Schauder estimates.

Ref: Bahauri, Chemin, Danchin "Fourier analysis and nonlinear PDE"

Simplification: work on II, since this avoids weights (which are needed in infinite volume) and lattice effects.

 $\partial_{\alpha} \left(\frac{-4\pi^2 |\mathbf{p}|^2 t}{e} \right) \partial_{\beta} \mathcal{L}(\mathbf{p})$

 $\frac{1}{1} \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1$

and this shows the desired estimate

Prope	For	£E(0,1]	,BZQ	γ	19E	1,	60	[,
		Harl		/ '				"
WE	VUNE	TVIUT						

Define Define $Duh(f)(f) := \int e^{cf} S(A-m) f(S) dS.$

Then we have the following Schauder estimate.

Il Duhcf)(t) || Bp,g

