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Throughout this handout, unless otherwise specified, p refers to a prime and pk refers to
a prime power.

1 Order

Theorem 1.1: Euler’s Theorem

If a is relatively prime to n, then

aϕ(n) ≡ 1 (mod n),

where ϕ (n) is the number of integers in [1, n] relatively prime to n.

Corollary 1.2: Fermat’s Little Theorem

For any prime p and integer a, ap ≡ a (mod p).

These theorems motivate the idea of order.

Definition. The order of a modulo n, also called ordn a, is the smallest positive integer
d such that ad ≡ 1 (mod n).

A direct result of Euler’s Theorem is that ordn a ≤ ϕ (n). Furthermore, experimenting
with values appears to show that ordn a | ϕ (n). In fact, the following generalization is
true:

Theorem 1.3

If ad ≡ 1 (mod n), then ordn a | d.

Proof. Suppose not and let d = m (ordn a) + r with m, r integers and r ∈ (0, ordn a).
Then

1 ≡ ad ≡ am(ordn a)+r ≡ ar (mod n),

contradiction to the minimality of ordn a. �

1.1 Primitive Roots

We also like to look at when the order is as large as possible.

1



mod pk Tristan Shin

Definition. A primitive root modulo n is an integer g such that ordn g = ϕ (n).

Lemma 1.4

There exists a primitive root modulo p for every prime p.

Proof. Consider the set of residues a with order d with d | p − 1. Modulo p, they are
roots of the polynomial xd − 1 but not roots of xc − 1 for any c < d. This implies that
they are roots of the dth cyclotomic polynomial Φd (x). But the degree of Φd is ϕ (d), so
there are at most ϕ (d) such residues a. But observe that∑

d|p−1

ϕ (d) = p− 1,

so there are at most p − 1 residues a relatively prime to p, with equality if and only if
equality holds for each order d. In particular, this equality is true when d = p − 1, so
there are ϕ (p− 1) primitive roots modulo p. �

Lemma 1.5

Let p be odd, g a primitive root modulo p. If gp−1 6≡ 1 (mod p2), then gϕ(pk) 6≡ 1
(mod pk+1) for any positive integer k.

Proof. Induct on k. The base case of k = 1 is given. Now, suppose that the claim is true

for k. Let gϕ(pk) = mpk + 1 (possible by Euler’s Theorem). Then

gϕ(pk+1) =
(
mpk + 1

)p ≡ 1 + mpk+1 (mod pk+2).

By the inductive hypothesis, p - m, so pk+2 - mpk+1 and hence the last term above is not
1 modulo pk+2. Thus, the inductive step is proven and the claim follows. �

Theorem 1.6: Primitive Root Theorem

There exists a primitive root modulo pk when p is odd.

Proof. Let g be a primitive root modulo p with g ∈ (0, p). The key claim is that either g
or g + p is a primitive root modulo pk.

Suppose that gp−1 6≡ 1 (mod p2). We show that g is a primitive root modulo pk by
induction on k. The base case of k = 1 is trivially true. Now, suppose that g is a primitive
root modulo k. Let d = ordpk+1 g. Then gd ≡ 1 (mod pk) also, so pk−1 (p− 1) | d. But
we also have that d | ϕ

(
pk+1

)
= pk (p− 1), so either d = pk−1 (p− 1) or pk (p− 1). But

Lemma 1.5 tells us that d 6= pk−1 (p− 1), so d = pk (p− 1), as requested.
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Now, if gp−1 ≡ 1 (mod p2), then

(g + p)p−1 ≡ gp−1 + (p− 1) gp−2p 6≡ 1 (mod p2),

so repeat the above paragraph with g replaced by g + p (still a primitive root modulo p)
to arrive at the conclusion that g + p is a primitive root modulo pk. �

2 Analytic results

2.1 Hensel’s Lemma

Suppose that P (x) is a polynomial with integer coefficients.

Problem 2.1

Prove that a! divides P (a) (n) for all integers n.

Proof. It suffices to prove the statement when P = xm for some non-negative integer m
(the result follows by multiplying by coefficients and summing). Then

P (a) (n)

a!
=

m (m− 1) · · · (m− a + 1)

a!
nm−a =

(
m

a

)
nm−a,

an integer. �

Remark. Use this to solve 2016 Putnam A1.

Lemma 2.2

For all integers r and t and positive integers m ≤ k,

P
(
r + tpk

)
≡ P (r) + tpkP ′ (r) (mod pk+m).

Proof. Consider the Taylor series for P about r. This is

P (r + x) = P (r) + P ′ (r)x +
n∑

a=2

P (a) (r)

a!
xa.

By Problem 2.1, all of the coefficients of this expansion are integers. But then setting
x = tpk and taking modulo pk+m gives the desired congruence. �

Lemma 2.3: Hensel’s Lemma

Let m ≤ k be positive integers. If P (r) ≡ 0 (mod pk) and p - P ′ (r), then there
exists an integer s (unique modulo pk+m) such that P (s) ≡ 0 (mod pk+m) and
r ≡ s (mod pk).
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Proof. From Lemma 2.2, we have that

P
(
r + tpk

)
≡ P (r) + tpkP ′ (r) (mod pk+m).

Let Q be an inverse of P ′ (r) modulo pm. Then choosing t ≡ −P (r)
pk
· Q (mod pm) gives

that the RHS is 0 (mod pk+m), so we can choose s = r + tpk. Since t is unique modulo
pm, s is unique modulo pk+m. �

Remark. We often use Hensel’s lemma with m = 1.

2.2 Thue’s Lemma

Often, we want to write things in modular arithmetic with small components. For ex-
ample, it’s easier to write a fraction in simplest form, reducing everything as small as
possible.

Lemma 2.4: Thue’s Lemma

Let n be a positive integer and choose positive integers X, Y with X ≤ n < XY .
Then for any integer a, we can choose integers x ∈ (−X,X) and y ∈ (0, Y ) such
that

ay ≡ x (mod n).

Proof. Consider the numbers av − u for u, v ∈ Z, 0 ≤ u < X, 0 ≤ v < Y . There are
XY > n such pairs (u, v), so by the Pigeonhole principle, there exist two of these that
are the same modulo n. Let them be av1 − u1 and av2 − u2 with v1 ≥ v2. If v1 = v2,
then u1 ≡ u2 (mod n) are distinct, but both are in [0, X − 1] ⊂ [0, n− 1], contradiction,
so v1 6= v2 and hence v1 > v2. Then

a (v1 − v2) ≡ (u1 − u2) (mod n),

so we have found (x, y) = (u1 − u2, v1 − v2). Since −X < u1− u2 < X and 0 < v1− v2 <
Y , this choice of x, y works. �

There are also some modifications and corollaries.

Corollary 2.5

For any integer n, there exist integers a, b in [−p, p], b 6= 0, p,−p, and n ≡ a
b

(mod p2).

2.3 Lifting the Exponent

To extract a prime power pk from a integer n divisible by p, we will say that vp (n) = k,
where k is the largest integer such that pk divides n.
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Lemma 2.6

For a prime p which divides x− y but none of x, y, n,

vp (xn − yn) = vp (x− y) .

Proof. Observe that

vp (xn − yn) = vp (x− y) + vp
(
xn−1 + xn−2y2 + . . . + xyn−2 + yn−1

)
.

But
xn−1 + xn−2y2 + . . . + xyn−2 + yn−1 ≡ nxn−1 (mod p),

which is not 0, so the last term is 0 and hence vp (xn − yn) = vp (x− y). �

Lemma 2.7: Lifting the Exponent

For an odd prime p which divides x− y but neither of x, y,

vp (xn − yn) = vp (x− y) + vp (n) .

Proof. Induct on vp (n). The base case is Lemma 2.6. Now, suppose that the statement
is true for vp (n) = k, some nonnegative integer. We prove it for vp (n) = k + 1.

Let n = pm for a positive integer m with vp (m) = k. Observe that

vp (xn − yn) = vp (xpm − ypm)

= vp (xm − ym) + vp
(
x(p−1)m + x(p−2)mym + . . . + xmy(p−2)m + y(p−1)m

)
.

Let x = y + pz for some integer z. Then

p−1∑
i=0

ximy(p−1−i)m ≡ px(p−1)m ≡ 0 (mod p)

but

p−1∑
i=0

ximy(p−1−i)m ≡
p−1∑
i=0

(y + pz)im y(p−1−i)m ≡
p−1∑
i=0

(
yim + imyim−1pz

)
y(p−1−i)m (mod p2),

which is

p

(
y(p−1)m +

p−1∑
i=0

imzy(p−1)m−1

)
≡ p

(
y(p−1)m +

p (p− 1)

2
mzy(p−1)m−1

)
6≡ 0 (mod p2).

Thus, the last term is 1 and thus the inductive step is proven. �

Remark. Lifting the Exponent works with p = 2 only when 4 divides x − y. Can you
see why?
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3 Problems

1. How many in shuffles are needed to return a deck back to original order? Out
shuffles?

2. (Spring 2016 OMO #11, Tristan Shin) For how many positive integers x less than
4032 is x2 − 20 divisible by 16 and x2 − 16 divisible by 20?

3. (George E. Andrews) Determine all integers n such that n7 + n + 1 is divisible by
343.

4. (2015 CVSC Olympiad Division #16, Adam Zheng) The smallest positive integer
n such that 7n ≡ 1 (mod 69) can be expressed as m2 for some positive integer m.
Find m.

5. For a fixed prime p, find all positive integers n such that

1n + 2n + 3n + . . . + (p− 1)n

is not divisible by p.

6. Let n be a positive integer which is not a perfect square, and let D be a positive
integer. Suppose that gcd (D,n) = 1 and that −D is a square modulo n. Then
there exist k, x, y ∈ Z with 0 < k ≤ D, 0 < |x| , |y| ≤

√
n, such that

x2 + Dy2 = kn.

7. (2017 SD HMMT TST #9, Tristan Shin) Determine the number of ordered pairs
(a, b) of positive integers with 1 ≤ a ≤ b ≤ 49 such that (a + b)49 and a49 +b49 leave
the same remainder upon division by 49.

8. (1990 IMO #3) Determine all integers n > 1 such that

2n + 1

n2

is an integer.

9. Let a and b be two positive rational numbers such that for infinitely many positive
integers n, an − bn is an integer. Prove that a and b are integers.

10. (Harder than 2017 TST #6) Prove that there are infinitely many triples (a, b, p) of
positive integers with p prime, a < p, and b < p, such that (a + b)p − ap − bp is a
multiple of p5.
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