$\bmod p^{k}$

Tristan Shin

2 Dec 2017

Throughout this handout, unless otherwise specified, p refers to a prime and p^{k} refers to a prime power.

1 Order

Theorem 1.1: Euler's Theorem

If a is relatively prime to n, then

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

where $\varphi(n)$ is the number of integers in $[1, n]$ relatively prime to n.

Corollary 1.2: Fermat's Little Theorem

For any prime p and integer $a, a^{p} \equiv a(\bmod p)$.

These theorems motivate the idea of order.
Definition. The order of a modulo n, also called $\operatorname{ord}_{n} a$, is the smallest positive integer d such that $a^{d} \equiv 1(\bmod n)$.

A direct result of Euler's Theorem is that $\operatorname{ord}_{n} a \leq \varphi(n)$. Furthermore, experimenting with values appears to show that $\operatorname{ord}_{n} a \mid \varphi(n)$. In fact, the following generalization is true:

Theorem 1.3

If $a^{d} \equiv 1(\bmod n)$, then $\operatorname{ord}_{n} a \mid d$.

Proof. Suppose not and let $d=m\left(\operatorname{ord}_{n} a\right)+r$ with m, r integers and $r \in\left(0, \operatorname{ord}_{n} a\right)$. Then

$$
1 \equiv a^{d} \equiv a^{m\left(\operatorname{ord}_{n} a\right)+r} \equiv a^{r} \quad(\bmod n),
$$

contradiction to the minimality of $\operatorname{ord}_{n} a$.

1.1 Primitive Roots

We also like to look at when the order is as large as possible.

Definition. A primitive root modulo n is an integer g such that $\operatorname{ord}_{n} g=\varphi(n)$.

Lemma 1.4

There exists a primitive root modulo p for every prime p.

Proof. Consider the set of residues a with order d with $d \mid p-1$. Modulo p, they are roots of the polynomial $x^{d}-1$ but not roots of $x^{c}-1$ for any $c<d$. This implies that they are roots of the d th cyclotomic polynomial $\Phi_{d}(x)$. But the degree of Φ_{d} is $\varphi(d)$, so there are at most $\varphi(d)$ such residues a. But observe that

$$
\sum_{d \mid p-1} \varphi(d)=p-1
$$

so there are at most $p-1$ residues a relatively prime to p, with equality if and only if equality holds for each order d. In particular, this equality is true when $d=p-1$, so there are $\varphi(p-1)$ primitive roots modulo p.

Lemma 1.5

Let p be odd, g a primitive root modulo p. If $g^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$, then $g^{\varphi\left(p^{k}\right)} \not \equiv 1$ $\left(\bmod p^{k+1}\right)$ for any positive integer k.

Proof. Induct on k. The base case of $k=1$ is given. Now, suppose that the claim is true for k. Let $g^{\varphi\left(p^{k}\right)}=m p^{k}+1$ (possible by Euler's Theorem). Then

$$
g^{\varphi\left(p^{k+1}\right)}=\left(m p^{k}+1\right)^{p} \equiv 1+m p^{k+1} \quad\left(\bmod p^{k+2}\right)
$$

By the inductive hypothesis, $p \nmid m$, so $p^{k+2} \nmid m p^{k+1}$ and hence the last term above is not 1 modulo p^{k+2}. Thus, the inductive step is proven and the claim follows.

Theorem 1.6: Primitive Root Theorem

There exists a primitive root modulo p^{k} when p is odd.

Proof. Let g be a primitive root modulo p with $g \in(0, p)$. The key claim is that either g or $g+p$ is a primitive root modulo p^{k}.

Suppose that $g^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$. We show that g is a primitive root modulo p^{k} by induction on k. The base case of $k=1$ is trivially true. Now, suppose that g is a primitive root modulo k. Let $d=\operatorname{ord}_{p^{k+1}} g$. Then $g^{d} \equiv 1\left(\bmod p^{k}\right)$ also, so $p^{k-1}(p-1) \mid d$. But we also have that $d \mid \varphi\left(p^{k+1}\right)=p^{k}(p-1)$, so either $d=p^{k-1}(p-1)$ or $p^{k}(p-1)$. But Lemma 1.5 tells us that $d \neq p^{k-1}(p-1)$, so $d=p^{k}(p-1)$, as requested.

Now, if $g^{p-1} \equiv 1\left(\bmod p^{2}\right)$, then

$$
(g+p)^{p-1} \equiv g^{p-1}+(p-1) g^{p-2} p \not \equiv 1 \quad\left(\bmod p^{2}\right),
$$

so repeat the above paragraph with g replaced by $g+p$ (still a primitive root modulo p) to arrive at the conclusion that $g+p$ is a primitive root modulo p^{k}.

2 Analytic results

2.1 Hensel's Lemma

Suppose that $P(x)$ is a polynomial with integer coefficients.

Problem 2.1

Prove that a ! divides $P^{(a)}(n)$ for all integers n.

Proof. It suffices to prove the statement when $P=x^{m}$ for some non-negative integer m (the result follows by multiplying by coefficients and summing). Then

$$
\frac{P^{(a)}(n)}{a!}=\frac{m(m-1) \cdots(m-a+1)}{a!} n^{m-a}=\binom{m}{a} n^{m-a},
$$

an integer.
Remark. Use this to solve 2016 Putnam A1.

Lemma 2.2

For all integers r and t and positive integers $m \leq k$,

$$
P\left(r+t p^{k}\right) \equiv P(r)+t p^{k} P^{\prime}(r) \quad\left(\bmod p^{k+m}\right)
$$

Proof. Consider the Taylor series for P about r. This is

$$
P(r+x)=P(r)+P^{\prime}(r) x+\sum_{a=2}^{n} \frac{P^{(a)}(r)}{a!} x^{a} .
$$

By Problem 2.1, all of the coefficients of this expansion are integers. But then setting $x=t p^{k}$ and taking modulo p^{k+m} gives the desired congruence.

Lemma 2.3: Hensel's Lemma

Let $m \leq k$ be positive integers. If $P(r) \equiv 0\left(\bmod p^{k}\right)$ and $p \nmid P^{\prime}(r)$, then there exists an integer s (unique modulo $\left.p^{k+m}\right)$ such that $P(s) \equiv 0\left(\bmod p^{k+m}\right)$ and $r \equiv s\left(\bmod p^{k}\right)$.

Proof. From Lemma 2.2, we have that

$$
P\left(r+t p^{k}\right) \equiv P(r)+t p^{k} P^{\prime}(r) \quad\left(\bmod p^{k+m}\right) .
$$

Let Q be an inverse of $P^{\prime}(r)$ modulo p^{m}. Then choosing $t \equiv-\frac{P(r)}{p^{k}} \cdot Q\left(\bmod p^{m}\right)$ gives that the RHS is $0\left(\bmod p^{k+m}\right)$, so we can choose $s=r+t p^{k}$. Since t is unique modulo p^{m}, s is unique modulo p^{k+m}.

Remark. We often use Hensel's lemma with $m=1$.

2.2 Thue's Lemma

Often, we want to write things in modular arithmetic with small components. For example, it's easier to write a fraction in simplest form, reducing everything as small as possible.

Lemma 2.4: Thue's Lemma

Let n be a positive integer and choose positive integers X, Y with $X \leq n<X Y$. Then for any integer a, we can choose integers $x \in(-X, X)$ and $y \in(0, Y)$ such that

$$
a y \equiv x \quad(\bmod n)
$$

Proof. Consider the numbers $a v-u$ for $u, v \in \mathbb{Z}, 0 \leq u<X, 0 \leq v<Y$. There are $X Y>n$ such pairs (u, v), so by the Pigeonhole principle, there exist two of these that are the same modulo n. Let them be $a v_{1}-u_{1}$ and $a v_{2}-u_{2}$ with $v_{1} \geq v_{2}$. If $v_{1}=v_{2}$, then $u_{1} \equiv u_{2}(\bmod n)$ are distinct, but both are in $[0, X-1] \subset[0, n-1]$, contradiction, so $v_{1} \neq v_{2}$ and hence $v_{1}>v_{2}$. Then

$$
a\left(v_{1}-v_{2}\right) \equiv\left(u_{1}-u_{2}\right) \quad(\bmod n),
$$

so we have found $(x, y)=\left(u_{1}-u_{2}, v_{1}-v_{2}\right)$. Since $-X<u_{1}-u_{2}<X$ and $0<v_{1}-v_{2}<$ Y, this choice of x, y works.

There are also some modifications and corollaries.

Corollary 2.5

For any integer n, there exist integers a, b in $[-p, p], b \neq 0, p,-p$, and $n \equiv \frac{a}{b}$ $\left(\bmod p^{2}\right)$.

2.3 Lifting the Exponent

To extract a prime power p^{k} from a integer n divisible by p, we will say that $v_{p}(n)=k$, where k is the largest integer such that p^{k} divides n.

Lemma 2.6

For a prime p which divides $x-y$ but none of x, y, n,

$$
v_{p}\left(x^{n}-y^{n}\right)=v_{p}(x-y) .
$$

Proof. Observe that

$$
v_{p}\left(x^{n}-y^{n}\right)=v_{p}(x-y)+v_{p}\left(x^{n-1}+x^{n-2} y^{2}+\ldots+x y^{n-2}+y^{n-1}\right) .
$$

But

$$
x^{n-1}+x^{n-2} y^{2}+\ldots+x y^{n-2}+y^{n-1} \equiv n x^{n-1} \quad(\bmod p),
$$

which is not 0 , so the last term is 0 and hence $v_{p}\left(x^{n}-y^{n}\right)=v_{p}(x-y)$.

Lemma 2.7: Lifting the Exponent

For an odd prime p which divides $x-y$ but neither of x, y,

$$
v_{p}\left(x^{n}-y^{n}\right)=v_{p}(x-y)+v_{p}(n) .
$$

Proof. Induct on $v_{p}(n)$. The base case is Lemma 2.6. Now, suppose that the statement is true for $v_{p}(n)=k$, some nonnegative integer. We prove it for $v_{p}(n)=k+1$.

Let $n=p m$ for a positive integer m with $v_{p}(m)=k$. Observe that

$$
\begin{aligned}
v_{p}\left(x^{n}-y^{n}\right) & =v_{p}\left(x^{p m}-y^{p m}\right) \\
& =v_{p}\left(x^{m}-y^{m}\right)+v_{p}\left(x^{(p-1) m}+x^{(p-2) m} y^{m}+\ldots+x^{m} y^{(p-2) m}+y^{(p-1) m}\right) .
\end{aligned}
$$

Let $x=y+p z$ for some integer z. Then

$$
\sum_{i=0}^{p-1} x^{i m} y^{(p-1-i) m} \equiv p x^{(p-1) m} \equiv 0 \quad(\bmod p)
$$

but
$\sum_{i=0}^{p-1} x^{i m} y^{(p-1-i) m} \equiv \sum_{i=0}^{p-1}(y+p z)^{i m} y^{(p-1-i) m} \equiv \sum_{i=0}^{p-1}\left(y^{i m}+i m y^{i m-1} p z\right) y^{(p-1-i) m} \quad\left(\bmod p^{2}\right)$,
which is
$p\left(y^{(p-1) m}+\sum_{i=0}^{p-1} i m z y^{(p-1) m-1}\right) \equiv p\left(y^{(p-1) m}+\frac{p(p-1)}{2} m z y^{(p-1) m-1}\right) \not \equiv 0 \quad\left(\bmod p^{2}\right)$.
Thus, the last term is 1 and thus the inductive step is proven.
Remark. Lifting the Exponent works with $p=2$ only when 4 divides $x-y$. Can you see why?

3 Problems

1. How many in shuffles are needed to return a deck back to original order? Out shuffles?
2. (Spring 2016 OMO \#11, Tristan Shin) For how many positive integers x less than 4032 is $x^{2}-20$ divisible by 16 and $x^{2}-16$ divisible by 20 ?
3. (George E. Andrews) Determine all integers n such that $n^{7}+n+1$ is divisible by 343.
4. (2015 CVSC Olympiad Division \#16, Adam Zheng) The smallest positive integer n such that $7^{n} \equiv 1\left(\bmod 6^{9}\right)$ can be expressed as m^{2} for some positive integer m. Find m.
5. For a fixed prime p, find all positive integers n such that

$$
1^{n}+2^{n}+3^{n}+\ldots+(p-1)^{n}
$$

is not divisible by p.
6. Let n be a positive integer which is not a perfect square, and let D be a positive integer. Suppose that $\operatorname{gcd}(D, n)=1$ and that $-D$ is a square modulo n. Then there exist $k, x, y \in \mathbb{Z}$ with $0<k \leq D, 0<|x|,|y| \leq \sqrt{n}$, such that

$$
x^{2}+D y^{2}=k n .
$$

7. (2017 SD HMMT TST \#9, Tristan Shin) Determine the number of ordered pairs (a, b) of positive integers with $1 \leq a \leq b \leq 49$ such that $(a+b)^{49}$ and $a^{49}+b^{49}$ leave the same remainder upon division by 49 .
8. (1990 IMO \#3) Determine all integers $n>1$ such that

$$
\frac{2^{n}+1}{n^{2}}
$$

is an integer.
9. Let a and b be two positive rational numbers such that for infinitely many positive integers $n, a^{n}-b^{n}$ is an integer. Prove that a and b are integers.
10. (Harder than 2017 TST \#6) Prove that there are infinitely many triples (a, b, p) of positive integers with p prime, $a<p$, and $b<p$, such that $(a+b)^{p}-a^{p}-b^{p}$ is a multiple of p^{5}.

