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In this handout, we investigate quadratic residues and their properties and applications.
Unless otherwise specified, p is an odd prime.

1 Basic Properties

Definition. We say that an integer m is a quadratic residue (QR) mod n if there exists
an integer x for which x2 ≡ m (mod n).

Definition. We say that an integer m is a quadratic non-residue (QNR) mod n if it is
not a quadratic residue.

Example 1.1

0 and 1 are always quadratic residues mod n.

Definition. A QR m (mod n) is a non-zero QR if m 6≡ 0 (mod n).

We use the Legendre symbol to help keep track of when an integer is a QR.

Definition. The Legendre symbol
(
a
p

)
is defined as

(
a

p

)
=


0 if p | a
1 if a is a non-zero QR mod p

−1 if a is a QNR mod p.

It is clear that a ≡ b (mod p) implies
(
a
p

)
=
(
b
p

)
.

Lemma 1.2: Euler’s Criterion

For all positive integers a,
(
a
p

)
≡ a

p−1
2 (mod p).

Proof. If p | a, this is obvious, so assume p - a. If a is a QR mod p, then let a ≡ x2

(mod p). Then a
p−1
2 ≡ xp−1 ≡ 1 (mod p) by Fermat’s Little Theorem. Otherwise, sup-

pose that a is a QNR mod p. The roots of the polynomial X
p−1
2 −1 in Fp are already identi-

fied as the p−1
2

non-zero QRs mod p, so a
p−1
2 6≡ 1 (mod p). But p |

(
a
p−1
2 − 1

)(
a
p−1
2 + 1

)
by Fermat’s Little Theorem, so a

p−1
2 ≡ −1 (mod p). Hence this equivalence is true. �
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Corollary 1.3(
ab
p

)
=
(
a
p

)(
b
p

)
Remark. Because the Legendre symbol

(
a
p

)
makes sense as long as a (mod p) makes

sense, we can write things like
(

1/5
7

)
=
(
3
7

)
= −1. Specifically, we also have(

1/a

p

)
=

(
a2

p

)(
1/a

p

)
=

(
a

p

)
.

2 Quadratic Reciprocity

Theorem 2.1: Quadratic Reciprocity

If p and q are distinct odd primes, then(
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .

In other words,
(
p
q

)
=
(
q
p

)
unless p ≡ q ≡ 3 (mod 4).

To prove this, we first prove a lemma.

Lemma 2.2: Eisenstein’s Lemma(
q

p

)
= (−1)

∑(p−1)/2
k=1 b2kq/pc

for an odd prime p and arbitrary prime q 6= p.

Proof. We use the notation that (m%n) gives the remainder when m is divided by n.

Consider the numbers r (k) =
(

(−1)(2kq%p) (2kq%p) %p
)

for k = 1, 2, . . . , p−1
2

. If (2kq%p)

is even, then this is just (2kq%p). If (2kq%p) is odd, then this is p − (2kq%p). Either
way, this is an even integer between 0 and p− 1, inclusive.

Note that r (k) ≡ (−1)(2kq%p) 2kq (mod p). Observe that r (k) 6= 0 otherwise k ≡ 0
(mod p), so r (k) ∈ {2, 4, . . . , p− 1}. Now, if r (k1) = r (k2), then

(−1)(2k1q%p) 2k1q ≡ (−1)(2k2q%p) 2k2q (mod p),

so k1 ≡ ±k2 (mod p). Since k ∈
{

1, 2, . . . , p−1
2

}
, we have that the r (k) are distinct.
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Thus,

2× 4× · · · × (p− 1) ≡ r (1)× r (2)× · · · × r
(
p− 1

2

)
≡ (−1)(2q%p) 2q × (−1)(4q%p) 4q × · · · × (−1)((p−1)q%p) (p− 1) q (mod p)

≡ (−1)
∑(p−1)/2
k=1 (2kq%p) 2× 4× · · · × (p− 1) q

p−1
2 (mod p).

But note that 2kq = p
⌊
2kq
p

⌋
+ (2kq%p), so

⌊
2kq
p

⌋
≡ (2kq%p) (mod 2), hence we have

that (
q

p

)
= (−1)

∑(p−1)/2
k=1 (2kq%p) = (−1)

∑(p−1)/2
k=1 b2kq/pc

as desired. �

Now, we complete the proof of quadratic reciprocity.

Proof. It suffices to show that

p−1
2∑

k=1

⌊
2kq

p

⌋
+

q−1
2∑

k=1

⌊
2kp

q

⌋
and p−1

2
· q−1

2
have the same parity.

Observe that when k > p
2
,
⌊
2kq
p

⌋
≡ q − 1−

⌊
2kq
p

⌋
(mod 2) but

q − 1−
⌊

2kq

p

⌋
= q − 1− 2kq

p
+

{
2kq

p

}
=

(p− 2k) q

p
−
(

1−
{

2kq

p

})
=

(p− 2k) q

p
−
{

(p− 2k) q

p

}
=

⌊
(p− 2k) q

p

⌋
,

so
⌊
2kq
p

⌋
≡
⌊
(p−2k)q

p

⌋
(mod 2). Hence

p−1
2∑

k=1

⌊
2kq

p

⌋
≡

p−1
2∑
j=1

⌊
jq

p

⌋
(mod 2).

Similarly,
q−1
2∑

k=1

⌊
2kp

q

⌋
≡

q−1
2∑
j=1

⌊
jp

q

⌋
(mod 2).

Now, consider the lattice grid with 0 < x < p
2

and 0 < y < q
2
, as well as the dividing

diagonal y = q
p
x. Note that there are no lattice points in the grid on the diagonal. Since⌊

jq
p

⌋
counts the number of lattice points in the grid below or on the diagonal with x-

coordinate j, we have that

p−1
2∑
j=1

⌊
jq

p

⌋
gives the number of lattice points in the grid below

the diagonal. Similarly,

q−1
2∑
j=1

⌊
jp

q

⌋
gives the number of lattice points in the grid to the

left of the diagonal.
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But these encompass all points in the grid, of which there are p−1
2
· q−1

2
, so we have the

identity
p−1
2∑
j=1

⌊
jq

p

⌋
+

q−1
2∑
j=1

⌊
jp

q

⌋
=
p− 1

2
· q − 1

2

and hence the congruence mod 2 is proven, so the proof is complete. �

Lemma 2.3(
−1
p

)
= (−1)

p−1
2 and

(
2
p

)
= (−1)

p2−1
8 .

Proof. The value of
(
−1
p

)
is obvious by Euler’s Criterion. To compute

(
2
p

)
, use Eisen-

stein’s Lemma. It suffices to show that

p−1
2∑

k=1

⌊
4k

p

⌋
is even if and only if p ≡ ±1 (mod 8).

But
⌊
4k
p

⌋
≤
⌊
2p−2
p

⌋
< 2, so

⌊
4k
p

⌋
is odd if and only if it equals 1. This is equivalent to

1 ≤ 4k
p
< 2, or p

4
≤ k < p

2
. If p ≡ 1 (mod 4), there are p−1

2
− p+3

4
+ 1 = p−1

4
such k, while

if p ≡ 3 (mod 4), there are p−1
2
− p+1

4
+1 = p+1

4
such k. This is even if and only if p ≡ ±1

(mod 8), as desired. �

Using a combination of quadratic reciprocity and lemma 2.3, we can easily compute
(
a
p

)
by using prime factorization.

Example 2.4

(
167

101

)
=

(
66

101

)
=

(
2

101

)(
3

101

)(
11

101

)
= (−1)

(
101

3

)(
101

11

)
= (−1)

(
2

3

)(
2

11

)
= (−1) (−1) (−1) = −1

4
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2.1 Jacobi Symbol

Definition. For an arbitrary positive integer n = p1p2 · · · pk the product of k (not nec-
essarily distinct) odd primes, we define the Jacobi symbol

(
a
n

)
to be(a

n

)
=

(
a

p1

)(
a

p2

)
· · ·
(
a

pk

)
.

Theorem 2.5

(a)
(
ab
c

)
=
(
a
c

) (
b
c

)
(b)

(
a
bc

)
=
(
a
b

) (
a
c

)
(c) If a ≡ b (mod c), then

(
a
c

)
=
(
b
c

)
.

(d) If m,n are odd and relatively prime, then
(
m
n

) (
n
m

)
= (−1)

m−1
2
·n−1

2 .

(e)
(−1
n

)
= (−1)

n−1
2

(f)
(
2
n

)
= (−1)

n2−1
8

Proof. (a) Let c = p1p2 · · · pk, then(
ab

c

)
=

k∏
i=1

(
ab

pi

)
=

k∏
i=1

(
a

pi

)(
b

pi

)
=
(a
c

)(b
c

)
.

(b) Let b = p1p2 · · · pk and c = q1q2 · · · ql, then

( a
bc

)
=

k∏
i=1

(
a

pi

) l∑
j=1

(
a

qj

)
=
(a
b

)(a
c

)
.

(c) Let c = p1p2 · · · pk, then

(a
c

)
=

k∏
i=1

(
a

pi

)
=

k∏
i=1

(
b

pi

)
=

(
b

c

)
.

(d) Let m = p1p2 · · · pk and n = q1q2 · · · ql, then

(m
n

)( n
m

)
=

k∏
i=1

l∏
j=1

(
pi
qj

)(
qj
pi

)
=

k∏
i=1

l∏
j=1

(−1)
pi−1

2
·
qj−1

2 .

It suffices to show that the count of (pi, qj) that are (3, 3) (mod 4) is odd if and
only if (m,n) ≡ (3, 3) (mod 4). But the count of such (pi, qj) is odd if and only if
there are an odd number of pi ≡ 3 (mod 4) and qj ≡ 3 (mod 4). This is equivalent
to m and n are both 3 (mod 4) as desired.
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(e) Note that (
−1

bc

)
=

(
−1

b

)(
−1

c

)
= (−1)

b−1
2

+ c−1
2 = (−1)

bc−1
2

if b and c are both odd, so we can induct on the number of primes that n is a
product of.

(f) Note that (
2

bc

)
=

(
2

b

)(
2

c

)
= (−1)

b2−1
8

+ c2−1
8 = (−1)

b2c2−1
8

if b and c are both odd, so we can induct on the number of primes that n is a
product of.

�

Example 2.6

(
167

101

)
=

(
66

101

)
=

(
2

101

)(
33

101

)
=

(
2

101

)(
101

33

)
=

(
2

101

)(
2

33

)
=

(
2

3333

)
= −1

Example 2.7

Is it possible that
(
m
n

)
= 1 but m is a QNR mod n?

3 Legendre Symbol Sums

There are many sums that we can easily compute involving the Legendre symbol.

Theorem 3.1

p−1∑
n=0

(
n

p

)
= 0

Proof. There are p−1
2

non-zero QRs and p−1
2

QNRs, so they cancel out. �

Theorem 3.2

There are
⌈
p
4

⌉
residues a ∈ Fp such that a and a+ 1 are both QRs.

6
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Proof. Consider the quantity 1
4

(
1 +

(
a
p

))(
1 +

(
a+1
p

))
for a 6= 0,−1. If a and a+ 1 are

both QRs, this is 1. If either is a QNR, this is 0. Thus,

p−2∑
a=1

1

4

(
1 +

(
a

p

))(
1 +

(
a+ 1

p

))
gives the count of valid a when 1 ≤ a ≤ p− 2. Clearly a = 0 is valid and a = −1 is valid

only if 1
2

(
1 +

(
−1
p

))
= 1 (otherwise it equals 0), so the total count is

1 +
1

2

(
1 +

(
−1

p

))
+

p−2∑
a=1

1

4

(
1 +

(
a

p

))(
1 +

(
a+ 1

p

))
.

Since 1
4

(
1 +

(
a
p

))(
1 +

(
a+1
p

))
is 1

2
at a = 0 and 1

4

(
1 +

(
−1
p

))
at a = −1, this sum is

equal to

1

2
+

1

4

(
1 +

(
−1

p

))
+

p−1∑
a=0

1

4

(
1 +

(
a

p

))(
1 +

(
a+ 1

p

))

=
3 + (−1)

p−1
2

4
+

1

4

p−1∑
a=0

(
1 +

(
a

p

))(
1 +

(
a+ 1

p

))
.

Examine the sum. It is also equal to

p−1∑
a=0

1 +

(
a

p

)
+

(
a+ 1

p

)
+

(
a2 + a

p

)
.

The sum of the 1’s is clearly p. The sum of the
(
a
p

)
and

(
a+1
p

)
terms are 0 by Theorem

3.1. So it suffices to compute the sum of
(
a2+a
p

)
=
(

1+1/a
p

)
for a 6= 0. As a ranges from

1 to p − 1, 1 + 1/a ranges between 0 and p − 1 except for 1. Hence the sum of
(
a2+a
p

)
is
(

0
p

)
= 0 plus

p−1∑
n=1

(
n

p

)
−
(

1

p

)
= −1. Thus, we have that the sum evaluates to p− 1

and hence the total count is p+2+(−1)
p−1
2

4
=
⌈
p
4

⌉
as desired. �

Theorem 3.3

p−1∑
n=0

(
(n− a) (n− b)

p

)
=

{
−1 if a 6= b

p− 1 if a = b

Proof. If a = b, the result is clear (the summand is 1 unless n = a in which case it is 0).

Otherwise, replace n with n+a and take the indices mod p so this is

p−1∑
n=0

(
n2 + (a− b)n

p

)
=

p−1∑
n=1

(
1 + (a− b) /n

p

)
. As before, 1+(a− b) /n takes on the values besides 1, so this sum

is

p−1∑
m=1

(
m

p

)
−
(

1

p

)
= −1. �
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4 Gauss Sums

Gauss sums are a special type of Legendre Symbol Sums.

Definition. The Gauss sum gp is

p−1∑
n=0

(
n

p

)
ζn, where ζ = ei·

2π
p .

Theorem 4.1

g2p = p∗, where p∗ = (−1)
p−1
2 p.

Proof. Observe that

gpgp =

p−1∑
n=0

p−1∑
m=0

(
nm

p

)
ζn−m =

p−1∑
d=0

ζd
p−1∑
n=0

(
n (n− d)

p

)
.

By Theorem 3.3, the inner sum is −1 unless d = 0 in which case it is p− 1. Thus,

gpgp = (p− 1)−
p−1∑
d=1

ζd = p.

But

gp =

p−1∑
m=0

(
m

p

)
ζ−m =

p−1∑
m=0

(
−m
p

)
ζm = (−1)

p−1
2 gp,

hence g2p = (−1)
p−1
2 p. �

Theorem 4.2

gp =

{√
p if p ≡ 1 (mod 4)

i
√
p if p ≡ 3 (mod 4)

Proof. Consider the polynomials

g (X) =

p−1∑
n=0

(
n

p

)
Xn

so that g (ζ) = gp and

h (X) =

p−1
2∏

k=1

(
X−k/2 −Xk/2

)
,

where exponents in the definition of h are taken mod p.

8
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We know from above that g (ζ)2 = p∗. We show that h (ζ)2 = p∗. Observe that

h (ζ)2 =

p−1
2∏

k=1

(
ζ−k/2 − ζk/2

)2
=

p−1
2∏

k=1

(
ζ−k − 1

) (
1− ζk

)
= (−1)

p−1
2

p−1∏
k=1

(
1− ζk

)
= (−1)

p−1
2 Φp (1) = (−1)

p−1
2 p,

hence h (ζ)2 = p∗ = g (ζ)2. Thus, g (ζ) = εh (ζ) for some ε ∈ {1,−1}. Then ζ is a root
of the polynomial g (X)− εh (X). Since the minimal polynomial of ζ is Φp, we have that
Φp (X) must divide g (X)− εh (X). In other words, there exists a polynomial d (X) such
that

g (X)− εh (X) = Φp (X) d (X) .

Taking this mod p,
g (X)− εh (X) ≡ (X − 1)p−1 d (X)

since Φp (X) = Xp−1
X−1 ≡

(X−1)p
X−1 = (X − 1)p−1 by the Frobenius endomorphism. Then

g (X) ≡ εh (X) (mod (X − 1)p−1) in Fp, so g (X) ≡ εh (X) (mod (X − 1)
p+1
2 ) in Fp.

Write Y = X − 1 so that g (1 + Y ) ≡ εh (1 + Y ) (mod Y
p+1
2 ) in Fp.

First, let us expand g (1 + Y ) in Fp. It is

g (1 + Y ) =

p−1∑
n=0

(
n

p

)
(1 + Y )n

=

p−1∑
n=0

n∑
m=0

(
n

p

)(
n

m

)
Y m

=

p−1∑
m=0

(
p−1∑
n=m

(
n

m

)(
n

p

))
Y m.

Suppose that m < p−1
2

. Consider the sum

p−1∑
n=m

(
n

m

)(
n

p

)
mod p. If we write

(
n
m

)
=

1
m!

(am,mn
m + am,m−1n

m−1 + . . .+ am,1n+ am,0) as a polynomial in n, we get that this is

p−1∑
n=m

(
n

m

)(
n

p

)
=

p−1∑
n=0

(
n

m

)(
n

p

)

≡
p−1∑
n=0

m∑
j=0

am,j
m!

njn
p−1
2

=
m∑
j=0

am,j
m!

p−1∑
n=0

nj+
p−1
2 .

Take a primitive root e in Fp. Then

p−1∑
n=0

nj+
p−1
2 ≡

p−1∑
n=0

(en)j+
p−1
2 = ej+

p−1
2

p−1∑
n=0

nj+
p−1
2

9
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and since 0 < j + p−1
2

< p − 1, ej+
p−1
2 6≡ 1 and hence

p−1∑
n=0

nj+
p−1
2 ≡ 0 (mod p). Thus,

p−1∑
n=m

(
n

m

)(
n

p

)
≡ 0 (mod p). On the other hand, if m = p−1

2
, then

p−1∑
n=m

(
n

m

)(
n

p

)
≡

m∑
j=0

am,j
m!

p−1∑
n=0

nm+ p−1
2 ≡ am,m

m!
(p− 1) = −am,m

m!

by the above work and Fermat’s Little Theorem. It is obvious that am,m = 1, so this sum
evaluates to − 1

( p−1
2 )!

(mod p). Hence

g (1 + Y ) ≡ − 1(
p−1
2

)
!
Y

p−1
2 (mod Y

p+1
2 )

in Fp.

Now, let us expand h (1 + Y ) in Fp. Observe that

(1 + Y )−k/2 − (1 + Y )k/2 ≡
(

1− k

2
Y

)
−
(

1 +
k

2
Y

)
≡ −kY (mod Y 2)

in Fp, so

h (1 + Y ) ≡ (−1) (−2) · · ·
(
−p− 1

2

)
Y

p−1
2 ≡

(
p+ 1

2

)
· · · (p− 2) (p− 1)Y

p−1
2 (mod Y

p+1
2 )

in Fp.

Combining these, we have that

− 1(
p−1
2

)
!
Y

p−1
2 ≡ ε

(
p+ 1

2

)
· · · (p− 2) (p− 1)Y

p−1
2 (mod Y

p+1
2 )

in Fp. Dividing out, this implies that

−1 ≡ ε (p− 1)! (mod Y )

in Fp. But (p− 1)! ≡ −1 (mod p) by Wilson’s Theorem, so ε = 1 and hence g (ζ) = h (ζ).

Now, check that ζ−k/2− ζk/2 = −2i sin 2π(k/2)
p

(k/2 taken mod p) is a positive multiple of

i, specifically 2i sin πk
p

, when k is odd and a negative multiple of i, specifically −2i sin πk
p

,
when k is even. Thus, there is always the same number of minus signs as there are
complete copies of i2 = −1 in the product representation of h (ζ), so h (ζ) = gp is always
a positive real or a positive multiple of i. The conclusion follows from Theorem 4.1. �

We can actually prove quadratic reciprocity using Theorem 4.1.

Proof. Observe that

gq−1p = (p∗)
q−1
2 ≡

(
p∗

q

)
(mod q),

10
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so gqp ≡
(
p∗

q

)
gp (mod q) (here we use an extension of Fp that includes ζ). But at the

same time, by the Frobenius Endomorphism,

gqp ≡
p−1∑
n=0

(
n

p

)
ζqn ≡

(
q

p

) p−1∑
n=0

(
qn

p

)
ζqn ≡

(
q

p

)
gp (mod q).

Then since gp is non-zero mod q, this implies that
(
q
p

)
=
(
p∗

q

)
, which can be unravelled

to deduce reciprocity. �

5 Problems

Here are some assorted problems about quadratic residues.

1. Prove that
(
−3
p

)
=
(
p
3

)
.

2. If m and n are relatively prime and n is an odd positive integer such that m is a
quadratic residue mod n, prove that

(
m
n

)
= 1.

3. (2018 MP4G #18) Evaluate the expression∣∣∣∣∣
15∏
k=0

(
1 + e2πik

2/31
)∣∣∣∣∣ .

4. Prove that if n is a quadratic residue mod p for an odd prime p, then n is quadratic
residue mod pk for any positive integer k.

5. If a2 + b2 = p is a prime and a is odd, prove that a is a quadratic residue mod p.

6. Let p ≡ 1 (mod 4) be a prime and r, s a QR and QNR, respectively, mod p. Set

a = 1
2

p−1∑
i=0

(
i (i2 − r)

p

)
and b = 1

2

p−1∑
i=0

(
i (i2 − s)

p

)
. Prove that a2 + b2 = p.

7. Prove that Fp ≡
(
p
5

)
(mod p), where p ≥ 5 is a prime.

8. (Easier than 2016 TSTST #3) Let Q (x) = 420 (x2 − 1)
2
. Prove that for every

n > 2, the numbers
Q (0) , Q (1) , Q (2) , . . . , Q (n− 1)

produce at most 0.499n distinct residues when taken mod n.

9. (2000 Taiwan TST) Let m and n be relatively prime positive integers. Prove that
ϕ (5m − 1) 6= 5n − 1.

10. Prove that there are no positive integers a, b, c such that 4abc− a− b is a square.

11. Prove that 16 is an 8th-power residue mod any integer.
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