Quadratic Residues

Tristan Shin

29 Sep 2018

In this handout, we investigate quadratic residues and their properties and applications. Unless otherwise specified, p is an odd prime.

1 Basic Properties

Definition. We say that an integer m is a quadratic residue $(\mathrm{QR}) \bmod n$ if there exists an integer x for which $x^{2} \equiv m(\bmod n)$.

Definition. We say that an integer m is a quadratic non-residue (QNR) mod n if it is not a quadratic residue.

Example 1.1

0 and 1 are always quadratic residues $\bmod n$.

Definition. A QR $m(\bmod n)$ is a non-zero $Q R$ if $m \not \equiv 0(\bmod n)$.

We use the Legendre symbol to help keep track of when an integer is a QR.
Definition. The Legendre symbol $\left(\frac{a}{p}\right)$ is defined as

$$
\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } p \mid a \\ 1 & \text { if } a \text { is a non-zero QR } \bmod p \\ -1 & \text { if } a \text { is a QNR } \bmod p\end{cases}
$$

It is clear that $a \equiv b(\bmod p) \operatorname{implies}\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.

Lemma 1.2: Euler's Criterion

For all positive integers $a,\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod p)$.

Proof. If $p \mid a$, this is obvious, so assume $p \nmid a$. If a is a QR mod p, then let $a \equiv x^{2}$ $(\bmod p)$. Then $a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1(\bmod p)$ by Fermat's Little Theorem. Otherwise, suppose that a is a QNR mod p. The roots of the polynomial $X^{\frac{p-1}{2}}-1$ in \mathbb{F}_{p} are already identified as the $\frac{p-1}{2}$ non-zero QRs $\bmod p$, so $a^{\frac{p-1}{2}} \not \equiv 1(\bmod p)$. But $p \left\lvert\,\left(a^{\frac{p-1}{2}}-1\right)\left(a^{\frac{p-1}{2}}+1\right)\right.$ by Fermat's Little Theorem, so $a^{\frac{p-1}{2}} \equiv-1(\bmod p)$. Hence this equivalence is true.

Corollary 1.3

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
$$

Remark. Because the Legendre symbol $\left(\frac{a}{p}\right)$ makes sense as long as $a(\bmod p)$ makes sense, we can write things like $\left(\frac{1 / 5}{7}\right)=\left(\frac{3}{7}\right)=-1$. Specifically, we also have

$$
\left(\frac{1 / a}{p}\right)=\left(\frac{a^{2}}{p}\right)\left(\frac{1 / a}{p}\right)=\left(\frac{a}{p}\right) .
$$

2 Quadratic Reciprocity

Theorem 2.1: Quadratic Reciprocity

If p and q are distinct odd primes, then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} .
$$

In other words, $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$ unless $p \equiv q \equiv 3(\bmod 4)$.

To prove this, we first prove a lemma.

Lemma 2.2: Eisenstein's Lemma

$$
\left(\frac{q}{p}\right)=(-1)^{\sum_{k=1}^{(p-1) / 2}\lfloor 2 k q / p\rfloor}
$$

for an odd prime p and arbitrary prime $q \neq p$.

Proof. We use the notation that $(m \% n)$ gives the remainder when m is divided by n. Consider the numbers $r(k)=\left((-1)^{(2 k q \% p)}(2 k q \% p) \% p\right)$ for $k=1,2, \ldots, \frac{p-1}{2}$. If $(2 k q \% p)$ is even, then this is just $(2 k q \% p)$. If $(2 k q \% p)$ is odd, then this is $p-(2 k q \% p)$. Either way, this is an even integer between 0 and $p-1$, inclusive.

Note that $r(k) \equiv(-1)^{(2 k q \% p)} 2 k q(\bmod p)$. Observe that $r(k) \neq 0$ otherwise $k \equiv 0$ $(\bmod p)$, so $r(k) \in\{2,4, \ldots, p-1\}$. Now, if $r\left(k_{1}\right)=r\left(k_{2}\right)$, then

$$
(-1)^{\left(2 k_{1} q \% p\right)} 2 k_{1} q \equiv(-1)^{\left(2 k_{2} q \% p\right)} 2 k_{2} q \quad(\bmod p),
$$

so $k_{1} \equiv \pm k_{2}(\bmod p)$. Since $k \in\left\{1,2, \ldots, \frac{p-1}{2}\right\}$, we have that the $r(k)$ are distinct.

Thus,

$$
\begin{aligned}
2 \times 4 \times \cdots \times(p-1) & \equiv r(1) \times r(2) \times \cdots \times r\left(\frac{p-1}{2}\right) \\
& \equiv(-1)^{(2 q \% p)} 2 q \times(-1)^{(4 q \% p)} 4 q \times \cdots \times(-1)^{((p-1) q \% p)}(p-1) q \quad(\bmod p) \\
& \equiv(-1)^{\sum_{k=1}^{(p-1) / 2}(2 k q \% p)} 2 \times 4 \times \cdots \times(p-1) q^{\frac{p-1}{2}} \quad(\bmod p) .
\end{aligned}
$$

But note that $2 k q=p\left\lfloor\frac{2 k q}{p}\right\rfloor+(2 k q \% p)$, so $\left\lfloor\frac{2 k q}{p}\right\rfloor \equiv(2 k q \% p)(\bmod 2)$, hence we have that

$$
\left(\frac{q}{p}\right)=(-1)^{\sum_{k=1}^{(p-1) / 2}(2 k q \% p)}=(-1)^{\sum_{k=1}^{(p-1) / 2}\lfloor 2 k q / p\rfloor}
$$

as desired.

Now, we complete the proof of quadratic reciprocity.
Proof. It suffices to show that $\sum_{k=1}^{\frac{p-1}{2}}\left\lfloor\frac{2 k q}{p}\right\rfloor+\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{2 k p}{q}\right\rfloor$ and $\frac{p-1}{2} \cdot \frac{q-1}{2}$ have the same parity.
Observe that when $k>\frac{p}{2},\left\lfloor\frac{2 k q}{p}\right\rfloor \equiv q-1-\left\lfloor\frac{2 k q}{p}\right\rfloor(\bmod 2)$ but

$$
\begin{aligned}
q-1-\left\lfloor\frac{2 k q}{p}\right\rfloor & =q-1-\frac{2 k q}{p}+\left\{\frac{2 k q}{p}\right\}=\frac{(p-2 k) q}{p}-\left(1-\left\{\frac{2 k q}{p}\right\}\right) \\
& =\frac{(p-2 k) q}{p}-\left\{\frac{(p-2 k) q}{p}\right\}=\left\lfloor\frac{(p-2 k) q}{p}\right\rfloor
\end{aligned}
$$

so $\left\lfloor\frac{2 k q}{p}\right\rfloor \equiv\left\lfloor\frac{(p-2 k) q}{p}\right\rfloor(\bmod 2)$. Hence

$$
\sum_{k=1}^{\frac{p-1}{2}}\left\lfloor\frac{2 k q}{p}\right\rfloor \equiv \sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor \quad(\bmod 2)
$$

Similarly,

$$
\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{2 k p}{q}\right\rfloor \equiv \sum_{j=1}^{\frac{q-1}{2}}\left\lfloor\frac{j p}{q}\right\rfloor \quad(\bmod 2)
$$

Now, consider the lattice grid with $0<x<\frac{p}{2}$ and $0<y<\frac{q}{2}$, as well as the dividing diagonal $y=\frac{q}{p} x$. Note that there are no lattice points in the grid on the diagonal. Since $\left\lfloor\frac{j q}{p}\right\rfloor$ counts the number of lattice points in the grid below or on the diagonal with x -
 the diagonal. Similarly, $\sum_{j=1}^{\frac{q-1}{2}}\left\lfloor\frac{j p}{q}\right\rfloor$ gives the number of lattice points in the grid to the left of the diagonal.

But these encompass all points in the grid, of which there are $\frac{p-1}{2} \cdot \frac{q-1}{2}$, so we have the identity

$$
\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor+\sum_{j=1}^{\frac{q-1}{2}}\left\lfloor\frac{j p}{q}\right\rfloor=\frac{p-1}{2} \cdot \frac{q-1}{2}
$$

and hence the congruence $\bmod 2$ is proven, so the proof is complete.

Lemma 2.3

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}} \text { and }\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{\delta}}
$$

Proof. The value of $\left(\frac{-1}{p}\right)$ is obvious by Euler's Criterion. To compute $\left(\frac{2}{p}\right)$, use Eisenstein's Lemma. It suffices to show that $\sum_{k=1}^{\frac{p-1}{2}}\left\lfloor\frac{4 k}{p}\right\rfloor$ is even if and only if $p \equiv \pm 1(\bmod 8)$. But $\left\lfloor\frac{4 k}{p}\right\rfloor \leq\left\lfloor\frac{2 p-2}{p}\right\rfloor<2$, so $\left\lfloor\frac{4 k}{p}\right\rfloor$ is odd if and only if it equals 1 . This is equivalent to $1 \leq \frac{4 k}{p}<2$, or $\frac{p}{4} \leq k<\frac{p}{2}$. If $p \equiv 1(\bmod 4)$, there are $\frac{p-1}{2}-\frac{p+3}{4}+1=\frac{p-1}{4}$ such k, while if $p \equiv 3(\bmod 4)$, there are $\frac{p-1}{2}-\frac{p+1}{4}+1=\frac{p+1}{4}$ such k. This is even if and only if $p \equiv \pm 1$ $(\bmod 8)$, as desired.

Using a combination of quadratic reciprocity and lemma 2.3 , we can easily compute $\left(\frac{a}{p}\right)$ by using prime factorization.

Example 2.4

$$
\begin{aligned}
\left(\frac{167}{101}\right) & =\left(\frac{66}{101}\right)=\left(\frac{2}{101}\right)\left(\frac{3}{101}\right)\left(\frac{11}{101}\right)=(-1)\left(\frac{101}{3}\right)\left(\frac{101}{11}\right) \\
& =(-1)\left(\frac{2}{3}\right)\left(\frac{2}{11}\right)=(-1)(-1)(-1)=-1
\end{aligned}
$$

2.1 Jacobi Symbol

Definition. For an arbitrary positive integer $n=p_{1} p_{2} \cdots p_{k}$ the product of k (not necessarily distinct) odd primes, we define the Jacobi symbol $\left(\frac{a}{n}\right)$ to be

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \cdots\left(\frac{a}{p_{k}}\right) .
$$

Theorem 2.5

(a) $\left(\frac{a b}{c}\right)=\left(\frac{a}{c}\right)\left(\frac{b}{c}\right)$
(b) $\left(\frac{a}{b c}\right)=\left(\frac{a}{b}\right)\left(\frac{a}{c}\right)$
(c) If $a \equiv b(\bmod c)$, then $\left(\frac{a}{c}\right)=\left(\frac{b}{c}\right)$.
(d) If m, n are odd and relatively prime, then $\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}$.
(e) $\left(\frac{-1}{n}\right)=(-1)^{\frac{n-1}{2}}$
(f) $\left(\frac{2}{n}\right)=(-1)^{\frac{n^{2}-1}{8}}$

Proof. (a) Let $c=p_{1} p_{2} \cdots p_{k}$, then

$$
\left(\frac{a b}{c}\right)=\prod_{i=1}^{k}\left(\frac{a b}{p_{i}}\right)=\prod_{i=1}^{k}\left(\frac{a}{p_{i}}\right)\left(\frac{b}{p_{i}}\right)=\left(\frac{a}{c}\right)\left(\frac{b}{c}\right) .
$$

(b) Let $b=p_{1} p_{2} \cdots p_{k}$ and $c=q_{1} q_{2} \cdots q_{l}$, then

$$
\left(\frac{a}{b c}\right)=\prod_{i=1}^{k}\left(\frac{a}{p_{i}}\right) \sum_{j=1}^{l}\left(\frac{a}{q_{j}}\right)=\left(\frac{a}{b}\right)\left(\frac{a}{c}\right) .
$$

(c) Let $c=p_{1} p_{2} \cdots p_{k}$, then

$$
\left(\frac{a}{c}\right)=\prod_{i=1}^{k}\left(\frac{a}{p_{i}}\right)=\prod_{i=1}^{k}\left(\frac{b}{p_{i}}\right)=\left(\begin{array}{l}
\frac{b}{c}
\end{array}\right) .
$$

(d) Let $m=p_{1} p_{2} \cdots p_{k}$ and $n=q_{1} q_{2} \cdots q_{l}$, then

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=\prod_{i=1}^{k} \prod_{j=1}^{l}\left(\frac{p_{i}}{q_{j}}\right)\left(\frac{q_{j}}{p_{i}}\right)=\prod_{i=1}^{k} \prod_{j=1}^{l}(-1)^{\frac{p_{i}-1}{2} \cdot \frac{q_{j}-1}{2}} .
$$

It suffices to show that the count of $\left(p_{i}, q_{j}\right)$ that are $(3,3)(\bmod 4)$ is odd if and only if $(m, n) \equiv(3,3)(\bmod 4)$. But the count of such $\left(p_{i}, q_{j}\right)$ is odd if and only if there are an odd number of $p_{i} \equiv 3(\bmod 4)$ and $q_{j} \equiv 3(\bmod 4)$. This is equivalent to m and n are both $3(\bmod 4)$ as desired.
(e) Note that

$$
\left(\frac{-1}{b c}\right)=\left(\frac{-1}{b}\right)\left(\frac{-1}{c}\right)=(-1)^{\frac{b-1}{2}+\frac{c-1}{2}}=(-1)^{\frac{b c-1}{2}}
$$

if b and c are both odd, so we can induct on the number of primes that n is a product of.
(f) Note that

$$
\left(\frac{2}{b c}\right)=\left(\frac{2}{b}\right)\left(\frac{2}{c}\right)=(-1)^{\frac{b^{2}-1}{8}+\frac{c^{2}-1}{8}}=(-1)^{\frac{b^{2} c^{2}-1}{8}}
$$

if b and c are both odd, so we can induct on the number of primes that n is a product of.

Example 2.6

$$
\begin{aligned}
\left(\frac{167}{101}\right) & =\left(\frac{66}{101}\right)=\left(\frac{2}{101}\right)\left(\frac{33}{101}\right)=\left(\frac{2}{101}\right)\left(\frac{101}{33}\right) \\
& =\left(\frac{2}{101}\right)\left(\frac{2}{33}\right)=\left(\frac{2}{3333}\right)=-1
\end{aligned}
$$

Example 2.7

Is it possible that $\left(\frac{m}{n}\right)=1$ but m is a QNR $\bmod n ?$

3 Legendre Symbol Sums

There are many sums that we can easily compute involving the Legendre symbol.

Theorem 3.1

$$
\sum_{n=0}^{p-1}\left(\frac{n}{p}\right)=0
$$

Proof. There are $\frac{p-1}{2}$ non-zero QRs and $\frac{p-1}{2}$ QNRs, so they cancel out.

Theorem 3.2

There are $\left\lceil\frac{p}{4}\right\rceil$ residues $a \in \mathbb{F}_{p}$ such that a and $a+1$ are both QRs.

Proof. Consider the quantity $\frac{1}{4}\left(1+\left(\frac{a}{p}\right)\right)\left(1+\left(\frac{a+1}{p}\right)\right)$ for $a \neq 0,-1$. If a and $a+1$ are both QRs, this is 1 . If either is a QNR, this is 0 . Thus, $\sum_{a=1}^{p-2} \frac{1}{4}\left(1+\left(\frac{a}{p}\right)\right)\left(1+\left(\frac{a+1}{p}\right)\right)$ gives the count of valid a when $1 \leq a \leq p-2$. Clearly $a=0$ is valid and $a=-1$ is valid only if $\frac{1}{2}\left(1+\left(\frac{-1}{p}\right)\right)=1$ (otherwise it equals 0), so the total count is

$$
1+\frac{1}{2}\left(1+\left(\frac{-1}{p}\right)\right)+\sum_{a=1}^{p-2} \frac{1}{4}\left(1+\left(\frac{a}{p}\right)\right)\left(1+\left(\frac{a+1}{p}\right)\right) .
$$

Since $\frac{1}{4}\left(1+\left(\frac{a}{p}\right)\right)\left(1+\left(\frac{a+1}{p}\right)\right)$ is $\frac{1}{2}$ at $a=0$ and $\frac{1}{4}\left(1+\left(\frac{-1}{p}\right)\right)$ at $a=-1$, this sum is equal to

$$
\begin{aligned}
\frac{1}{2} & +\frac{1}{4}\left(1+\left(\frac{-1}{p}\right)\right)+\sum_{a=0}^{p-1} \frac{1}{4}\left(1+\left(\frac{a}{p}\right)\right)\left(1+\left(\frac{a+1}{p}\right)\right) \\
& =\frac{3+(-1)^{\frac{p-1}{2}}}{4}+\frac{1}{4} \sum_{a=0}^{p-1}\left(1+\left(\frac{a}{p}\right)\right)\left(1+\left(\frac{a+1}{p}\right)\right) .
\end{aligned}
$$

Examine the sum. It is also equal to

$$
\sum_{a=0}^{p-1} 1+\left(\frac{a}{p}\right)+\left(\frac{a+1}{p}\right)+\left(\frac{a^{2}+a}{p}\right)
$$

The sum of the 1 's is clearly p. The sum of the $\left(\frac{a}{p}\right)$ and $\left(\frac{a+1}{p}\right)$ terms are 0 by Theorem 3.1. So it suffices to compute the sum of $\left(\frac{a^{2}+a}{p}\right)=\left(\frac{1+1 / a}{p}\right)$ for $a \neq 0$. As a ranges from 1 to $p-1,1+1 / a$ ranges between 0 and $p-1$ except for 1 . Hence the sum of $\left(\frac{a^{2}+a}{p}\right)$ is $\left(\frac{0}{p}\right)=0$ plus $\sum_{n=1}^{p-1}\left(\frac{n}{p}\right)-\left(\frac{1}{p}\right)=-1$. Thus, we have that the sum evaluates to $p-1$ and hence the total count is $\frac{p+2+(-1)^{\frac{p-1}{2}}}{4}=\left\lceil\frac{p}{4}\right\rceil$ as desired.

Theorem 3.3

$$
\sum_{n=0}^{p-1}\left(\frac{(n-a)(n-b)}{p}\right)= \begin{cases}-1 & \text { if } a \neq b \\ p-1 & \text { if } a=b\end{cases}
$$

Proof. If $a=b$, the result is clear (the summand is 1 unless $n=a$ in which case it is 0). Otherwise, replace n with $n+a$ and take the indices $\bmod p$ so this is $\sum_{n=0}^{p-1}\left(\frac{n^{2}+(a-b) n}{p}\right)=$ $\sum_{n=1}^{p-1}\left(\frac{1+(a-b) / n}{p}\right)$. As before, $1+(a-b) / n$ takes on the values besides 1 , so this sum is $\sum_{m=1}^{p-1}\left(\frac{m}{p}\right)-\left(\frac{1}{p}\right)=-1$.

4 Gauss Sums

Gauss sums are a special type of Legendre Symbol Sums.
Definition. The Gauss sum g_{p} is $\sum_{n=0}^{p-1}\left(\frac{n}{p}\right) \zeta^{n}$, where $\zeta=e^{i \cdot \frac{2 \pi}{p}}$.

Theorem 4.1

$g_{p}^{2}=p^{*}$, where $p^{*}=(-1)^{\frac{p-1}{2}} p$.

Proof. Observe that

$$
g_{p} \overline{g_{p}}=\sum_{n=0}^{p-1} \sum_{m=0}^{p-1}\left(\frac{n m}{p}\right) \zeta^{n-m}=\sum_{d=0}^{p-1} \zeta^{d} \sum_{n=0}^{p-1}\left(\frac{n(n-d)}{p}\right) .
$$

By Theorem 3.3, the inner sum is -1 unless $d=0$ in which case it is $p-1$. Thus,

$$
g_{p} \overline{g_{p}}=(p-1)-\sum_{d=1}^{p-1} \zeta^{d}=p
$$

But

$$
\overline{g_{p}}=\sum_{m=0}^{p-1}\left(\frac{m}{p}\right) \zeta^{-m}=\sum_{m=0}^{p-1}\left(\frac{-m}{p}\right) \zeta^{m}=(-1)^{\frac{p-1}{2}} g_{p},
$$

hence $g_{p}^{2}=(-1)^{\frac{p-1}{2}} p$.

Theorem 4.2

$g_{p}= \begin{cases}\sqrt{p} & \text { if } p \equiv 1(\bmod 4) \\ i \sqrt{p} & \text { if } p \equiv 3(\bmod 4)\end{cases}$

Proof. Consider the polynomials

$$
g(X)=\sum_{n=0}^{p-1}\left(\frac{n}{p}\right) X^{n}
$$

so that $g(\zeta)=g_{p}$ and

$$
h(X)=\prod_{k=1}^{\frac{p-1}{2}}\left(X^{-k / 2}-X^{k / 2}\right)
$$

where exponents in the definition of h are taken $\bmod p$.

We know from above that $g(\zeta)^{2}=p^{*}$. We show that $h(\zeta)^{2}=p^{*}$. Observe that

$$
\begin{aligned}
h(\zeta)^{2} & =\prod_{k=1}^{\frac{p-1}{2}}\left(\zeta^{-k / 2}-\zeta^{k / 2}\right)^{2}=\prod_{k=1}^{\frac{p-1}{2}}\left(\zeta^{-k}-1\right)\left(1-\zeta^{k}\right) \\
& =(-1)^{\frac{p-1}{2}} \prod_{k=1}^{p-1}\left(1-\zeta^{k}\right)=(-1)^{\frac{p-1}{2}} \Phi_{p}(1)=(-1)^{\frac{p-1}{2}} p,
\end{aligned}
$$

hence $h(\zeta)^{2}=p^{*}=g(\zeta)^{2}$. Thus, $g(\zeta)=\epsilon h(\zeta)$ for some $\epsilon \in\{1,-1\}$. Then ζ is a root of the polynomial $g(X)-\epsilon h(X)$. Since the minimal polynomial of ζ is Φ_{p}, we have that $\Phi_{p}(X)$ must divide $g(X)-\epsilon h(X)$. In other words, there exists a polynomial $d(X)$ such that

$$
g(X)-\epsilon h(X)=\Phi_{p}(X) d(X) .
$$

Taking this $\bmod p$,

$$
g(X)-\epsilon h(X) \equiv(X-1)^{p-1} d(X)
$$

since $\Phi_{p}(X)=\frac{X^{p}-1}{X-1} \equiv \frac{(X-1)^{p}}{X-1}=(X-1)^{p-1}$ by the Frobenius endomorphism. Then $g(X) \equiv \epsilon h(X)\left(\bmod (X-1)^{p-1}\right)$ in \mathbb{F}_{p}, so $g(X) \equiv \epsilon h(X)\left(\bmod (X-1)^{\frac{p+1}{2}}\right)$ in \mathbb{F}_{p}. Write $Y=X-1$ so that $g(1+Y) \equiv \epsilon h(1+Y)\left(\bmod Y^{\frac{p+1}{2}}\right)$ in \mathbb{F}_{p}.

First, let us expand $g(1+Y)$ in \mathbb{F}_{p}. It is

$$
\begin{aligned}
g(1+Y) & =\sum_{n=0}^{p-1}\left(\frac{n}{p}\right)(1+Y)^{n} \\
& =\sum_{n=0}^{p-1} \sum_{m=0}^{n}\left(\frac{n}{p}\right)\binom{n}{m} Y^{m} \\
& =\sum_{m=0}^{p-1}\left(\sum_{n=m}^{p-1}\binom{n}{m}\left(\frac{n}{p}\right)\right) Y^{m} .
\end{aligned}
$$

Suppose that $m<\frac{p-1}{2}$. Consider the sum $\sum_{n=m}^{p-1}\binom{n}{m}\binom{n}{p} \bmod p$. If we write $\binom{n}{m}=$ $\frac{1}{m!}\left(a_{m, m} n^{m}+a_{m, m-1} n^{m-1}+\ldots+a_{m, 1} n+a_{m, 0}\right)$ as a polynomial in n, we get that this is

$$
\begin{aligned}
\sum_{n=m}^{p-1}\binom{n}{m}\left(\frac{n}{p}\right) & =\sum_{n=0}^{p-1}\binom{n}{m}\binom{n}{p} \\
& \equiv \sum_{n=0}^{p-1} \sum_{j=0}^{m} \frac{a_{m, j}}{m!} n^{j} n^{\frac{p-1}{2}} \\
& =\sum_{j=0}^{m} \frac{a_{m, j}}{m!} \sum_{n=0}^{p-1} n^{j+\frac{p-1}{2}} .
\end{aligned}
$$

Take a primitive root e in \mathbb{F}_{p}. Then

$$
\sum_{n=0}^{p-1} n^{j+\frac{p-1}{2}} \equiv \sum_{n=0}^{p-1}(e n)^{j+\frac{p-1}{2}}=e^{j+\frac{p-1}{2}} \sum_{n=0}^{p-1} n^{j+\frac{p-1}{2}}
$$

and since $0<j+\frac{p-1}{2}<p-1, e^{j+\frac{p-1}{2}} \not \equiv 1$ and hence $\sum_{n=0}^{p-1} n^{j+\frac{p-1}{2}} \equiv 0(\bmod p)$. Thus, $\sum_{n=m}^{p-1}\binom{n}{m}\binom{n}{p} \equiv 0(\bmod p)$. On the other hand, if $m=\frac{p-1}{2}$, then

$$
\sum_{n=m}^{p-1}\binom{n}{m}\left(\frac{n}{p}\right) \equiv \sum_{j=0}^{m} \frac{a_{m, j}}{m!} \sum_{n=0}^{p-1} n^{m+\frac{p-1}{2}} \equiv \frac{a_{m, m}}{m!}(p-1)=-\frac{a_{m, m}}{m!}
$$

by the above work and Fermat's Little Theorem. It is obvious that $a_{m, m}=1$, so this sum evaluates to $-\frac{1}{\left(\frac{p-1}{2}\right)!}(\bmod p)$. Hence

$$
g(1+Y) \equiv-\frac{1}{\left(\frac{p-1}{2}\right)!} Y^{\frac{p-1}{2}} \quad\left(\bmod Y^{\frac{p+1}{2}}\right)
$$

in \mathbb{F}_{p}.
Now, let us expand $h(1+Y)$ in \mathbb{F}_{p}. Observe that

$$
(1+Y)^{-k / 2}-(1+Y)^{k / 2} \equiv\left(1-\frac{k}{2} Y\right)-\left(1+\frac{k}{2} Y\right) \equiv-k Y \quad\left(\bmod Y^{2}\right)
$$

in \mathbb{F}_{p}, so
$h(1+Y) \equiv(-1)(-2) \cdots\left(-\frac{p-1}{2}\right) Y^{\frac{p-1}{2}} \equiv\left(\frac{p+1}{2}\right) \cdots(p-2)(p-1) Y^{\frac{p-1}{2}} \quad\left(\bmod Y^{\frac{p+1}{2}}\right)$ in \mathbb{F}_{p}.

Combining these, we have that

$$
-\frac{1}{\left(\frac{p-1}{2}\right)!} Y^{\frac{p-1}{2}} \equiv \epsilon\left(\frac{p+1}{2}\right) \cdots(p-2)(p-1) Y^{\frac{p-1}{2}} \quad\left(\bmod Y^{\frac{p+1}{2}}\right)
$$

in \mathbb{F}_{p}. Dividing out, this implies that

$$
-1 \equiv \epsilon(p-1)!\quad(\bmod Y)
$$

in \mathbb{F}_{p}. But $(p-1)!\equiv-1(\bmod p)$ by Wilson's Theorem, so $\epsilon=1$ and hence $g(\zeta)=h(\zeta)$.
Now, check that $\zeta^{-k / 2}-\zeta^{k / 2}=-2 i \sin \frac{2 \pi(k / 2)}{p}(k / 2$ taken $\bmod p)$ is a positive multiple of i, specifically $2 i \sin \frac{\pi k}{p}$, when k is odd and a negative multiple of i, specifically $-2 i \sin \frac{\pi k}{p}$, when k is even. Thus, there is always the same number of minus signs as there are complete copies of $i^{2}=-1$ in the product representation of $h(\zeta)$, so $h(\zeta)=g_{p}$ is always a positive real or a positive multiple of i. The conclusion follows from Theorem 4.1.

We can actually prove quadratic reciprocity using Theorem 4.1.

Proof. Observe that

$$
g_{p}^{q-1}=\left(p^{*}\right)^{\frac{q-1}{2}} \equiv\left(\frac{p^{*}}{q}\right) \quad(\bmod q)
$$

so $g_{p}^{q} \equiv\left(\frac{p^{*}}{q}\right) g_{p}(\bmod q)$ (here we use an extension of \mathbb{F}_{p} that includes ζ). But at the same time, by the Frobenius Endomorphism,

$$
g_{p}^{q} \equiv \sum_{n=0}^{p-1}\left(\frac{n}{p}\right) \zeta^{q n} \equiv\left(\frac{q}{p}\right) \sum_{n=0}^{p-1}\left(\frac{q n}{p}\right) \zeta^{q n} \equiv\left(\frac{q}{p}\right) g_{p} \quad(\bmod q) .
$$

Then since g_{p} is non-zero $\bmod q$, this implies that $\left(\frac{q}{p}\right)=\left(\frac{p^{*}}{q}\right)$, which can be unravelled to deduce reciprocity.

5 Problems

Here are some assorted problems about quadratic residues.

1. Prove that $\left(\frac{-3}{p}\right)=\left(\frac{p}{3}\right)$.
2. If m and n are relatively prime and n is an odd positive integer such that m is a quadratic residue $\bmod n$, prove that $\left(\frac{m}{n}\right)=1$.
3. (2018 MP4G \#18) Evaluate the expression

$$
\left|\prod_{k=0}^{15}\left(1+e^{2 \pi i k^{2} / 31}\right)\right|
$$

4. Prove that if n is a quadratic residue $\bmod p$ for an odd prime p, then n is quadratic residue $\bmod p^{k}$ for any positive integer k.
5. If $a^{2}+b^{2}=p$ is a prime and a is odd, prove that a is a quadratic residue $\bmod p$.
6. Let $p \equiv 1(\bmod 4)$ be a prime and r, s a QR and QNR , respectively, $\bmod p$. Set $a=\frac{1}{2} \sum_{i=0}^{p-1}\left(\frac{i\left(i^{2}-r\right)}{p}\right)$ and $b=\frac{1}{2} \sum_{i=0}^{p-1}\left(\frac{i\left(i^{2}-s\right)}{p}\right)$. Prove that $a^{2}+b^{2}=p$.
7. Prove that $F_{p} \equiv\left(\frac{p}{5}\right)(\bmod p)$, where $p \geq 5$ is a prime.
8. (Easier than 2016 TSTST \#3) Let $Q(x)=420\left(x^{2}-1\right)^{2}$. Prove that for every $n>2$, the numbers

$$
Q(0), Q(1), Q(2), \ldots, Q(n-1)
$$

produce at most $0.499 n$ distinct residues when taken $\bmod n$.
9. (2000 Taiwan TST) Let m and n be relatively prime positive integers. Prove that $\varphi\left(5^{m}-1\right) \neq 5^{n}-1$.
10. Prove that there are no positive integers a, b, c such that $4 a b c-a-b$ is a square.
11. Prove that 16 is an 8th-power residue mod any integer.

