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Throughout this handout, unless otherwise specified, p refers to a prime and p* refers to
a prime power.

1 Order
Theorem 1.1: Euler’s Theorem

If a is relatively prime to n, then
a?™ =1 (mod n),

where ¢ (n) is the number of integers in [1, n] relatively prime to n.

Corollary 1.2: Fermat’s Little Theorem

For any prime p and integer a, a”? = a (mod p).

These theorems motivate the idea of order.

Definition. The order of a modulo n, also called ord,, a, is the smallest positive integer
d such that a? =1 (mod n).

A direct result of Euler’s Theorem is that ord, a < ¢ (n). Furthermore, experimenting
with values appears to show that ord, a | ¢ (n). In fact, the following generalization is
true:

If a® =1 (mod n), then ord, a | d.

Proof. Suppose not and let d = m (ord, a) + r with m,r integers and r € (0, ord, a).
Then
1=qa?= g™+ =" (mod n),

contradiction to the minimality of ord, a. [ ]

1.1 Primitive Roots

We also like to look at when the order is as large as possible.
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Definition. A primitive root modulo n is an integer g such that ord,, g = ¢ (n).

There exists a primitive root modulo p for every prime p.

Proof. Consider the set of residues a with order d with d | p — 1. Modulo p, they are
roots of the polynomial ¢ — 1 but not roots of x¢ — 1 for any ¢ < d. This implies that
they are roots of the dth cyclotomic polynomial @4 (x). But the degree of @, is ¢ (d), so
there are at most ¢ (d) such residues a. But observe that

Y opd=p-1,
dlp—1

so there are at most p — 1 residues a relatively prime to p, with equality if and only if
equality holds for each order d. In particular, this equality is true when d = p — 1, so
there are ¢ (p — 1) primitive roots modulo p. [ |

Let p be odd, g a primitive root modulo p. If g?~! # 1 (mod p?), then g‘”<pk) £ 1

k+1)

(mod p for any positive integer k.

Proof. Induct on k. The base case of k = 1 is given. Now, suppose that the claim is true
for k. Let g“”<pk) = mpF + 1 (possible by Euler’s Theorem). Then

g? ) = (mp® +1)" =1+ mp""  (mod p**2).
By the inductive hypothesis, p  m, so p*2 t mp**! and hence the last term above is not
1 modulo p**2. Thus, the inductive step is proven and the claim follows. |

Theorem 1.6: Primitive Root Theorem

There exists a primitive root modulo p* when p is odd.

Proof. Let g be a primitive root modulo p with g € (0,p). The key claim is that either g
or g + p is a primitive root modulo p*.

Suppose that g?~' # 1 (mod p?). We show that g is a primitive root modulo p* by
induction on k. The base case of k = 1 is trivially true. Now, suppose that ¢ is a primitive
root modulo k. Let d = ordr+1 g. Then g = 1 (mod p*) also, so p*~! (p— 1) | d. But
we also have that d | ¢ (p*™') = p* (p — 1), so either d = p*~' (p— 1) or p* (p — 1). But
Lemma 1.5 tells us that d # p*~! (p — 1), so d = p* (p — 1), as requested.
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Now, if g?"1 =1 (mod p?), then

(g+p)’ " = -1 p#1 (mod p?),

so repeat the above paragraph with g replaced by g + p (still a primitive root modulo p)
to arrive at the conclusion that ¢ + p is a primitive root modulo p*. |

2 Analytic results

2.1 Hensel’s Lemma

Suppose that P (z) is a polynomial with integer coefficients.

Problem 2.1

Prove that a! divides P (n) for all integers n.

Proof. 1t suffices to prove the statement when P = 2™ for some non-negative integer m
(the result follows by multiplying by coefficients and summing). Then

PO _mim =)ot D) e (M) e

al al
an integer. [ ]

Remark. Use this to solve 2016 Putnam Al.

For all integers r and t and positive integers m < k,

P(r+tp*)=P(r)+tp*P' (r) (mod p**™).

Proof. Consider the Taylor series for P about r. This is
PO,
P(r+x):P(r)+P'(T)x+Z o

a=2

By Problem 2.1, all of the coefficients of this expansion are integers. But then setting
x = tp¥ and taking modulo p**™ gives the desired congruence. |

Lemma 2.3: Hensel’s Lemma

Let m < k be positive integers. If P (r) = 0 (mod p*) and p { P’ (r), then there
exists an integer s (unique modulo p*™™) such that P(s) = 0 (mod p**t™) and
r=s (mod p").
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Proof. From Lemma 2.2, we have that

P(r+tp*)=Pr)+tp"P (r) (mod p**™).

Let @ be an inverse of P’ (r) modulo p™. Then choosing t = —% - @ (mod p™) gives
that the RHS is 0 (mod p**™), so we can choose s = 7 + tp*. Since ¢ is unique modulo
p™, s is unique modulo pF*t™. |

Remark. We often use Hensel’s lemma with m = 1.

2.2 Thue’s Lemma

Often, we want to write things in modular arithmetic with small components. For ex-
ample, it’s easier to write a fraction in simplest form, reducing everything as small as
possible.

Lemma 2.4: Thue’s Lemma

Let n be a positive integer and choose positive integers X,Y with X <n < XY.
Then for any integer a, we can choose integers € (—X, X) and y € (0,Y) such
that

ay =2z (mod n).

Proof. Consider the numbers av — u for u,v € Z,0 < u < X,0 < v < Y. There are
XY > n such pairs (u,v), so by the Pigeonhole principle, there exist two of these that
are the same modulo n. Let them be av; — u; and avy — ug with vy > vy, If v; = vy,
then u; = uy (mod n) are distinct, but both are in [0, X — 1] C [0,n — 1], contradiction,
so v; # v9 and hence vy > vy. Then

a(vy —vy) = (ug —ug) (mod n),
so we have found (z,y) = (u1 — ug,v1 — vg). Since —X < u; —us < X and 0 < v —wy <

Y, this choice of z,y works. [ |

There are also some modifications and corollaries.

For any integer n, there exist integers a,b in [—p,p|, b # 0,p, —p, and n = ¢
(mod p?).

2.3 Lifting the Exponent

To extract a prime power p* from a integer n divisible by p, we will say that v, (n) = k,
where k is the largest integer such that p* divides n.

4
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For a prime p which divides x — y but none of x,y, n,

vp (2" = y") = vy (x —y).

Proof. Observe that
vy (2" —y") = v, (x — y) + v, (1’”’1 + 2"y y”’l) )

But
ey 4y = et (mod p),

which is not 0, so the last term is 0 and hence v, (2™ — y") = v, (v — y). [ |

Lemma 2.7: Lifting the Exponent

For an odd prime p which divides x — y but neither of x, y,

vp (" —y") = vy (T —y) + v, (n).

Proof. Induct on v, (n). The base case is Lemma 2.6. Now, suppose that the statement
is true for v, (n) = k, some nonnegative integer. We prove it for v, (n) = k + 1.

Let n = pm for a positive integer m with v, (m) = k. Observe that

vp (¢ = ") = vp (¢ — y™)

=1, (xm _ ym> + vp (g;(Pfl)m + :C(P*Q)mym 4+ xmy(pr)m + y(pfl)m) '

Let x = y + pz for some integer z. Then

p—1
Zmimy(p—l—i)m = px(p—l)m =90 (mod p)
i=0
but
p—1 p—1 p—1
S aimy e = N (g )™y 00 = N (i Lpz) y®T0M (mod p?),
i=0 i=0 i=0
which is
(-1
p <y(p_1)m + Zimzy(p_l)m_l) =p (y(p_l)m + %mzy(z’_l)m_l) £0 (mod p?).
i=0
Thus, the last term is 1 and thus the inductive step is proven. |

Remark. Lifting the Exponent works with p = 2 only when 4 divides © — y. Can you
see why?
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10.

Problems

. How many in shuffles are needed to return a deck back to original order? Out

shuffles?

(Spring 2016 OMO #11, Tristan Shin) For how many positive integers x less than
4032 is 22 — 20 divisible by 16 and #% — 16 divisible by 20?

. (George E. Andrews) Determine all integers n such that n” +n + 1 is divisible b
g g y

343.

(2015 CVSC Olympiad Division #16, Adam Zheng) The smallest positive integer
n such that 7" = 1 (mod 6°) can be expressed as m? for some positive integer m.
Find m.

For a fixed prime p, find all positive integers n such that
"+2"+3"+ ...+ (p—1)"
is not divisible by p.

Let n be a positive integer which is not a perfect square, and let D be a positive
integer. Suppose that ged (D,n) = 1 and that —D is a square modulo n. Then
there exist k,z,y € Z with 0 < k < D, 0 < |z|,|y| < +/n, such that

z? + Dy?* = kn.

(2017 SD HMMT TST #9, Tristan Shin) Determine the number of ordered pairs
(a,b) of positive integers with 1 < a < b < 49 such that (a 4 b)* and a* 4 b* leave
the same remainder upon division by 49.

(1990 IMO #3) Determine all integers n > 1 such that

2"+ 1
n2

is an integer.

Let a and b be two positive rational numbers such that for infinitely many positive
integers n, a™ — b" is an integer. Prove that a and b are integers.

(Harder than 2017 TST #6) Prove that there are infinitely many triples (a, b, p) of
positive integers with p prime, a < p, and b < p, such that (a + )’ —a? — I is a
multiple of p°.
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