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Abstract

In this paper I show that, with sufficient flexibility in the covariance
structure of the risk factors and the market prices of these risks, a
low-dimensional term structure model can simultaneously price bonds
and related options. I find that a component of volatility risk largely
unrelated to the shape of the yield curve is a determinant of expected
excess returns for holding long maturity bonds. Moreover, I also find
evidence for the converse relationship that the shape of the yield curve
affects the premium that agents demand for holding volatility risk. I
find that dynamic hedging strategies using bonds alone produce rea-
sonably good hedges for derivative positions during most periods. The
structure of risk in my model that gives rise to these features of volatil-
ity is distinct from that inherent in recent models with “unspanned
stochastic volatility.”



1 Introduction

In this paper, I study the joint properties of the risks underlying bond and
bond option markets. I find that the volatility of the yield curve is an
important predictor of future bond returns and that this volatility is better
identified through interest rate options. Moreover, the converse relationship
holds as well that the shape of the yield curve identifies the risk premium
that investors demand for bearing interest rate volatility risk. I also show
that hedging positions sensitive to interest rate volatility risk using bonds
requires a dynamic strategy and the degree to which the level, slope, and
curvature of the yield curve can hedge such positions is time-varying.

I study these questions through the lens of a four-factor affine term
structure model. Though dynamic models with a small number of risk factors
(e.g., two or three) have had considerable success at pricing bonds across
a broad spectrum of maturities, they typically generate large errors when
pricing options on these bonds.! There are two critical features of my model
that underlie its relative success in simultaneously pricing bonds and bond
options. First, I focus on members of the affine family of term structure
models ((Duffie and Kan (1996)) that are known to be successful in pricing
bonds and allow flexibility in the conditional covariances of the risk factors.
In particular, I use an identified version of the affine process specification
given in Duffie et al. (2003b) which allows for a richer covariance structure
among risk factors than the commonly used specification of Dai and Singleton
(2000).? The second feature of my analysis is the dependence of the market
price of risk on the state of the economy. I follow Cheridito et al. (2007) in
parameterizing the market prices of risk, which extends the specification of
Duffee (2002) and Dai and Singleton (2002). This extended specification for
the market price allows for time-variation in the premium associated with
volatility risks, an element that I find critical for matching the data.

I find that the relationship between the yield curve and volatility has a
number of interesting features regarding the hedging of portfolio positions

'Mean-squared relative pricing errors for options on the order of 30% are reported in
Buhler et al. (1999), Dreissen et al. (2003), and Jagannathan et al. (2003). Trolle and
Schwartz (2009) propose a model with that fits both the term structure of interest rates
and a cross-section of options, though their preferred model include a total of 24 factors
(18 of which are locally deterministic).

%I use the identification scheme in Joslin (2006), but see also Collin-Dufresne et al.
(2008).



sensitive to volatility risk. First, I show that the fraction of variation in
volatility explained by the the yield curve (as summarized by the level, slope,
and curvature) is time-varying where at times over 70% of the variation is
explained by variation in the yield while at other times the yield curve explains
almost none of the variation times (for example, around the LTCM liquidity
crisis). Thus in order to optimally hedge against volatility risk, one must
pursue a dynamic strategy whose effectiveness will be time-varying as well.
Moreover, in order to hedge interest rate option straddle positions (a position
very sensitive to volatility risk), a dynamic strategy is even more critical due
to the relative importance of volatility and yield risk as the position moves
away from the money.

My model also shows that volatility plays an important role in determining
risk premiums that investors demand for bearing interest rate risk. A number
of studies have shown that the shape of the yield curve is related to expected
excess returns for holding long maturity bonds. My results show that volatility,
incrementally to the level, slope, and curvature of the yield curve, is an
important determinant of expected excess returns for holding interest rate
risk, explaining approximately 40% of the variation in expected returns. This
result is consistent with the results of Wright (2009) who argues that inflation
uncertainty plays an important role in determining bond risk premiums. This
phenomenon offers a potential explanation associated with the 'conundrum’
period where during 2004-2007 the federal reserve raised interest rates in
14 straight FOMC meeting while long maturity yields remained relatively
constant. As other researcher have noted (e.g. Rudebusch et al. (2006)) this
pattern could be attributed to declining risk premiums, one cause of which
my model would attribute to declining volatility.

As in equity markets, investors typically demand a risk premium for
bearing interest rate volatility risk. This premium is typically negative since
volatility is usually high in bad states, though the premium does occasionally
become positive. I demonstrate a two-way feedback effect where, in addition
to the effect volatility has on the premium for bearing interest rate risk, there
is an effect where the shape of the yield curve helps determine the premium
that investors demand for bearing volatility risk.

Although my model incorporates a component of volatility risk that varies
independently of the level, slope, and curvature of the yield curve, the mech-
anism is very different from a model with unspanned stochastic volatility
(USV, see Collin-Dufresne and Goldstein (2002b)). In these models, volatility
varies independently of the entire yield curve due to a very specific type
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of cancellation. In general, volatility will drive long maturity interest rates
through two channels: (i) a convexity effect and (ii) through an expecta-
tions effect whereby changes in the level of volatility affects (risk-neutral)
expectations of future short rates. Models with the USV property rely on
an exact cancellation of these two effects across maturities. I show that the
first channel, in fact, generates very little variation in the yield curve because
convexity effects are very small for short maturities while mean reversion
of volatility implies that the convexity effect at long maturities is nearly
constant. In my estimation, I consider the most general model in order to let
the data select the necessary ingredients in the model. I find a component of
volatility which, while generating small variations in convexity effects across
maturities, also has very little effect on risk neutral expectations of future
short rates. Under these conditions, a component of volatility will very little
effect on the shape of the yield curve. As I elaborate further in Section 7,
such a model turns out to be quite different from a model where volatility
affects expectations in such a way to exactly cancel (across all maturities) the
convexity effects that it generates.

From a methodological perspective, essential to exploring the issues ad-
dressed in this paper is an ability to compute the prices of options, for which
closed-form solutions do not exist, and the joint conditional likelihood function
of a large cross-section of bond yields and option prices. I develop a Fourier
analytic quadrature technique for computing option prices. I also extend
this technique to develop a feasible method for full information maximum
likelihood estimation of affine diffusions. These results are applicable to a
wide variety of problems beyond those examined in this paper, both in bond
and equity markets, and therefore they are potentially of interest in their own
right.

The remainder of the paper is organized as follows. Section 2 describes
the model and estimation procedure. Section 3 provides a summary of the
estimation results. The hedging of volatility risk is discussed in Section 4.
The pricing of yield and volatility risk are examined in Section 5 and Section 6.
Section 7 considers the role of convexity in bond prices. Finally, Section &
concludes.



2 Model

I consider 4-factor affine short-rate models.” The short rate, ¢, is driven by
a state variable, X;, such that

re = po+ p1- Xi, (1)
and

dX; = pi dt + o,dBY

(2)
i =Ko+ Ky Xe,

where p;, K} € R* K] € R¥* and By is a standard 4-dimesional Brownian
under P, the historical measure. Duffie et al. (2003b) give conditions for
(2) to give a well-defined process on RY x R¥=M_ Here the covariance is
given by oy0] = %o + M 2, X[ T consider Ay (4) models where either
M =1 or M = 2 factors drive volatility. For example, in the Ay(4) case
this means that, oy0, = 3o + 31X} + 32 X7, a 4 X 4 matrix. The constraints
in Duffie et al. (2003b) require that (i) each ¥; is positive semi-definite, (ii)
21’22 = 22711 = 0, (111) K?U =0 for ¢ < 2 and ] > 2, (IV) K§127K$21 >0
and (v) K, Ki, > 0. These conditions insure that the covariance is always
positive semi-definite and the first two factors, which drive volatility, always
remain positive. As Joslin (2006) notes, in the Ay(4) case, this specification
allows for greater flexibility in the correlation structure among the risk factors
than the normalization of Dai and Singleton (2000).

The dynamics of the economy are linked to the pricing measure by the
market prices of risk. I use the completely affine market price of risk specifica-
tion in Cheridito et al. (2007). This specification allows the expected excess
returns for exposure to each risk factor to be affine in the state. As elaborated
further in Section 7, a flexible market price of risk is critical in matching
observed risk premia for holding both bonds and bond options. Under this
market price of risk specification, the dynamics of the state variable X, are
affine under Q as well and satisfy

dX, = pldt + 0,dB2

(3)
e =Ko+ K Xy,

3See Dai and Singleton (2000) for a summary of affine term term structure models.
They classify affine term structure models into non-nested families denoted Ay (N). N is
the total number of factors and M is the number of factors driving volatility.
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where BP is a 4-dimensional standard Brownian motion under Q and K
and K satisfy the same conditions as before. The absence of arbitrage is
then guaranteed by assuming that the Feller condition is satisfied under both
measure so that Kf, > 1%;; and K(% > 1% for i < M.

In order to ensure the parameters are econometrically identified, I impose
the normalization constraints given in Joslin (2006). See Appendix A for
further details.

Any claim with payoff at time T" given by f(Xr) can be priced by the
discounted risk-neutral expected value

T
ER [en I (X)) (4)
Duffie and Kan (1996) show that zero coupon bond prices are given by
PtT (Xt) _ eA(T—t)+B(T—t)~Xt7 (5)

where P! denotes the price at time ¢ for a zero coupon bond paying $1 at
time T'. The loadings A and B satisfy the Riccati differential equations

. 1

B=—p+ (K9 B+ sBTH\B, B(0)=0, (6)
. 1

A= —po+ (Ké@)/B++§BTEOB, A(0)=0, (7)

where H; is a tensor in R4 defined (as in Duffie (2001)) so that B'H, B is
a 4-dimensional vector with (B'H,B), = B'S;B.

Collin-Dufresne and Goldstein (2002b) show that it is possible that some
linear combination of the bond loadings is identically zero for all maturities.
In such case, a volatility factor can affect conditional second moments but not
be contemporaneously spanned by bonds. Such unspanned volatility factors
will directly affect fixed income derivative prices. I therefore estimate models
with the additional constraints required for unspanned stochastic volatility in
in addition to the more general specifications.

I also consider both interest rate caps and swaptions. An interest rate cap
is a portfolio of options on 3-month LIBOR that caps the interest rate paid
on a floating loan. An interest rate swap is an option to enter into a swap,
exchanging a fixed interest rate for a floating interest rate. Since the floating
side of the swap is always worth par, a swaption is equivalent to an option on
a coupon bond.



An option on a QQ-year swap expiring in P-year, referred to as an in- P-for-@)
swaption, may be priced by

t+P

S, = EQe l mIN(CB(X,p, Q) — 1)1, (8)

where CB(X, @) is the price when the state is X of a Q-year coupon bond
with coupon equal to the strike. Singleton and Umantsev (2003) approximate
this expectation replacing the exact exercise region, {CB(X;,p,Q) > 1},
with the region implied by a linearization of the swap rate. Since the coupon
bond price is a sum of coupons whose prices are exponential affine functions
of the state, this reduces the problem of pricing the swaption to that of
computing forward probabilities which may be evaluated by the transform
method in Duffie et al. (2000)." An interest rate caplet then becomes a special
case where the linearization is exact.

In estimation of the models, computation is required for a large number of
caps and swaption coupons. This involves evaluations of many transforms each
of which is an integral whose integrand is defined as the solution of an ODEs
similar to (6-7) which must be solved numerically for the general models
that I consider. Because of this difficulty, I develop an adaptive integration
scheme to compute the required forward probabilities. This scheme gives
very accurate prices using only 3 or 4 quadrature nodes. See Appendix B for
details.

After computing pricing securities using the dynamics under the risk
neutral measure, it remains to estimate the parameters governing the evolution
of the economy under the physical measure. Ideally, one would like to estimate
the affine diffusion in equation (2) by maximum likelihood. Although the
exact transition likelihood for an affine diffusion is known in terms of Green’s
functions of the Feynman-Kac PDE, direct computation is intractable. There
is a very extensive literature which deals with alternative estimations methods.
Some alternative approaches to maximum likelihood include moment-based
estimators (e.g. QML, GMM, or characteristic-function based methods as
in Singleton (2001), Carrasco et al. (2006), and others), simulation methods
(e.g. Duffie and Singleton (1993) and Brandt and Santa-Clara (2002)), and

4 Collin-Dufresne and Goldstein (2002a) suggest computing swaption prices using an
Edgeworth expansion using the cumulants of the price of the associated coupon bond.
This approach presents a potential problem that Edgeworth expansions do not in general
converge. Additionally, to compute the k-th moment of a 10-year coupon bond with
semi-annual coupon requires the numerical solution of (2O+kk71) differential equations. For

k = 6 this already reaches 177,100 equations.
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approximate methods (e.g. Duffie et al. (2003a), Ait-Sahalia (1999), and
Ait-Sahalia and Kimmel (2010)). However, I estimate the models using full
information maximum likelihood estimation using an extension of the methods
that I develop for pricing options. See Appendix C for a summary of the
calculations used in the current context.

I compute the likelihood of the observed time series of data as follows.
First, for each panel observation of zero coupon yields and option prices, I
suppose that three zero coupon yields and one swaption price are observed
exactly. Given these prices and the underlying parameters, I can then invert
the state using Newton’s method.” The likelihood of the prices of these
instruments assumed to be priced exactly then is computed by computing the
likelihood of the inverted state (as in Appendix C ) and applying the Jacobian
of the linearized transformation at the observed state. The likelihood of the
complete data is then computed with the assumption that all other yields
and option prices are assumed to be observed with i.i.d. normal measurement
erTors.

3 Estimation Results

The data, obtained from Datastream, consists of LIBOR, swap rates, and
at-the-money swaption and cap implied volatilities from June 1997 to June
2006. T use 3-month LIBOR and the entire term structure of swap rates to
bootstrap swap zero rates. The bootstrap procedure assumes that forward
swap zero rates are constant between observations.

The models are estimated using 6 month, 1-,2-,3-,4-,5-,7-, and 10-year
swap-zero rates. The models are also estimated using swaptions with expiries
of 3 months, 1 year and 3 years written on swaps with maturities of 2 years, 5
years, and 8 years. Interest rate caps with maturities of 2 years, 5 years, and
8 years are also used in estimation. The models assume that the 6-month,
2-year, and 10-year yields are priced without error along with the 1 year into
5 year swaption. The remaining instruments are priced with errors which are
assumed to be independent and normally distributed.

The model estimates are given in Table 1 and Table 2. Throughout, the
superscript USV in the model name refers to the estimated model where the
unspanned stochastic volatility constraints are imposed.

5The pricing relation was more nearly linear to equate the model implied Black volatility.
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Ai(4) As(4) Ay (4)V5Y Ay (4)U5V
K3 0.5247 0.5 0.5 1.751
K, 0 0.5 0 1.054
K, 10.3174 10.8255 -0.2439 -3.833
KC, 0 0.4036 0 0
KS, 0.08395 0.8716 0.1031 0.648
K9, 0.6417 11.085 10.03375 -1.628
K2, 0 0 -0.6808 0
K%, 0 0 -3.998 0
KS, 0.3874 1.673 10.02381 1.217
K4, 0 -1.491 0 0.08898
KC, 10.05028 10.6241 0.0675 10.1183
KS,, 0 0 10.9504 10.4021
K9, 0.1344 0.7582 0 -1.069
K9, 0 0.03494 0 -0.03562
K2, 0 0 0 0
kS, -1.492 10.05267 11.233 -0.2366

Table 1: Drift Parameter Estimates
This table provides model estimates drift parameter estimates. All models were
estimated on weekly data for the period from June 4, 1997 to June 21, 2006.
The USV superscript denotes an affine model with USV constraints imposed.
Unreported parameters are set to zero by the normalization constraints.

10



Ai(4) As(4) A (4)UsV Ay (4)USV

0,22 8.951 0 1 0

20,32 5.518 0 0 0

20,33 3.411 0.1914 1 0.01838
20,42 3.699 0 0 0

0,43 2.281 -0.4824 0 0.1468
0,44 1.534 1.217 1 2.136
Yin 1 1 1 1

Y122 4.426 0 6.925 0

X132 1.35 0 0 0

X133 8.553 0.6444 0 0.02651
Y142 2.473 0 0 0

X143 -1.401 -2.763 0 0.02399
2144 2.029 11.87 0 5.057
2222 0 1 0 1

2933 0 1.415 0 2.153
Y943 0 -4.504 0 0

Y944 0 16.14 0 0

Table 2: Variance Parameter Estimates
This table provides model estimates variance parameter estimates. All matrix
are symmetric, with the lower diagonal reported. The A;(4)Y5" model has
scale normalization through H, rather than p;. All models were estimated
on weekly data for the period from June 4, 1997 to June 21, 2006. The USV
superscript denotes an affine model with USV constraints imposed. Unreported
parameters are set to zero by the normalization constraints.
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Table 3 presents the root mean square pricing errors for zeros. For the
maturities included in the estimation, pricing errors range from 5-10 basis
points with the USV models having slightly higher pricing errors. Also
tabulated are pricing errors for maturities over 10 years, which were not used
in estimation. We discuss these results further in Section 7

Table 4 provides the pricing errors for swaptions and caps. Data from
GovPX indicates that swaption bid-ask spreads range from 1-2% implied
volatility and about 1%. The slightly higher pricing errors in the short
maturity-short expiry options occur mainly during periods of very low interest
rates. For example, if the period when the 6 month rate is less than 2%, the
mean square error on the in 3 months-for 2 year swaption drops to 2.8%.
Thus there is in general a good cross sectional fit across the options as well
as the yields.
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A (4) Ay (4)05V Ay (4) Ay (4)T5V

1 Year 7.4 12.7 7.4 10.3
2 Year 0.0 0.0 0.0 0.0
3 Year 4.1 10.3 4.1 6.3
4 Year 5.2 15.1 5.2 8.2
5 Year 5.3 16.4 5.3 8.3
7 Year 3.8 13.0 3.8 6.1
10 Year 0.0 0.0 0.0 0.0
12 Year 3.9 12.9 3.9 6.9
15 Year 8.9 38.8 9.1 19.7
20 Year 12.9 96.4 13.2 39.0
25 Year 13.3 176.0 13.6 53.0
30 Year 17.3 279.1 17.4 66.2

Table 3: Zero Coupon Pricing Errors
Root mean square zero coupon yield pricing errors in basis points. Zero
coupon yields are computed by bootstrapping the swap curve. All models were
estimated on weekly data for the period from June 4, 1997 to June 21, 2006.
The USV superscript denotes an affine model with USV constraints imposed.
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Ai(4) Ay (4)V5V Ay(4) Ay (4)V5V

3 Months into 2 Years 4.1 7.2 4.1 21.5
3 Months into 5 Years 1.5 2.1 1.4 5.4
3 Months into 8 Years 1.4 1.5 1.4 3.1
1 Year into 2 Years 1.0 3.6 0.9 5.7

1 Year into 5 Years 0.0 0.0 0.0 0.0

1 Year into 8 Years 0.5 0.5 0.5 0.6

3 Years into 2 Years 1.0 1.5 0.8 2.0

3 Years into 5 Years 0.7 0.8 0.7 1.8

3 Years into 8 Years 0.9 0.8 0.8 1.9

Table 4: Swaption Implied Volatility Errors
Root mean square errors in swaption implied volatility errors. Swaptions are
considered to be at-the-money in the model. All models were estimated on
weekly data for the period from June 4, 1997 to June 21, 2006. The USV
superscript denotes an affine model with USV constraints imposed.
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To understand the role of risk premia in matching both markets, observe
that the likelihood is made up of a component due to the transition dynamics
of the economy and a component due to pricing errors. The pricing component
is determined by the risk neutral drift (4?) and covariance structure (o) of
the risk factors, while the likelihood of the data measured without error is
determined by the drift under the physical measure(u*) and the covariance
structure. The drift under the two measures is related by the market prices
of risk. Thus the covariance structure provides a link between the two the
likelihood of the pricing errors and the likelihood of the data measured without
error.

As elaborated in Section 7, convexity only a small role in bond prices.
This means that bond prices depend primarily on risk neutral expectation,
1@, Provided the market price of risk is not restrictive, the likelihood cannot
be dominated by the pricing errors and the model will be estimated in a
consistent manner. On the other hand, with a constrained market price of
risk, there will be a tension between the dynamics and pricing errors (related
points are discussed in Dai and Singleton (2003)). The completely affine
market price of risk allows for risk premia to depend on the state in two
important ways. First, it allows for risk premia to depend on the slope of the
yield curve and change sign over time. Second, it also allows the risk premium
demanded for holding volatility risk to not shrink to zero as volatility drops
to zero — that is, investors may still be averse to volatility risk, even when
volatility is low.

The risk premium for volatility risk is particularly important in matching
the cross-section of option prices. Agents are exposed to interest rate risks
directly through holding bonds and also indirectly through asset prices linked
to interest rates, such as home values. When interest rate volatility is low,
these assets become less risky. This means that when volatility is low, an
increase in volatility turns a portion of the investor’s portfolio from a riskless
asset to a risky asset. If the price of volatility risk is proportional to the level
of volatility, the agent is effectively close to risk neutral to changes in the
risk-level of large portions of their portfolio.

4 Hedging Volatility Risk

Within the models considered, only the first (for the A;(4) models) or the
first two factors (for the Ay(4) models) affect the volatility of the yield curve.
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On the other hand, these volatility factors will in general also affect the shape
of the yield curve through any of the three terms in (6). That is, the factors
driving volatility may jointly drive interest rates by (i) directly entering into
the short rate through non-zero p; loadings in (1), (ii) affecting risk-neutral
expectations of the risk-factors through non-zero entries in the corresponding
rows of K2, or (iii) through stochastic convexity effects in %;.

To study the effects of volatility risk that are largely unrelated to the yield
curve, I consider the component of variance risk which is locally uncorrelated
with the level, slope, and curvature of the yield curve. For this purpose, define
the residual variance

VtR =V, — anly — sy — ey, (9)

where V; is the variance of the 5-year zero and (¢, s, ¢;) are measures of
the level, slope and curvature of the yield curve: ¢, = %(yﬁm + Y2y + Yioy),
St = Y10y — Yem> Ct = —Yem + 2Y2y — Y10y- « is chosen so that VtR is locally
uncorrelated with (¢, s;,¢;): a = X '3y,.% Here, it is convenient to work
with variance instead of volatility since variance is an affine function of the
state. There will be two time scales which will be relevant for the residual
variance. For example, if one purchases an in 1-year for 5-year swaption
with the intention of selling it in three months, they will be concerned with
the 9-month volatility of the swap rate 3 months from the purchase. The
local residual variance refers to annualized limit when both time scales go
to zero. Since the covariance of the factors is time-varying, the weights «
are time-varying as well. In the case of a general affine model without USV
imposed, the residual variance will have a direct effect on the yields. In such
models, the yield curve identifies the volatility exactly. In this sense, the
residual volatility incorporates both volatility and the residual risk in the
level of interest rates themselves.

Implicit in this definition is the idea that the residual variance primarily
drives volatility of the yield curve rather than the shape of the yield curve.
In the case of the models with USV, the residual variance factor in fact
has exactly no incremental effect on the yield curve. This turns out to be
approximately true also in the case for the unconstrained model. Figure 1
plots the effect of changes in the local residual variance, fixing the 6-month,
2-year, and 10-year yields, on the cross section of yields for the estimated A;(4)

6 Alternatively, one could use different maturities or use principal components (as in
Joslin et al. (2010b)) with the volatility of the level factor instead of individual maturities.
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model.” The effect of the residual variance on the yield curve is non-zero, but
quite small with a one standard deviation weekly shock resulting in a shift of
less than half a basis point in all but very short maturity yields. This indicates
again that, although the model does not precisely have unspanned volatility,
the residual variance, and thus volatility itself, is only very poorly identified
from the cross section of bond yields. These results agree well with Litterman
and Scheinkman (1991), who show that three principal components explain
nearly all of the variation in the yield curve. Thus one would anticipate that
a fourth factor likely would have only a small effect on yields. Duffee (2010)
finds support, within the context of a Gaussian model, for a factor which has
a small effect only on returns. In my model, as I will show, this fourth factor
drives both volatility and expected excess returns. I elaborate further on the
mechanism that generates this effect in comparison to the restrictions in the
USV model in Section 7.

Figure 2 plots the time series of local correlation of residual variance
with variance of the 5-year yield for the A;(4) model. A high correlation
between the variance and residual variance indicates that the yield curve,
as summarized by its level, slope and curvature, is explaining little of the
variation in the yield volatility. The correlation typically ranges from 40% to
60% indicating that about half of the variation in the variance of the 5-year
yield is accounted for by factors unrelated to the level slope and curvature of
the yield curve. A notable exception it that in late 1998, around the time
of Russian default and LTCM bailout, the model indicates that the variance
was nearly perfectly correlated with the residual variance. This indicates
that in this period movements in the volatility of the yield curve were almost
completely uncorrelated to movements in the level, slope, and curvature of
the yield curve.

To understand the impact in terms of asset prices of the relationship
between residual variance and the yield curve, we consider the effect of
residual variance on swaption prices. Figure 3 plots the fraction of variation
in the in 1 year-for 5 year swaption price due to residual variance risk. For the
swaption itself, the residual variance accounts for almost none of the variation
in the swaption price. In other words, the delta risk (exposure to changes in
the underlying) in a single swaption is much larger than vega risk (exposure to

"These loadings are found by transforming the original risk factors X; from the drift-
normalize model to the risk factors Y; = (¢, s¢, ¢s, V;®) = C + DX;. The new loadings for
maturity 7 are transformed by B(7) — (D~1)'B(1)
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changes in volatility). However, also plotted is the fraction of variance in the
quoted prices of the refreshed at-the-money swaption. Here, the moneyness
of the swaption is changed to reflect the new at-the-money strike as the yield
curve moves through time. This does not reflect the price process available
to an investor (since when an investor buys a swaption the strike is fixed),
but instead represent the time series of implied volatility translated into a
price and allows us to isolate the effect on price due to changing volatility
by removing the effect on price of changing moneyness. When the effect of
changing moneyness is removed, the residual variance explains a much larger
portion of the variation typically from 20%-40%, but as high as 70%. This
fraction is nearly the same as with the fraction of variance in straddle prices
explained by the residual variance. These results suggest that, at least locally,
a hedge of a swaption straddle using bonds will be moderately successful.

Figure 4 shows the sensitivity of a straddle position which is long both a
put and a call on the 5-year coupon bond with one year to expiration. The
sensitivity is plotted as the moneyness of the options is varied from 30 basis
points out of the money to 30 basis points in the money. Typical weekly
volatility for the 5-year swap rates range from 12 to 18 basis points, so the
range plotted would coincide with approximately a two standard deviation
movement (up or down) over a one week period. Over a one month period,
the graph denotes approximately a one standard deviation movement, so over
this period a movement in the moneyness moving outside the range will occur
fairly often, approximately 30% of the time. As the straddle goes away from
the money, it becomes much less sensitive to volatility risk. This stands in
contrast to equity options, where the volatility of volatility is much larger
relative to the volatility of the underlying. From January 2000 to August
2006, S&P 500 index ranged from 776 to 1509 with VIX ranging from 10.2%
to 42.1%. The weekly standard deviation of SPX and VIX were 168 points
and 6.86%, respectively. Thus in the case of SPX options, volatility risk is a
much more important component.

This analysis suggests that a dynamic hedging strategy is particularly
important in hedging a swaption straddle. When initiated at the money, the
straddle is exposed primarily to volatility risk which may be partially hedged
using bonds. After the straddles moves away from the money, the position
becomes much more sensitive to the underlying yields relative to the volatility
risk. It is important to note also that bid-ask spreads are typically relatively
high for fixed income derivatives. This suggests that hedging over a very short
horizon will very likely need to rely on the partial hedge available through
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the correlation with swaps which have extremely low trading costs.
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Figure 1: Effect of Residual Variance on the Yield Curve
This figure plots the effect of the residual variance on the yield curve. The
residual variance is defined as the risk which is locally uncorrelated with the
6-month, 2-year, and 10-year yields. The figure plots the effect of a weekly one
standard deviation shock in the residual variance on the yield curve, fixed the
6-month, 2-year, and 10-year yields for the A;(4) model on June 21, 2006.
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Figure 2: Correlation of Variance with Residual Variance
This figure plots the correlation of the variance of the 5-year yield with the
residual variance for the A;(4) model. The residual variance is defined as the
risk which is locally uncorrelated with the 6-month, 2-year, and 10-year yields.
A correlation of 1 between the variance and residual variance indicates that
6-month, 2-year, and 10-year yields are uncorrelated with volatility.
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Figure 3: Variation in Swaption Prices Explained by Yield Correlation
Swaption price can be uniquely composed as P, = P’ + PRV where P/ is
perfectly locallay correlated with the 6-month, 2-year, and 10-year yield and
PRV is uncorrelated with the same yields. The figure plots

o var(PEV) 4 var(FPY)
var P, var P,
for different price series. The blue line shows a very low correlation between
the price changes of a swaption and the residual variance. The green line
indicates a moderate correlation bewteen the time series of at-the-money
swaption prices where the strike is updated by changes in the yield curve. The
red line indicates a swaption straddle has nearly the same correlation as the
at-the-money swaption prices with continually updated moneyness.
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Figure 4: Reduction in Swaption Variance by Yield Correlation
This figure plots the mean of the model fraction of variance explained for a
swaption straddle due to correlation with yields for the A;(4) model. As the
straddle moves away from the money, the straddle become much less sensitive
to residual variance risk.
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5 Pricing Yield Risk

Fama and Bliss (1987), Campbell and Shiller (1991), and others have suggested
that the shape of the yield curve drives risk premia that investors demand for
holding long maturity bonds over short maturity bonds. A number of results
(Cochrane and Piazzesi (2008), Duffee (2010) , Joslin et al. (2010a) , Ludvigson
and Ng (2000), Rudebusch et al. (2006), Wright and Zhou (2009),and others)
suggest that factors which have little incremental impact to the shape of the
yield curve may be important for predicting excess returns for holding long
maturity bonds. Indeed, Ludvigson and Ng (2000) find evidence that real
and inflation risk factors have the ability to predict variation in bond excess
returns above and beyond the level of interest rates. This raises the question
of whether fixed income derivatives may be useful for identifying time-series
variation in expected excess returns for holding long maturity bonds.

The theoretical possibility that volatility may incrementally forecast bond
returns bond returns can be seen as follows. The (local) risk premium for
exposure to a risk factor F; is given by

risk premium = p5(X,) — u2(X,).

That is, the expected excess returns for exposure to a risk is determined by
the difference between the P and Q expected changes in the risk factor. We
can reparameterize the model so that rather than the latent state variable
X;, we have the state variable Y; = (¢4, s, ¢4, VtR) as in Section 4. In these
terms, we can transform the model to be given in terms of Y; which will have

Ng = Kggy + K?YK, (10)
py = Koy + KiyYe. (11)

As seen in Figure 1, volatility has little incremental impact on bond yields
relative to level, slope and curvature. Moreover, as elaborated in Section 7,
volatility induces only a very small amount of variation in the convexity effect
across maturities. Together these observations imply that volatility has little
incremental impact on Q-forecasts of of the level, slope and curvature. In
this case (where volatility does not effect the Q-forecasts of the yield factors),
volatility will be useful for forecasting bond returns whenever volatility is
incrementally informative for predicting future yields through u5.

I decompose the risk premia into a component associated with the yield
curve and a component due to the residual variance below. A one-year
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standard deviation increase in the level of residual variance results in a
decrease in expected return of approximately 1%. The variation in risk
premia due to residual variance account for approximately 40% of the total
variation. Although not the dominant term, the residual variance drives an
economically meaningful portion of the risk premium.

This relationship can be borne in particular during the period from June
2004 to June 2006. During this period, the Federal Open Market Committee
raised the target fed funds rate 25 basis points for 17 consecutive meetings.
This period has been referred to as an a conundrum by then Fed Chairman
Alan Greenspan because during this period the long rate remained relatively
constant despite the increasing short. This conundrum is resolved either
through changing expectations of future short rates (i.e. long rates could
remain unchanged if investors anticipated the future Fed policy actions) or
though declining term premiums. The model estimates indicates that this
flattening of the yield curve was largely associated with declining risk premia.
Thus, we can associate the flattening of the yield curve with a decline in
risk premia for holding long maturity bonds (Section 7 further discusses
the decomposition of the yield curve into expectations, term premia, and
convexity effects). Figure 5 plots the slope of the yield curve (10 year-6
month rate) on the left axis and the implied volatility of an in 1 year-for 5
year swaption.® Here it is evident that the period is allows associated with a
decline in yield volatility (perhaps due to increased transparency of monetary
policy, as some suggest). These observation support the empirical results
that volatility is an important determinant of the risk premium demanded
for holding long maturity bonds.

6 Pricing Volatility Risk

Section 5 shows that volatility drives the risk premium that agents demand for
holding long maturity bonds. We can consider also the converse question of
what drives risk premia for holding volatility risk. That is, to what extent is
the compensation agents demand for exposure to volatility risk is time-varying
and can it be inferred from the prices of securities?

Again, considering the state vector Y; = ({y, s;, ¢;, V,I) we can decompose
the risk premium associated with exposure to the V' risk factor. Figure 4

8These results partially reflect the fact that swaption implied volatility is quoted on a
log of yields scale, rather than on a level of yields scale.
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Figure 5: Long-Yield Conundrum
The figure plots the slope of the yield curve (10-year swap-implied zero
rate minus the 6-month LIBOR rate) on the left axis and the implied
volatility of the in 6-month-for-2-year swaption on the right axis. During
this period, the yield curve became flat as the Fed continually raised
interest rate. Also, implied volatilities declined similarly.
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plots the time series of in 1 year for 5 year swaption implied volatilities. Also
plotted are the model implied expected values of the payoffs of the options
(that is, the P-expected value rather than the Q-expected value). Generally,
the options have a negative expected return suggesting the option as an
insurance premium, similar to the equities market (see, for example, Coval
and Shumway (2001) or Pan (2002)). Also plotted are the expected value
under the measure where the variance risk premium depends only on the
slope of the yield curve.” This analysis shows that variation in the slope of
the yield curve explains a portion of the variation in excess returns for holding
variance risk

The results of Section 5 also suggest that it is difficult to be exposed
directly to pure volatility risk over a long horizons and that volatility risk can
be partially hedge by taking advantage of the moderate correlation of volatility
risk with bond risk. Taken together, these results seem to indicate volatility
risk may not be important. However, we can consider a synthetic security
whose payoff is the realization of the future residual variance. Figure 6 plots
the time series of the 1-year Sharpe ratio of such a security written on the
3-month conditional variance of a 5-year zero coupon bond with expiration
in 1 year. Since the level of the residual variance is not identified, the exact
payoff of the security at expiration is taken to be - X1 where § is the loading
defined in the residual variance at initiation. The Sharpe ratio varies through
time with an average level of about 0.3. The Sharpe ratio tends to rise both
in the Russian default and also in the 2001 recession. This suggest that
the residual variance either is a risk that agents directly care about in their
consumption decisions or at least is correlated with such a risk.

7 Role of Convexity in Bond Pricing

Long maturity bond yields reflect expectations of future interest rates, risk
premia, and convexity effects. Fixing (risk-neutral) forecasts of future interest
rates, convexity affects long maturity bond yields through Jensen’s inequality

T (s [a) <o (- )]

9Formally, it the expectation computed assuming the dynamics follow the measure P
which differs from the Q-measure by setting the drift of V,% equal to its Q drift except for
the coefficient on the slope which maintains the coefficient under P
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Figure 6: Price of Variance Risk
This figure plots the sharpe ratio of the residual variance, defined as the risk
which and is locally uncorrelated with the 6-month, 2-year, and 10-year yields.
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The size of the convexity affect will be determined by the volatility of interest
rates. I now turn to analyze the relative importance of this channel and its
impact on bond prices and modeling the yield curve.

The T-year zero coupon yield can be decomposed in terms of an ex-
pectations effect (y: g), a risk premium (y; gp) and a convexity effect (y:.¢)
as

v =vlp+vire +vic, (12)
where
1 t+T b
Yep = T/ E; [r]dr,
t
ro= i [ (B2~ B ) (13)
Y¢ rPp = T, el ¢ [r7])dT

T 1 Q —ft+T7“7—d7' o Q
Yo = —T<logEt [e ¢ }4— t E; [r/] dT).

The expectations term represents the bond price discounting with a yield to
maturity equal to the average expected future short rate.

Figure 7 plots the decomposition of the 10-year zero coupon yield in terms
of expectations, risk premia, and convexity effects as defined above. Each
of the terms are an affine function of the state variable whose loading can
be computed by solving a Riccati differential equation or linear constant
coefficient ordinary differential equation. The figure shows that the variation
in yields are dominated by expectations and risk premium effects and that the
convexity effects are quite small (see also Gupta and Subrahmanyam (2000)).

Table 5 gives the magnitude of the convexity effect across maturities for
the various models specifications. For comparison, an A;(3) model, estimated
on the same data but not inverting the swaption, is added to both tables.
Panel A shows that the average convexity effects are small for the 2-year
zero coupon bond, around one basis points. Extending the maturity to ten
years, the average size of the convexity effects becomes more economically
meaningful, reaching around 15 basis points. However, Panel B shows that
although the 10-year convexity effect is larger, the variation is still quite
small with a weekly standard deviation of less than a basis point. Extending
to thirty year bonds, the average convexity effect becomes quite important,
but the variation still remains quite small. The reason behind this is quite
intuitive — over short horizons convexity effects are generally unimportant,
while over long horizons mean reversion in the level of volatility implies that
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Figure 7: Yield Decomposition
This figure plots model-implied decomposition of the 10-year yield into

expecations, risk premium, and convexity components for the estimated
A;(4) model.

1 t+10 »
Yexpectation — E Et [TT]dT ,
t
1 t+10

Yrisk premia = E ; (EtQ [TT] - Ef[?"T])dT,

1 e HH0
Yt convexity = _E (lOg Et [6 ¢ T ] + \ Et [TT]dT) :
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the current level of volatility has only a small impact on the amount of
convexity in long maturity yields.
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A1(3) Ai(4) Ay (4)V5V Ay(4) Ay (4)USV

2 year 0.48 0.46 0.79 0.46 1.80
5 year 4.06 4.01 4.78 4.02 2.20
10 Year 16.19 15.65 17.79 15.83 15.00
30 Year 85.48 79.15 168.29 80.06 90.95

(a) Average Convexity Effects

A1(3) Aq(4) AL (4)V5V Ay(4) An(4)VSV

2 year 0.02 0.03 0.07 0.04 0.11
5 year 0.13 0.28 0.36 0.27 0.28
10 Year 0.39 0.84 1.01 0.83 0.38
30 Year 0.80 1.84 2.69 1.82 0.27

(b) Time Variation of Convexity Effects

Table 5: Convexity Effects in Zero Coupon Bond Yields
The top panel gives the average model-implied convexity effect in basis points
for different bond maturities. The bottom panel gives the sample standard
deviation, in basis points, of weekly changes in the model-implied convexity
effects. The convexity effect of an T-year yield:

1 [T 4 1 s
Cy(T) = T log Ele™ ™ mdr) 4 ?EQ[/ rdT]
¢

All models were estimated on weekly data for the period from June 4, 1997
to June 21, 2006. The USV superscript denotes an affine model with USV
constraints imposed.
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These results show that convexity plays only a small role in bond prices.
The fact that convexity effects are small implies that a dynamic term struc-
ture model may exhibit arbitrary correlation between the first few principal
components and volatility under very parsimonious conditions. For example,
consider the A;(4) model and approximate (6) by eliminating the quadratic
convexity term,

B~ —p +(KY)'B. (14)

If there is a risk factor which affects the conditional volatility of yields, but
does not affect risk-neutral expectations of future rates, volatility will only be
related to the yield curve through the small convexity effect and correlation
between the risk factors.!

As Collin-Dufresne et al. (2009) argue, the fact that convexity effects are
small suggests that volatility may be poorly identified from the cross section
of bond prices.!’ Indeed, even in a model where the constraints for USV
are strongly violated, volatility may only be identified through the convexity
effect in a very sensitive manner. More precisely, although volatility may be
directly inferred from bond prices, it is only through solving the numerically
unstable equation Az = b where A is nearly singular. The near singularity
of A means that small errors, for example measurement errors in the yields
or estimation errors, may result in large errors in the inferred volatility. For
example, if 6-month, 2-year, 5-year, and 10-year zero coupon yield are used
to infer volatility, the unconstrained A;(4) estimates indicate that the matrix
A will have a very high condition number (6,299 — condition numbers over 30
suggest multicolinearity) and thus nearly non-singular.

To highlight the mechanism, define a model with a factor that has volatility
unspanned by expectations by

Defintion 7.1. a diffusive Q-short rate model,
drt = /L(Xt, t)dt + U(Xt, t)dBt

has volatility unspanned by expectations if there exists a change of variable
Y; = f(X;) such that Y;' drives volatility but does not affect Q-expectations of
future interest rates (Ou/0y' =0).

10More formally, the precise condition is the existence of an eigenvector of K P which is
orthogonal to p; and loads on the volatility factors.

1 Andersen and Benzoni (2010) stress the theoretical deficiency of general affine models
to produce low correlation between volatility changes and yield changes.
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A non-degenerate affine term structure model has volatility unspanned
by expectations if there exists an eigenvector of K7 which is orthogonal to
p1. However, not all classes of term structure models admit volatility risk
factors unspanned by expectations. Gaussian affine term structure models
clearly cannot admit weakly spanned volatility risk factors (the eigenvector
condition implies the model will be degenerate). Additionally, it is easy to
show that quadratic affine term structure models, as in Longstaff (1989), Ahn
et al. (2002) , Li and Zhao (2006) and others, do not admit weakly spanned
volatility risk factors.

The mechanism at work in models with unspanned volatility and expec-
tations unspanned volatility are very different. In USV models, there exists
small convexity effects whose differential effects across maturities must be
exactly cancelled by a corresponding expectations effect. This requires restric-
tions on the number of stochastic convexity effects generated and the rates of
mean reversions of the risk factors. For example, in the A;(3) specification,
there are 10 parameter constraints required.'” In contrast, when volatility is
unspanned by expecations, it will by spanned by yields. However, this is only
through the convexity effects which we have seen empirically show very small
time series variation. Furthermore, this requires only a single one parameter
constraint.

The simple condition, which ignores the small convexity effect, is very
different from the conditions required for unspanned stochastic volatility,
which explicitly cancels the convexity effect. For example, Table 6 shows
both USV models have two persistent risk factors with long half-lives. This
is because the convexity effect generated by a persistent risk factor with
stochastic volatility can only be canceled by a risk factor with twice the rate
of mean reversion. Table 7 shows that both a Lagrange-multiplier test using
the restricted estimates and a Wald test using the unrestricted estimates
reject the restriction on the rates of mean reversion. Additionally, a likelihood
ratio test of the constrained USV model against the unconstrained model
strongly rejects the USV restrictions for both the A;(4) and Ay(4) models.
The economic effect of the mean reversion restrictions can also be understood
by comparing the ability of the models to price 30-year zero coupon bonds

12 Joslin (2006) shows that in order for the convexity effect to cancel, three types of
restrictions must hold: (1) some factor mean reversions must related in a 2:1 ratio in order
to possibly cancel a quadratic convexity effect, (2) some factors must have constant volatility
in order to not generate convexity effects, and (3) volatility must affect expectations of
future rates in exactly the right way to cancel the convexity effect.
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Ai(4) Ay (4)V5Y Az(4) Ay (4)V5Y

1st Eigenvalue 1.492 1.233 1.563* 3.833"
2nd Eigenvalue 0.642 0.244* 0.624 1.628*
3rd Eigenvalue 0.317* 0.067 0.348* 0.237
4th Eigenvalue 0.050 0.034 0.053 0.118

Table 6: Eigenvalues Under The Risk Neutral Measure

Eigenvalues of the mean reversion matrix, ¢, under the risk-neutral measure.
Asterisks denote the eigenvalues of the CIR factors. All models were estimated
on weekly data for the period from June 4, 1997 to June 21, 2006. The USV

superscript denotes an affine model with USV constraints imposed.

in Table 3. These bonds were not used in estimation and thus represent
an out-of-sample comparison of the models. For the longer maturities, the
non-USV models price the yields reasonably well with root mean square errors
ranging from 10 to 17 basis points. The errors for the USV models are much
larger. The cause for the larger error can be attributed to the restrictions
on the rates of factor mean reversion imposed by USV. Consistent with the
rejection of the restriction of two persistent risk factors, show that the USV
models have very large errors in pricing the long maturities bonds.

Table 6 shows the eigenvalues under the risk neutral measure of the drift
feedback matrix, K@ = —K ;@ The eigenvalues determine the level of persistent
of shocks to the risk factors. An eigenvalue of A\ corresponding to a half-life of
log(2)/A. For each model, there is at least one very persistent “level” factor.
In the case of the USV models, there is also a second factor with twice the rate
of mean reversion to cancel the convexity effect generated by the stochastic
volatility of the most persistent factor. For example, in the A;(4)Y5" model,
there are eigenvalues of .034 and .067, corresponding to half-lives of 20.4 and
10.2 years, respectively. This condition of two persistent factors results in a
misspecification at the long end of the curve and larger mispricings.
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Ai(4) Ay(4)

Lagrange Multiplier (mean reversion) 6.31 (.006) 14.73 (< .001)
Likelihood Ratio (full model) 2,694 (< .001) 4804 (< .001)

Table 7: Statistical Tests of USV constraints
This table gives the test statistics for the constraints required for the A;(4) and
Ay(4) models to exhibit unspanned stochastic volatility. The mean-reversion

constraint is tested by a Lagrange multiplier test. In addition, the complete
set of restrictions are rejected by a likelihood ratio test.
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8 Conclusion

In this paper, I show that when the covariance structure of risk factors
and market prices of risk are not restricted, low-dimensional dynamic term
structure models are able to simultaneously capture the price dynamics in
bond and bond option markets. I show that under parsimonious conditions
there can exist a residual component of volatility risk largely uncorrelated
with yield changes. This residaul volatility risk is an important determinant
of the risk premium that investors demand for holding long maturity bonds.
Conversely, the shape of the yield curve is related to the premium that
investors demand for bearing interest rate volatility risk. In my estimation, I
find empirical evidence rejecting conditions for unspanned volatility. Instead
a component of volatility has very little effect on the cross-section of bond
yields due to having a small effect on risk neutral expectations of future short
rates and inducing little variation in convexity effects. Finally, I develop
computational methods for pricing options and extend the technique to
provide maximum likelihood estimation of general affine diffusions which can
be used in a number of contexts.
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A

Model Specification

For the affine term structure model

re=po+p1- X,
dXt :,Uqut‘i‘a—tdBt,
pe = Ko+ Ky Xy,
O'tO';:Ho‘i‘Hl'Xt,

where

[ Ky 0 o o . [2r o0
Kl_[KVG KG]’ HO_[O zg}’ Hl_{o E?}’

with Ky an M x M matrix, Kg and X3¢ (N — M) x (N — M) matrices, and XY
M x M matrices, The drift normalized canonical representation as follows. For
the parameters © = (pg, p1, K&, KT, KOQ, K?, C’f/[H, C]\G/HQ, ..., C%), impose
the constraints:

1.
2.

K, 8 is diagonal with entries increasing on the diagonal.

CY is lower triangular and gives the Cholesky factorization of X¢:

o = (GO (CP).

K§, =0,n> M.

.YV =1,if j =k =1, or 0 otherwise.

5]

- pin=1,n>M.

P < Pt 1< M.

K¥>0, K¢ >0ifi# 3.

KD >1 KS >1 <M.

Oon = 2 >
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B Pricing

This appendix presents a computationally efficient method for computing the
transform given in Duffie et al. (2000):

o foP T’rdT+d~XT{5 . XT S y}] ’

- err+d~XT+z'5-XT] (15)

GO) 1 1 . .,
G(y) = ) —/ —Im(G(t)e™)dt .
0
In computing the transform, we can use the fact that Y = §- Xp is roughly

normally distributed under the forward measure,F', where

dF e JP redrd-Xr

dQ ~ EQ[e—Ji rrdr+dXr)

(16)

More precisely, G(t) & ce=ov"/2+itny 13 Ty the case of an Ay(N) Gaussian
model, this equation is exact. Considering this case for now, the Levy integral
then becomes:

<1 £ —ity
I = /0 ;Im(f(t)e )dt

&0 1 02t2 : ;
= / ;Im(e’ 2 eMe ™) dt
0

_ / Fsin(t(p —y)) 222
0

t

- /O o)t

Where w(t) = e "/2 g(t) = sin((u — y)t)/t. w(x) is a scaling of the
weighting function e~ used in Gauss-Hermite quadrature. By using flexibility
in both the choice of nodes and weights, Gauss-Hermite quadrature allows
very accurate computations for integrals of the form [ g(t)e*t2 dt with very
few nodes. This suggests that, after appropriate scaling, Gauss-Hermite
quadrature will be an accurate way to compute the inversion integral.

13Tt is important to note that a smooth density function implies fast decay of the Fourier
transform.
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In general, we can write the Levy integral as:

o0 ]_ I . 242 242
] = / ;Im(f(t)e_ltyeg t )6_0 t dt
0 NS >y

Q
- M
=
g:“
=
)

Two points also become clear:

1. Scale Matters. If we are computing the transform integral, we must
integrate on approximately ¢ € [—%, 3] before rescaling. This means if
we are directly computing this integral and we are using options with
various maturities (so that o will vary) any quadrature scheme must

take this into account.

2. Out of moneyness increases oscillation of integrand By rescaling
to change the integral to:

* sin(Euy
]:/ 0—( g )6_“2/2du
0

u

we see that the integral will have a weighting function times a decaying
oscillatory terms. The frequency of oscillation increases as the we move
more standard deviation for .

Example

We now turn to an example of computing forward probabilities. Consider the
risk-free A;(2) term structure model in Duffie et al. (2003a). To emphasize
the generality of the approach, I augment the model with jumps occurring
with intensity A = 1 of size +1.5% in the short rate.

I then compute a term involved in pricing a zero coupon bond option:

A(T) + B(7) - Xp

T

Eole™ s rsdseB(T)-XT{_

> fo+m}]
Here 7 is the maturity of the underlying zero coupon bond (which has log

price A(7) + B(7) - Xy when the state is Xj), 7" is the expiry of the option,
and fj is the corresponding forward rate with m a moneyness adjustment. I
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compute this term for an option on a 5-year zero coupon bond with expiry of
6 months (7' = .5,7 = 5.) The strikes are adjusted from the corresponding
forward rate of 7.27%. The initial state was taken to be the long run mean,
X() = ep.

Figure 8 shows the integrand (scaled by o) in the Levy inversion integral
for the various strikes. In each case the integrand can be seen to be e~ g(t)
where ¢(t) is a decaying oscillatory function which is more oscillatory the
more the option is out of the money. The left panels plot the integrand itself,
where the right panel plots g(¢). The figure also plots in red the nodes used
for the quadrature with n = 5 nodes.

Another method of computing the forward probability P(b- X7 < y)
would be to use a cumulant expansion for the random variable b - Xp.'* This
amounts to doing a Taylor series expansion of the right hand panel. As
can be seen, when the option is near the money, the Taylor series will be
accurate, except for large values of ¢t which are given little weight in the
integral. However, as the options becomes more out of the money (the lower
panel), the Taylor series approximation will become inaccurate. In contrast,
the quadrature scheme is able to both pick up the oscillatory nature of the
integrand and focus on the region which is important for the integral.

Table 8 reports the accuracy of the quadrature for various number of
nodes. The reference value was computed using Simpson’s rule with 10000
nodes spaced on the interval [0,6/c]. The variable n, measures how many
standard deviation (under the forward measure) the option is out of the
money. For a fixed number of nodes, the accuracy decays as the option goes
out of the money since the Levy integrand becomes more oscillatory. For
options which are within a standard deviation of the being at the money, the
quadrature scheme is quite accurate with even just 3 nodes.

C Computing Exact Likelihood

Because the conditional characteristic function is known in terms of the
solution to an ordinary differential equation, the transition likelihood for an

14The cumulants will be affine in the state and can be obtained by repeatedly differenti-
ating the original Riccati equation. In the case of a forward measure, the cumulants can
again be computed by differentiating a different Riccati equation.
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affine diffusion can be recovered from the characteristic function:
f(slz,) = Ble™ 1| X, = 2]

f(x | ) = L/f | —i$t+1~sd (17>
ti1|m) = Gn) (s|z¢) e s

However, direct computation of this integral is often intractable. Two
ideas are used in order to simplify the computations involved. First, the
integrand in the inverse Fourier transform of a transition becomes more
oscillatory as the transition varies from the expected transition. In order to
remove the oscillations, a transition measure is defined where the observed
transition becomes the a likely transition. That is,

~

F(s) ~ eimers—as s

Real(f(s)e_is"”f“) ~ Real(ei(“tﬂfv‘l)‘s—%;zts)
= cos(s - (i — wpy1))e 2" 0
If we define dT'/dP = e**t+1 | Ey[e®Xt+1] under T, E;[X;11] ~ p+ Xa.'
So, by choosing a = E_l(fEtH — 1), EtT[XtJrl] A xy11 and

dP
flealm) = f1(@p]ze) X d—T($t+1)

. P i LT . .
After this change of measure, f7 ~ e®t+1'5735 ¥t and so the integrand in

. . . . _1,T
the inverse Fourier transform to compute fT(a;tH) is approximately e~ 2% >,

Thus the integral

() = (271r)” /fT(S)eiS"”“ds
1

15Note that when there are CIR factors we must consider that E;[e**X"] is finite for all
7 only when a is in the domain of attraction of the fixed point of the affine differential
equation. However, even when this is not the case the expectation will be finite for 7
small and calculation show this range is reasonably large when boundary non-attainment
is enforced.



Strike Price Ny 3 nodes 5 nodes 8 nodes

7.27% 30.55 0.03 0.00029 1.02e-006 8.47e-009
8.27% 6.60 1.24 0.00409 2.18e-005 3e-008
9.27% 0.55 2.46 0.178 0.00247 7.49e-006

Table 8: Accuracy of Quadrature
This table presents the accuracy of the adaptive Gauss-Hermite quadrature
scheme for computing option prices. The first column gives the strike of the
6-month option on 5-year zero coupon bond. The exact price of the option
is given in the second column and the number of standard deviation (under
the risk neutral measure) the option is out of the money is given in the third
column. The remaining columns give the accuracy of the quadrature scheme.

where w(s) = eféTZS/fT(s)e_is'zt“ds ~ 1. This multidimensional integral is

suitable to be evaluated by Gauss-Hermite quadrature with very few nodes.
Also, since the integrand is odd, only half of the evaluations need actually be
done. Though the curse of dimensionality is still present, the computation now
become tractable since even 4 nodes gives reasonable accuracy. Evaluating
the inverse transform for rare transition with highly oscillatory inverse Fourier
transform integrands would require solving hundreds of millions of differential
equations (4* versus 100*, for example).
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Figure 8: Levy Integrand
The top panel plots the Levy-integrand used in computing the value an out-
of-the money bond option. The integrand is approximately a scaled normal
density times an oscillatory function. The bottom panel plots the oscillatory
multiplier by weighting the integrad. The squares indicate nodes used in

Gauss-Hermite quadrature.
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