3d− 6 < d+ 2, which holds for d < 4.
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