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Abstract

In the decade since the human genome project, a major réseancl in biology has been towards un-
derstanding the cell as a system. This interest has stemardlgl from a deeper appreciation of how
important it is to understand the emergent properties dfileelsystems (e.g., they seem to be the key to
understanding diseases like cancer). It has also beeneghiaphew high-throughput techniques that have
allowed us to collect new types of data at the whole-genorakesc

We focus on one sub-domain of systems biology: the undetstgrof protein interactions. Such
understanding is valuable: interactions between protmfundamental to many cellular processes. Over
the last decade, high-throughput experimental techniags allowed us to collect a large amount of
protein-protein interaction (PPI) data for many speciegpofular abstraction for representing this data
is the protein interaction network: each node of the netwegkesents a protein and an edge between
two nodes represents a physical interaction between thedwesponding proteins. This abstraction has
proven to be a powerful tool for understanding the systerpsas of protein interaction.

We present some algorithms for the augmentation, cleandpanalysis of such protein interaction
networks:

1. In many species, the coverage of known PPI data remaitiglpaBGiven two protein sequences,
we describe an algorithm to predict if two proteins physyceidteract, using logistic regression and
insights from structural biology. We also describe how awdictions may be further improved by
combining with functional-genomic data.

2. We study systematic false positives in a popular experiaig@rotocol, the Yeast 2-Hybrid method.
Here, some “promiscuous” proteins may lead to many falséipes. We describe a Bayesian
approach to modeling and adjusting for this error.

3. Comparative analysis of PPl networks across species cadprvaluable insights. We describe
IsoRank, an algorithm for global network alignment of mu&ipPI networks. The algorithm first
constructs an eigenvalue problem that encapsulates twerednd sequence similarity constraints.
The solution of the problem describe4 apartite graph that is further processed to find the align-
ment.

4. For a given signaling network, we describe an algorithat tombines RNA-interference data with
PPI data to produce hypotheses about the structure of thalsig network. Our algorithm con-
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structs a multi-commaodity flow problem that expresses thestaints described by the data and
finds a sparse solution to it.
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Title: Professor
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7-1 A System for Analyzing PPI Data: We describe the three main stages in PPI data anal-

ysis where computational techniques may be involved. Belaghestage are listed key
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in the preceding chapters of this thesis; the ones markddamitasterisk are candidates
forfuture work. . . . . . . L 104
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Chapter 1

Introduction

In the decade since the human genome was first sequenceafcrese biology has exploded, aided by
improvements in both experimental techniques and computdtanalyses. In some ways, the data from
these studies has muddied the waters. For example, linsaades were a popular way of modeling
signal transduction; now it seems that signals follow muarercomplex paths inside the cell [50]. It
turns out that the importance of RNA (e.g., microRNAs and siRNAghe regulatory process had been
severely underestimated [7]. Similarly, the regulatiomgehe expression seems to be significantly more
multi-modal than earlier thought, involving chromatin reseling, an array of repressors and activators,
post-transcriptional regulation of MRNA, translationajukation at the ribosome and so on [24, 45]. The

story clearly seems a lot more complicated than we imagirsigtade ago.

Viewed from another perspective, though, all these stup@st us towards the same core insight:
the cell is a system. While it has long been known that the comapis of a cell act together as part
of a system, the experiments performed over the last decate relped us appreciate how truly deep
the interconnections are. The cell is an amazingly somlaited system, robust in many ways and yet,
surprisingly fragile in others. It consists of various mt®nnected sub-systems, each rather complicated
in its own right [57]. For example, the signal transductioaaminery in a cell influences and is influenced
by the transcriptional regulatory framework, which in tunay be influenced by a variety of microRNAs.
Each of these sub-systems displays many of the control eksmseen in man-made electrical/mechanical

systems: feedback control, signal integration, signalldicgtion etc.

Understanding the cell as a system has become one of the atigstareas of research within biology.

Such an understanding will provide significant practicaldéfés. For example, many diseases have causes
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that are systems-related. Certain kinds of cancer happen tukesignaling/regulatory mechanisms of the
cell that control cell growth, reproduction and death deped malfunction, leading to uncontrolled cell
growth [85, 27, 80]. The specific malfunction varies acro$eient kinds of cancers; indeed, this is a
key reason why a single cure for cancer has been so elusiwn fiév a disease like diabetes, where the
basic cause is well-known, there are systems-relatedetigistithat remain to be explained. For example,
studies suggest that only a subset of individuals who ardimsesistant actually go on to develop adult-
onset diabetes. The difference seems to be that the instdohicing pancreatig-cells of susceptible
individuals fail to proliferate and are thus unable to proglenough insulin to compensate for the insulin
resistance [8]. Itis not clear why this happens.

Systems biology may also help deepen our understandinghftenary biology. One of the key goals
there is to understand how a gene (or a family of genes) hdgasl/across species. A natural extension of
this problem is understanding how cellular systems evotvess species. To see how such insights may
be valuable, consider the following open problem.

One of the surprising discoveries of the human genome grejas the relatively low number of
human genes. Before the project, the total gene-count in hsimvas expected to be about 100,000 [30].
However, recent analyses of the human genome estimateaing to be much lower— in the 20,000-
25,000 range [46]. This is not much more than the gene-cduhedruit fly and about the same as that of
the worm. So how come humans are the ones doing experimemtsroms and not vice-versa? In other
words, where does organismal complexity arise from? A glagiplanation seems to be that the proteins,
genes, and RNA in human cells are part of a more complex systamthe corresponding ones in fruit
fly or worm [18, 75]. A comparative analysis of the cellulas®ms in various species could thus provide

valuable insights.

1.1 Understanding Protein Interaction

In this thesis, we focus on a specific domain within systenadogy: the elucidation and analysis of
protein-protein interactions. Proteins are the workhewsiethe cell. The genetic information encoded
in DNA (or RNA, in some cases) is transcribed and translatgardduce proteins which then carry out
the vast majority of tasks within the cell: metabolism, sibinansduction, vesicle transport etc. However,
proteins do not act in isolation. They perform their funnotio the context of other proteins, by influencing

and interacting with them. Understanding protein intéces is thus crucial to understanding protein
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function. Historically, such interactions have been stddrom aworm’s eyeview, with the goal being to
get a deep mechanistic understanding of how a particulappproteins interacts. The extensive work on
protein docking and ligand-protein binding has followers tpproach.

In contrast, systems biologists takéied’s eyeview approach towards understanding protein interac-
tions. They emphasize the importance of understandingehergl pattern of protein interactions across
all the proteins, rather than focusing on just a few inteoast[21]. This approach has been enabled by the
advent of high-throughput methods for discovering proteiaractions which have led to an exponential
growth in the sizes of PPI datasets. Data from these expetinias been accumulating at an extremely
rapid pace over the last decade. For example, the data faaainow covers about 50,000 PPIs involving
10,000 proteins. While such coverage is by no means compsideeanalysis of currently-available data
has already led significant insights about the cellularesyst

A useful model for organizing this data is the protein-pioiateraction network: a graph where each
node corresponds to a protein and an edge between two natleatés a direct physical interaction be-
tween the corresponding proteins. Thus, for the human gentira graph will have about 10,000 nodes
and 50,000 edges. Analysis of these PPI networks has alygeldgd some valuable biological insights.
For example, their topological analysis suggested thahtiike-degree distribution in these networks fol-
lows a power-law distribution, rather than a uniform diaition. This, in turn, immediately suggests
that certain nodes— those with high degrdash§— play a disproportionately important role in the cell
and are crucial to the connectivity in the PPI graph. In expents, the removakfiocking-ou of a hub
protein led to significantly deleterious effects. In costraemoval of the low-degree proteins (which
constitute the vast majority) had a much weaker impact [92]is ties in nicely with a long-observed
biological phenomenon: while cellular systems are typyaadbust to many kinds of (fairly drastic!) en-
vironmental changes, they are surprisingly fragile witbpect to other — seemingly minor — changes.
The PPI network’s topology suggests a possible reason. Raattacks on the cellular system will most
likely disrupt one of the non-hub proteins (these are thetmasierous) and have a relatively low impact;
on the other hand, directed attacks which hit a hub proteirheae a far greater impact.

A combination of PPI networks with other kinds of functiogaihomic data has proven to be especially
informative. For example, Haat al. [42] have combined PPI data with gene expression to classify
hub proteins into two classes: date hubs and party hubs. dingef are hub proteins with relatively
low expression similarity with their neighbors while thétés have high expression similarity with their

neighbors. This immediately suggests that the party huter®form the scaffolding of a multi-protein
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complex while the date hub proteins are signal carriersstratting information down a signaling cascade.

1.2 Contributions

In this thesis, we propose to investigate some of the manljecigges in the computational analysis of
biological networks. Broadly speaking, we are interesteahiswering the following questions about PPI

data:
1. Is this data completely reliable? If not, can we improgajality?
2. What biological insights can one derive from this data?
3. Can this data be combined with other biological data fahtrinsights?

These questions can be formulated as problems that are tmighutationally interesting as well biologi-
cally valuable. In this work, we focus on PPI networks, buhemf the methods proposed here extend to
other kinds of biological networks (e.g. protein-DNA netk®) as well.

The first such challenge is to address data quality issuesperienental PPI data. Experimental PPI
data suffers from both false negatives and false posit®@k [The false negatives arise from (1) lack of
coverage, i.e., enough experiments required to test aflilplesinteractions have not been performed and
(2) shortcomings in experiment design due to which celitaivivo interactions are not observedvitro.

On the other hand, PPI data also has many false positiveseHrise from limitations of the experimental
setup due to which a pair of proteins is reported to interaeheéhough they actually might not interact
in-vivo. To address these issues we propose two algorithms. Theregicts PPls computationally to
improve the coverage of current PPl data. The key contobutf the algorithm is to use structure-based
methods to predict interaction between proteins, givey treir sequence information. Towards identi-
fying false positives in PPI data, we describe a probalulisiational model to identify false positives in
data from Two-Hybrid (2H) experiments, one of the two comigased high-throughput methods to infer
PPI. Our method models both random as well as systematitsenr@H data and was the first method to
do so.

We next focus on deriving concrete biological insights frBfIl data. Specifically, we use it to better
estimate sets of genes that perform the same function inu&species. Until recently, such comparative

genomic analyses have been performed using only sequetacdHtavever, PPl data provides a functional
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perspective, and its use in such comparative analyses roaidprnew insights [81]. We investigate the
following problem: given two or more PPI networks (corresgimg to different species), find the best
overall alignment of the networks, taking into account bibi network topologies as well as sequence
similarities between the individual proteins of the netkgrThis network alignment problem is analogous
to the global sequence alignment problem— we are interésteét best overall match between the two
inputs. We propose an algorithm for this problem that retiesthe following intuition: a nodeX in
network NV is a good match foX'’ in network N, if and only if the neighbors oK are good matches for
the neighbors ok”’. To formalize this intuition, we construct an eigenvaluetpem whose results are then
used to construct a bipartite graph. Solving a max-weighthiag problem on this graph produces the
desired mapping. We use our method to predict functionhbtogs, i.e., pairs of proteins (in two species)
that perform the same function. It can also be extended formemultiple network alignment. Using our
multiple network alignment algorithm, we can produce oldlgg mappings that, by some measures, are
more biologically accurate than current orthology lists.

The final problem we consider is the generation of high-cemio@ hypotheses about the topology of
a signaling network by integrating PPI data with RNA inteefeze (RNAI) data. In particular, we make
use of pathway-specific RNAi experiments. In such experig)aihie end-effector gene of a given sig-
naling pathway (e.gErk in the MAP Kinase pathway) is chosen. Then, using RNAI, evehgiogene
in the genome is knocked down one-by-one, and the effect @mejorter gene’s activity is measured.
Such experiments provide a list of genbégg) that influence the level of the reporter gene and, for each
such hit, a measure of the relative strength of its influencéhe reporter gene [35]. Our algorithm is
driven by parsimony considerations: it searches for thepkast directed graph that is consistent with
the observed PPl and RNAI data and also with the known bioldghie@given pathway. It generates a
directed, sparse (tree-like) graph whose nodes corresfpoR&AI hits and whose edges may be inter-
preted as high-confidence hypotheses about the signalingries structure. We begin by constructing a
constructing an integer linear program (ILP), borrowingad from the multicommodity network flow lit-
erature to represent the biological constraints. We rédexltP to a linear program and solve it to produce
the final output. Our method, though based on very simpletcaings, suggests surprisingly plausible
hypotheses. For example, we specified to it only a truncagesion of the known core cascade for the
MAPK pathway. Our algorithm not only recovered the remagntomponents of the core cascade but also
suggested connections between these components thanarstent with our biological understanding of
the MAPK cascade.
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This thesis is organized as follows. The next chapter pes/alvery brief primer of, for computer sci-
entists, the biological concepts and datasets used. Tiseguént chapters focus on the creation (Chapter
3), cleanup (Chapter 4) and usage (Chapter 5 & 6) of PPI data.t@h&pims to augment experimental
PPI data by using protein structure to predict PPl data. Bxéchapter describes a systematic bias in the
Two-Hybrid protocol for elucidating PPIs and a machine méag approach for mitigating it. In Chapter
5, we describe the first global alignment of PPI networks s&rmultiple species, with direct implications
for better prediction of gene correspondences acrossesp€ene next chapter proposes a novel approach

to combining PPI data with RNA interference data, so as tebetiderstand cell signaling.
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Chapter 2

Background

In this chapter, we provide a brief background on the bia@albconcepts relevant to this thesis. We also
point out the publicly accessible biological databaseswm®aused in the course of much of the research

presented in this thesis.

2.1 The Key Players: DNA, RNA and Proteins

The most fundamental relationship in molecular biologyhis bne between DNA, RNA, and proteins.
Each of these are polymeric chains formed by concatenafisimple molecules. Both DNA (Deoxyri-
bonucleic acid) and RNA (Ribonucleic acid) are polymers ofieotides. They differ in the composition
of sugar molecules in their respective backbones and ttef satleotides used in each. Proteins are poly-
mers of amino acids. The variety of building blocks in eachihaflse macromolecules is rather limited:
DNA contains only 4 kinds of nucleotides; so does RNA. In m@ses, proteins contain 20 (or fewer)
kinds of amino acids. Instead, the complexity of these nraotecules arises from the number and order-
ing of building blocks in each. In fact, representing theseramolecules as just an abstract sequence of
building blocks, without regard to the specific biochenyidtias proven quite valuable. In such an abstrac-
tion, these molecules are represented as strings of letighsthe alphabet sizes of 4, 4, and 20 for DNA,
RNA and proteins respectively. Many biological problems tiaan be posed as string-based computa-
tional problems. For example, finding the human equivaléat particular chimpanzee gene essentially

reduces to the problem of finding, from a set of strings, treeraost similar to a given string pattern.

The central dogma of molecular biology states that inforomain a cell flows from DNA to RNA and
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then to proteins. The genetic information in a cell is typicancoded using DN&\ A geneis a sequence
of DNA that contains the information needed to constructnglsi protein. This information is decoded
and re-encoded into RNA, a process knowrnraascription These messenger RNA (mRNA) molecules
are produced inside the nucleus and are exported to thelagtopvhere protein synthesis takes place. In
a process known dasanslation the information in a mRNA molecule is read to produce a secgi@rf
amino acids, which make up the protein. Each mRed&lon a sequence of 3 nucleotides, corresponds to
1 amino acid in the proteif.

Later in this chapter, we will revisit the transcription atrenslation processes to describe certain
aspects particularly relevant to this thesis (control aiegexpression and control of mMRNAs by RNA

interference). We first discuss protein structure, fumctiad interactions.

2.2 Proteins: From Sequence to Structure

Proteins are the workhorses of the cell. They comprise miicheostructural scaffolding of the cell
and play key roles in almost all intra-cellular activityamsport, signal transduction, metabolism, DNA
replication etc. Even the processes for creating and regyploteins rely on certain specialized proteins.
In performing its function, a protein’s structure is crdlgiamportant. One of the fascinating mysteries of
the transcription and translation processes is that theesdigl (1-dimensional) information from DNA,
when re-encoded into a protein, leads to a specific 3-dirnaakstructure uniquely determined by the
sequence. One of the open problems in computational biclegnd a very active area of research — is
understanding how this happens, i.e., how to predict a pretstructure given its sequence. In Chapter
3, we leverage insights from this research to predict if @& piproteins will interact. Below, we briefly
review some of those insights.

There have been two broad sets of approaches to proteituseycediction. One set of methods starts
from first principles and aims to find the arrangement of attmaswill minimize the total free energy of

the molecule. In thesab-initio methods, an energy function is constructed over the spaak pdssible

ILike most generalizations about biology, there are exoeptto this statement. Retroviruses (e.g., the AIDS-cgusiv
virus) use RNA to encode their genetic information.

2Interestingly, the length of an mRNA codon (3 nucleotidesgmeino acid) is the smallest possible value which still eesu
that (1) any protein’s sequence can be encoded as RNA, arahy2ncoded RNA sequence represents a unique protein. A
shorter coding scheme, e.g. 2 nucleotides per amino aaitid cmly represemt? = 16 unique amino acids. With a 3-letter
codon, there ara® = 64 combinations, and all 20 amino acids can be covered, withwadt over to identify starting and
stopping points.
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conformations (structures) of the given protein; we thearde this space for the conformation with the
lowest energy. The challenge here is two-fold: even for wamplistic energy functions, the search prob-
lem is computationally difficult. Bergeat al. [10] proved this for a simple HP-lattice model. Luckily, the
search problem lends itself to parallelization and can tecl¢d using grid-computing methods. How-
ever, finding the optimal energy function (whose global minim actually corresponds to the actual 3D
structure) remains an open problem.

A second set of approaches aims to make use of experimemdeddailable for proteins whose struc-
tures have been determined using crystallographic methibde&o proteinsA and B are similar in se-
guence, their structures are likely to be similar as wellsuksing A’s structure is known, suchomology
modelingapproaches set the starting conformatiomdb be A’s known conformation and are predicated
on the hypothesis that th&'s globally optimum conformation is close enough to thetstgrconformation
that it can be found by a local search around the latter. Thiesiges here are two-fold: finding a suitable
base structure from which one can start and an optimizagohnique that can find the final structure
given this base structure.

In recent years, attempts have been made to blend the hoynmlodeling andab-initio approaches.
Bakeret al. [14, 82, 15] has described an approach that uses existingtste to generate a library
of small fragments of known structure, each such fragmeimgba few amino-acids long. The energy
function for the global search problem operates on thegprfemts. In this thesis, we use some of the
structure prediction work to evaluate pairs of proteingyiag to evaluate if two protein structures are

likely to form a joint structure complex.

2.3 Gene Transcription

Genetic information in the cell is typically encoded in DNPhis information is transcribed into RNA and
then translated into proteins. To stop further productiba protein, either the gene for that protein can
be turned off or the mRNA, once produced, be deactivated. eT&est sophisticated cellular machinery
for both these tasks, as well as for the opposite task of emhgra protein’s quantity. The study of
the mechanisms (i.e., the transcriptional regulatory ypstiesn) by which all this happens is an extremely
active of research. Here, we only mark out an aspect of tssareh that relates to this thesis.

Gene Expression Experiments:Over the last 15 years or so, one of the more powerful addition

a biologist’s toolkit has been the gene expression expettirtae ability to simultaneously measure the
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transcriptional activity level of many — or even all — genasai given sample. Typically, the level of
MRNA corresponding to each gene is measured. Given a tissyadesahe mRNA is first purified and
then used to create complementary-DNA (cDNA) by reveraasitription. One can then use specialized
“gene-chips” that contain a well for each gene, with eacH w@itaining short DNA matching sequences
(“probes”) that can bind to the cDNA of a specific gene [79, 80hile the measurement process remains
significantly error-prone, the data from such experimeassgrovided valuable information. For example,
such experiments can be used to idertity-markerdor some diseases, i.e., a set of genes whose abnormal
activity level is an indicator that the cell is diseased.

By performing gene expression experiments on cells expasekifferent conditions or at different
points in their life-cycle, one can creaggpression profilefor each gene that summarize how its activity
varies across conditions. Genes that are over-expressadder-expressed) under similar conditions will
then have similar expression profile. It has been obsenadtith genes often correspond to proteins that

interact with each other.

2.4 RNA Interference

To understand a gene’s (and its protein’s) role in the aallay/stem, perturbations experiments can be a
powerful tool. In such experiments, the gene can eithétrmeked-oufe.g. removed from the genome
entirely), orknocked-downi.e., it's activity reduced). Knock-out experiments cam tumbersome to
perform and can sometimes be too drastic a perturbationi enigght not be viable if a particular gene is
completely removed from its genome. However, for a long tithey were the only tool general enough
to be used for genome-wide scans.

The advent of RNA interference (RNAI) experiments has sigaifity enhanced biologists’ ability to
perform genome-wide knock-down perturbation St&ﬁs;is is done by utilizing the cellular machinery
that uses small interfering RNA (siRNA) to regulate post-$aiptional gene activity. A double-stranded
RNA (dsRNA) segment is introduced into the cell. It is then eézhby Dicer, an enzyme, into its two
constituent strands (the passenger and guide strands)guidhe strand is taken up by the RNA-Induced
Silencing Complex (RISC) which then uses it to recognize theptementary mRNA fragments inside the
cell. The latter are subsequently broken down by the RNAasgee, thus neutralizing the corresponding

3Such has been the impact of RNAI in biology that within 8 yesfrdiscovering it [32], Andrew Fire and Craig Mello were
awarded the Nobel Prize [98]. This was certainly one of thelgu Nobel Prizes.
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gene’s activity [97, 63]. Thus, by appropriately designing dsRNA fragment, one can knock-down any
desired gene. Libraries of such dsRNA fragments can be maeleaiole high-throughput genome-wide

perturbation studies. We also note here that RNAI is simpyntiechanism that enables perturbation; one
still needs an assay to measure the appropriate cellulgitacBuch an assay can be measure the activity
of a single reporter gene (Friedman and Perrimon [37]), ca& b&croarray experiment measuring gene

expression levels of multiple genes or even a measuremeetlafar morphology (Niet al. [69]).

2.5 Protein-Protein Interactions

The first proteins discovered were enzymes, found becautbeinfability to mediate and catalyze reac-
tions between biomolecules. Thus, it has long been appeecthat a protein’s function often involves
interacting with other biomolecules. In this thesis, weu®specifically on protein-protein interactions.
Until the early 2000’s, the systematic study of proteintpio interactions had been difficult, mostly be-
cause of a lack of data. Some protein-protein interactida @was collected by co-crystallizing protein
pairs and complexes and discerning their structure viayXergstallography. This has provided valuable
insights into the structural mechanics of protein intacacfwe use some of these insights in Chapter 3).
However, crystallizing a single protein is difficult enoudtis even more difficult to co-crystallize protein
complexes. Consequently, not very many protein complexes feend in this wa

The systematic study of protein-protein interactions had to wait for the advent of experimental
techniques that allow for the discovery of new PPIs in a higloughput approach. To get an idea of why
these methods are thought of as “high-throughput”, it iSulde think of their algorithmic complexity.
What makes PPI detection hard is that it is a seO¢f?) problem instances, where is the number
of proteins in the genome of interest. Earlier methods aggred each of these as a separate, slow
task. In contrast, both the methods below exploit the praldestructure to first perform per-protein
pre-processing steps. This may be relatively slow but taegenlyO(n) such tasks. The pre-processing
then enable® (n?) PPI elucidation tasks to be performed much more quickly thefore. As a result of
these approaches, the corpus of known PPIs has increaseehtiteusly over the last decade (Fig|2-1).
Here, we briefly describe the two commonly-used high-thhpud approaches for discovering PPIs. A

brief understanding of how they work will help clarify howrse of the work described in this thesis helps

4One related area that did receive a lot of attention was thgsuof protein/small-molecule binding. This is partiaty
relevant from a drug-discovery perspective, as drug-nsa&fien aim to understand how a particular target protein beay
bound to (and neutralized by) small molecules.
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Figure 2-1:The growth of known PPI data over the last decade With the advent of high-throughput
techniques, the corpus of known PPIs (as measured fromaatibln date of entries in BIOGRID[83])
grew exponentially over the early 2000’s. In the later pdrthe decade, the growth has slowed down
somewhat.

complement them or address their shortcomings.

2.5.1 2-Hybrid Techniques

The key idea here is to design an assay where a reporter gériewiirned on (with easily observable
effects) if two proteinA and B interact. The main challenge here is to design the assay iayathat

is scalable to a genome-wide study. Towards this, FieldsSordy [31] designed an ingenious scheme.
They began by selecting a gene in yeast whose activatiowlmggroperties: 1) it can be easily observed
(e.g., itresults in galactose uptake by the cell), 2) itszattbn requires a transcription-factor protein with
two structural domains: a DNA-binding domain (BD and an atton domain (AD). Given the two query
proteinsA and B, we then construct cloning vectgrsme with the BD part fused td and another with the
AD part fused toB. These vectors are then introduced into the yeast cell goiekesed (i.e. their protein
Is produced). Now, ifA and B physically interact, the BD and AD domains will be in proxignand the
reporter gene will be turned on. The reason this approadbasueell to genome-scale studies [47] is that
one can generate “libraries” of cloning vectors, each domtg the gene sequence for one query protein
(A or B above) fused with either the AD or the BD gene fragments. By Banaously introducing the
vectors for any pair of genes into the test system, one caikiguiest whether the two proteins interact.
This neatly reduces the(n?) tasks intoO(n) slow steps (building the library) ar@(n?) fast steps (doing

individual tests).

5A vector is a DNA molecule that can be used to insert a useripe DNA fragment into a target cell
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2.5.2 Co-Immunoprecipitation

This method is more direct: break up the cell, collect alkpimocomplexes containing a particular protein
X, and then analyze these fragments to identify the otheepr®in the accumulated complexes [28, 39,
59]. Here, the second part (collection) relies on a techelquown as immunoprecipitation. A bait protein
X is selected, with the only requirement being that antibethat will bind to it should be available. These
antibodies are coated onto a column of agarose beads (o#tterials may also be used). The cell extract
is then passed through this column. The prot&irand any proteins (preys) it is bound to get attached
to the antibodies on the beads while everything else flows/.awée then remove extraneous material
by washing and then isolate the test material from the beHas.remaining fragments now consist only
of bait and bait-prey fragments. These fragments are thalyzed by a mass spectrometric analysis to
determine their chemical composition. By matching to theldase of known protein sequences, one can
then estimate which proteins are part of the complex.

The two techniques, Two-Hybrid (2H) and Co-Immunoprectpta (Co-IP), each have their advan-
tages. It may be argued that Co-IP is the more direct assayainotie actually extracts the protein
complexes and analyzes them; in contrast, the 2H approaclead to false-positives where the reporter
gene gets activated even though the two protdirmed B would not interact under normal conditions (in
Chapter 4 we address precisely this problem). On the othet, i@ IP techniques require that a suitable
antibody be available for the bait protein. They are alssuited to discover interactions that do not result
in the formation of stable complexes. The extreme case ¢fisieractions would be transient interactions
between two proteins. It is unlikely that even 2H protocdlie to identify all such transient interactions;
however, it is likely to be more powerful than the Co-IP tecjud in this regard.

A significant part of this thesis is focused on algorithmsdorrecting and complementing the data
from these approaches. In Chapter 3, we describe a framewogeddicting protein interactions, with
one of the motivations being to identify interactions thet turrent experimental protocols can not. In

Chapter 4, we describe an error-model specifically desigmnaddress false-positives from 2H data.

2.6 Biological Datasets

In this section, | briefly list out a selected set of web-seggiand web-databases that provide biological

data. The listis far from comprehensive; it is only intenttedutline some of the core datasets that | found
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useful in my research. Many of these are also good startinggfor a computer scientist interested in
playing with biological data. For more datasets, a paréidylgood compendium is in the Database and

Web-Servers special issues, published annually by Nuéleids Research [19].

e GenBank: Genetic sequence database, maintained by the Nationalitestof Health (NIH), con-

taining all publicly available DNA sequencdst t p: / / www. ncbi . nl m ni h. gov/ genbank

e Pubmed: A database, also from NIH, of references and abstracts @rpam biological and medi-

cal topics.ht t p: / / www. ncbi . nl m ni h. gov/ pubned
e Ensembl: A parallel service to GenBank from Euroget.t p: / / ww. ensenbl . org

e BioMart: A web-tool the exposes the Ensembl data. It is extremelyulidef getting the vari-
ous gene/protein synonyms along with their sequence dataehh as a lot of other information.

htt p://ww. ensenbl . org/ bi omart/ martvi ew

e BioGRID: One of the more comprehensive databases of experimen&élymined protein-protein

interactionshtt p: //t hebi ogri d. org

e Database of Interacting Proteins (DIP): Similar to BioGRID, with a significant overlap to it.
htt p://dip. doe- nbi . ucl a. edu

e STRINGS: A database of predicted and experimentally-verified irttvas, covering both genetic

and protein-protein interactionst t p: // st ri ng- db. org

e Gene Ontology (GO) DatabaseThe GO Consortium has worked to define a standard set of terms
that may be used to describe a gene’s function, role andl@ellocation. Furthermore, these
terms are represented as part of a directed acyclic graptyragag semantic relationships between
them. The web-database contains this graph as well as a ngappgenes/proteins to these terms.

htt p: // ww. geneont ol ogy. org

e Gene Expression Omnibus:Database of gene expression data from a variety of expetsmeun

rated and maintained by the NIHt t p: / / www. ncbi . nl m ni h. gov/ geo

e Protein Data Bank (PDB): The database of protein structures, both for individuatens and

multi-protein complexebt t p: / / ww. pdb. or g/
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Structural Classification of Proteins (SCOPR This database is best thought of as a companion
to the PDB; it provides a hierarchical classification of prategrouping them by their structural

similarity. ht t p: / / scop. nr c- | nb. cam ac. uk/ scop

Homologene: A database containing orthologs, i.e., sets of genes aveogsiIs species that were
derived from the same gene in a common ancestor. Ortholdga pfay similar roles in each

speciesht t p: / / www. ncbi . nl m ni h. gov/ honol ogene
Inparanoid: Another ortholog database, predicted using differentrieghes.ht t p: / /i npar anoi d. sbc. s

FIyRNAIi: The Drosophila RNAI Screening Center contains a set of pytdichilable RNA-interference

data from experiments on fruit-fiat t p: / / www. f | yr nai . or g/
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Chapter 3

Predicting Protein-Protein Interactions: Use of

Structure-based Technigques

This chapter describes joint work with Jinbo Xu, Daniel Parkl @onnie Berger

3.1 Introduction

Until high-throughput techniques for discovering protpimotein interactions (PPIs) were invented, PPIs
were largely the domain of the structural biologist. Trawtially, structural biologists have primarily

been interested in understanding thechanisnof protein interaction. The motivation there has been to
understand (1) how complex, multi-domain proteins are &and, (2) how ligands (i.e. small molecules)
bind to proteins. The latter goal is especially crucial ingidiscovery. Clearly, this mechanism-oriented,
“worm’s-eye” view of protein interaction is quite distinftiom the network-oriented, “bird’s-eye” view

emphasized in systems biology; the latter perspective asipés overall network properties over the

mechanistic details of individual interactions.

This chapter aims to demonstrate how these perspectivebecanmbined. We describe a way of
incorporating insights gleaned from structure-baseda@ggres into a network-oriented analysis. Specif-
ically, we use computational techniques inspired fromcitne-based analysis of protein interactions to

make PPI predictions on a genome scale.
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Species Estimated | Num Proteins (Percent)| Num Proteins (Percent)
Gene Count| With > 1 PPI With > 5 PPIs
Saccharomyces cerevisiae 6275 5636 90% 4000 64%
Caenorhabditis elegans 20100 2862 14% 457 2%
Drosophila melanogaster 14000 7382 53% 2625 19%
Mus musculus 23000 1461 6% 274 1%
Homo sapiens 23000 9033 39% 3794 16%

Table 3.1: Coverage of PPI data for the major model organismsUsing data from BIOGRID [83] and
estimates of gene counts for various species, we show herelditive coverage of PPIs for some of the
major species of interest. Taken in conjunction with/Fig, 2his suggests that while there has been a lot
of increase in the amount of experimentally-determined d@f4, the coverage of PPI data still remains
insufficient.

3.1.1 The Need To Predict Protein Interactions

Protein interactions can be discovered by a variety of teglas. An analysis of data from BIOGRID
suggests that in the 1980’s and 1990’s, the most populabappes to discover protein interactions were
low-throughput approaches: co-purification, co-crystation etc. Evaluating each putative interaction
using these methods is a slow process. Over the last decadeyér, the advent of high-throughput
techniques has enabled genome-wide scans. The most pamoag these Co-Immunoprecipitation and
Yeast 2-Hybrid methods, both of which were briefly descriie@&ection 2.5, The use of such high-
throughput techniques has led to an explosion in the avkiyabf protein interaction data over the last
decade (see Fig 2-1).

Despite the advances in experimental techniques, theage@f PPI data remains relatively low. One
way of quantifying such coverage for a species is to counnthmaber of proteins that have at least one
experimentally known PPI. This is a generous way of quaimifgoverage— after all, it is unlikely that a
protein with just one known PPI has been fully “covered”. [€a®.1 shows this coverage for some major
species. Except for yeast, the coverage is about 50% (or toweh) for all the species. Furthermore, the
growth-rate of PPI datasets’ size has slowed in recent YEay®-1). One of the problems in accumulating
PPI data is that the set of possible proteins pairs to be tigegsd is extremely large, even with high-
throughput methods: for example, in a species with abol@@®Bgenes (like in the human cell), the

number of possible interactions is about 265 billion.

In this context, we believe that computational predictioh®PIs can be of significant value. First,

such predictions can be used to shortlist potential PPtsctrabe tested experimentally. Second, the ex-
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perimental approaches are designed to discover only nditads of PPIs (or those involving certain kinds
of proteins). For example, it has generally been difficulexperimentally discern PPIs involving trans-
membrane proteins. Also, current experimental techniquediased towards discovering non-transient
(i.e., complex-forming) interactions. Finally, high-tughput methods have a significant error (both false
positives and false negatives); computational methodpriedicting PPIs can be used to produce a confi-
dence score for experimentally determined PPIls. Havingnidence score can be very useful in many
network algorithms, which can then be tuned to make infezgnbat give greater weight to edges with
higher confidence.

Existing work on predicting PPIs can be divided into two sétspproaches. The first set of approaches
are model-driven, where the interaction between protsiassumed to obey a certain abstract model. The
second is a set of black-box, guilt-by-association apgreaavhere non-PPI biological data is used to
predict protein interactions. An example of model-basqu@qches are the methods proposed by Deng
al. [23] (and later, Wangt al. [91]): these posit that two proteins interact if they haveaa pf compatible
sequence domains. Each protein is modeled as a set of seqdemains and a pair of proteins are
assumed to interact if and only if there is a pair of sequenceains (one from each protein) that interact.
Given these models, itis easy to see how a machine learrgogthim can be trained to predict PPIs: given
(1) a database that allows us to map a protein sequence tofssefuence domains and, (2) a training set
of positive (i.e., interactive protein pairs) as well asaiag (i.e., non-interacting pairs) examples, one can
estimate the most likely set of interacting domains thatarthe training dataset. For any new protein
pair, one can then simply check if it contains one of theseratting domain-pairs. If it does, the proteins
are predicted to interact; otherwise, no interaction isljgted.

The insight guiding the guilt-by-association methods &t tfvo proteins that interact are also likely
to be co-localized, have similar functional annotationd anrrespond to genes with similar expression
profiles etc. Thus, there are a set of approaches that trdgbrB@iction as a classical classification
problem. The set of features can be rather broad (sest gli [76] for a large list of these). The actual
machine learning framework used for prediction also varigsyesian classifiers [51], Markov Random
Fields [49], and support vector machines [40] are some ocafiproaches used.

In this chapter, we focus on prediction of protein interactusing structure based methods. Given
a pair of protein sequences, we aim to predict the structitkeomost likely joint-complex formed by
them by using insights from structural biology literatuvée then evaluate it using statistical mechanical

energy functions and if the putative complex is sufficiestlgble, we predict that the two proteins interact.
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Unlike many other methods, our approach allows us to makeigirens about proteins for which very
little functional annotation is available. Also, it goes/bad black-box approaches by providing a model
for howa pair of proteins interact, not justhey interact. We also describe a framework to integratagus
random forests, the predictions of this purely structussda approach with functional genomic data like
co-expression, co-localization, functional annotatitm &his allows us to build on the significant amount
of previous work on predicting PPIs using machine learnimgreaches.

The rest of the chapter is organized as follows. We then ftatauhe problem with two cases: (1)
when only the structure-based approach is used and (2) viaeagproach is combined with functional
genomic data. Before describing the algorithm, we brieflyawhow structural biologists have typically
aimed to understand protein interaction. After that, wecdbe the algorithm. We discuss some of the
specific design choices made and how the various parametefdtad. The next section discusses the
algorithm’s evaluation, starting from construction ofiniag and test datasets to the performance of the
algorithm. We follow that with a discussion of the benefitdl @nawbacks of the algorithm, especially in
comparison to other approaches. Finally, we describe asgelbee that allows users to provide a pair of

proteins and query if an interaction is predicted betweemth

3.2 Problem Formulation

We first consider the case when only the structure-basedagpipis used:

Problem [STRUCTONLY ] Given two proteinsp and ¢, their sequences, and.S,, and a database of
protein-complex templates, compute the probability thandq interact. We construct this database using
information from SCOP [3] and PDB [11].

We now consider the more general case, where the strucasedtapproach is integrated with func-

tional genomic data.

Problem [STRUCT&OTHERINFO | Here, we augment the previous problem with additionalrimfation.
Given two proteinsp andg, their sequences, and.S,, and optional annotation informati({d‘(;, Xﬁ, .
and{X,, XZ,...}, compute the probability thatandq interact.

In STRUCTONLY, note that we only require the protein sequences, and natstes. If necessary, the
protein sequences can themselves be inferred from thespamding gene sequences. MRYCT&OTHERINFO,

different kinds of annotation information can be incorgeda as available. Our method for solving this
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problem can be used with as many information sources asede$iut here we have restricted ourselves

to a few information sources (see Table/3.2)

| # | Name | Description |
1 | Coexpression| Similarity between expression levels of the correspondieges
2 | Colocalization| Co-localization information for the two proteins
3| GO Similarity between Gene Ontology(GO) terms for the two gene
4 | MIPS Similarity between MIPS [66] terms for the correspondingee
5 | Domain Seq. motifs indicating the presence of interacting domains
6 | Coessentiality] Whether one, both, or none of the corresponding genesssential

Table 3.2: The various kinds of functional annotation used in SRUCT&O THERINFO . These bench-
mark annotations have previously been found to be partigulelevant in PPI predictions [76].

3.3 Algorithm

3.3.1 The Structural Biology of Protein Interaction

Structural biologists have long been interested in pratgaraction. Their general goal has been to under-
stand PPI from &vorm'’s eyeperspective: the mechanism of interaction between tweeprs{or a protein
and a ligand) and the principles underlying the interactimtess. Most approaches towards solving this
problem use computational models of protein structuresvestigate and simulate the positioning, rel-
ative orientation and binding of proteins during the intdi@ process. In this chapter, we use some of
the ideas from this field to develop algorithms for predigtangenome-scale protein interaction network.
Below, we briefly review some of the popular approaches indbisain.

Most computational approaches to modeling interactiowéen two structures share a common as-
sumption: the true joint structure of the two interactingtpins is the lowest energy conformation among
all such possible conformations. Most algorithms for firggihe joint structure then reduce to solving an
optimization problem: that of finding the lowest energy arnfation. The variations across algorithms
lie in the kind of the optimization framework constructeddahe solution techniques adopted. On one
end of the spectrum asb-initio methods. Here, the two proteins are represented by all-atBmodels,
the search space includes all possible joint conformatmasthe search is guided by an all-atom energy

function. This approach bears many similarities to &lheinitio protein structure prediction algorithms
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and many of the terms in the energy functions are also sirfelgr vanDer Waals interaction, hydrogen

bonding etc.).

Further along the spectrum of approaches are methods thkataypiori assumptions about the possi-
ble conformations of the joint structure, thus limiting gesarch space. An early example of this approach
were models for analyzing coiled-coil proteins, where twonore alpha-helices wind around each other.
This structure is characterized by heptad repeats and tireaamids along the heptad govern the inter-
action specificity, e.g., between the various bZIP protgd3$. Another set of approaches borrows ideas
from the protein-threading literature. Here, the sear@tsps constrained priori by assuming that the
joint conformation is similar to some known protein-comgdestructure. The Protein Data Bank contains
not just structures of single proteins but also structufgeatein complexes. There are about 1200 such
structures. The threading-based methods identify thelegemost likely to match the given protein pair

and then the search for the optimal conformation is limiteddnformations similar to the template.

As might be expected, these approaches embody differatd-tis in solving the underlying opti-
mization problem. A key advantage of thb-initio approach is that it starts from first principles and re-
quires no information about the proteins apart from theurcdtires. As such, it might be the only available
approach for proteins on which other methods can not beepplie to the lack of matching templates.
However,ab-initio approaches can be extremely computationally intensiveth&umore, while the cur-
rent methods provide good results when modeling interastietween proteins and small-molecules (the
typical use-case in drug discovery), their accuracy deslmarkedly when modeling interaction between
large proteins. Another issue with these approaches isdbd for protein structure information. In the
majority of cases where the structure has not been expetathedetermined, the only way to use this
approach is to employ computationally predicted structuniethe protein pair. On the other hand, the
advantage of a threading-based approach is that it usuallys/even for large proteins, as long as we can
find suitable templates to guide the search. The latter rexpgint is usually the stumbling block in using
these methods. Often, a good template may not be avail&bke|imiting the coverage of threading based
approaches. The choice between these approaches depetgstask at hand. Thab-initio approach
has been useful for understanding interaction betweeripoand small-molecules. For our purposes,
however, it was not very useful: its results when modelingriactions between two large proteins (the

typical scenario in our analysis) were significantly wotsat the threading-based approach’s.
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3.3.2 Algorithm for STRUCTONLY

Our algorithm for the $SRUCTONLY problem consists of two stages. Given two protein sequentése
first stage weassumehat the two proteins form a complex and compute the corredipg interaction
energy. Here, we exploit homology between the given prqtainand complexes with known structure.
In the second stage, we use logistic regression to idefidge pairs for which the interaction energy is

low enough and, hence, an interaction is likely.

Stage 1: Computing The Most Likely Protein Complex

We first compute the most-likely structure of complex fornisdthe given protein pair assuming they
do interact. There are two kinds of approaches one can tageetbcting the structure of the complex:
(1) predict the structure of the two proteins separately thed “dock” the two structures together, i.e.,
compute the lowest-energy joint conformation of the twaatres, or (2) predict the structure of the joint
complex directly from the sequences, by looking at knowmgxas of protein complexes. Unfortunately,
it turns out that the state-of-the-art in docking algorithisinot good enough for our purposes here. While
current docking algorithms may have suitable performanoensymodeling interactions involving proteins
and ligands (small molecules), their running time was pikkely large when analyzing interactions
between two proteins of moderate size and very often theidgadgorithm could not converge to a
solution. Overall, we found that the second approach wabétter option.

To compute the putative complex and the corresponding gnemgintroduce DbIRap (“Double Rap-
tor), a novel algorithm based on a protein threading approakhreading approaches have been very
successful in predicting the structure of individual pnage There, these approaches start with a database
of protein structure templates and given a protein sequetiempt to find the structural template that best
aligns with it. Then, the sequence is “threaded” onto theplats, i.e., the residues of the sequence are
aligned to the residues of the template (with possible gagsch) such that energy of the new structure
is minimized. We extend the general framework of proteirdiing to the case of analyzing pairs of
proteins. Like the single-protein threading case, ourritlgm for threading protein pairs also exploits the
idea that if a pair of proteins interact in a specific way, tiheimologs will interact in a similar way.

We begin by constructing a database of templates, each ae@npbrresponding to the structure of
a two-protein complex. The list of protein templates is &l by analyzing dimeric and multimeric

structures from the PDB, filtered to remove templates thatasee than 70% identical. We also use
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SCORP [3] to further group the templates into distinct foldd eamove certain redundant templates.

After constructing the complex template database, we thezatl each sequence pair to all the tem-
plates in the database to find the best potential match. Ebrteenplate complex, we construct an integer
linear program (ILP) whose solution corresponds to the &iwaergy threading of the input sequence pair
onto the template. We search the entire template databaderttify the template complex that has the
best alignment with the input sequence pair. The ILP fortmuteof DbIRap is based on the ILP formula-
tion underlying Raptor [93], a program for predicting singl®tein structure using threading. The Raptor
formulation for constructing and solving the threadinglpeon has proven to be quite powerful: Raptor
won an award during CAFASP 2003 [94]. Here, we sketch out timstcaints that are used to construct
the ILP. For a more complete specification of the ILP, pleaseX@uet al. [93].

We first describe the ILP in the case of single-protein thirggadnd then discuss how to extend it to
the protein-complex case. Given a query sequenufen residues that is to be threaded over a template
with m residues, our aim is to find the alignment of query residudis thie template positions (allowing
for gaps) that minimizes the energy of the template streciith the query residues in place of template
residues. More formally, we begin by constructihg binary variables wheré, < n + m is the length
of each sequence after adjusting for gaps. Each such biaaigblev;; is 1 if and only if the sequence
position: aligns with the template position Either the sequence position or the template position (but
not both) may correspond to a gap. We then set up a varietyrsti@nts on these variables (introducing

additional variables as necessary):

1. Secondary structure conservation.we model the template sequence as a sequence of cores joined
by loops. Each core corresponds to a secondary structurertge.g. a-helix or 5-sheet). We
require that all gaps in the template sequence be restiictéte loop regions between cores (and
at each end of the structure). The assumption here is thedagostructure is conserved and that

insertions and deletions happen in the loop regions.

2. Self-consistency of the mappingwe impose consistency constraints on the variables. At oreest
guery residue can be aligned to a template position andwacga. Also, if a query residug is
aligned to a template positian), then a downstream query residsie, can not be aligned to an

earlier template positiot),_, wherea, b > 0.

3. Suitability of pairwise contacts: One of the key factors impacting the alignment quality is how

suitable the aligned query residues are for the pairwistactsas defined by the template structure.
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Here, acontactis defined to occur between two template positions if theadist between theirdC
atoms is within7A and they are at least 4 residues away from each other in th@aensequence.
Furthermore, we restrict the energy function to only analgantacts between residues in the cores,

i.e., we ignore contacts arising due to residues in the loops

4. Objective function: this is a weighted sum of the following scores. The weightdtiese terms are

fitted using a machine learning approach [93]:

e an environment fitness score: how suitable each query e#do the core it maybe part of

mutation score: how suitable each query residue is for tin@l@Ee position it is assigned to

secondary structure compatibility score: how suitableginery residues are to the secondary

structure elements of the template structure

gap penalty

pairwise interaction score: this is based on evaluatinggthery residue-pairs in contact, as

described above

The extension of this approach to the two-protein case &tively straightforward. The structure
template now corresponds to a two-protein complex, thereovwg a pair of query sequences, and the
inter-residue contacts in the template are not just witldohesub-structure but also between the two
sub-structures (these contribute to theerfacial energy. Using this approach, for any given sequence
pair (p andgq), we generate two alignment scords, (E,), their associated z-scores, (z,) , alignment
probabilities ¢,, P,) and an interfacial energyf,,). These are fed into a logistic regression model to

predict interaction.

Stage 2: From Energy Values to Interaction Probabilities

We use binary logistic regression [43] to classify whetheetof scores corresponds to an interaction
or not. In binary logistic regression, the goal is to predidtinary output variablé@”, given a set of-
predictor variableX = {X;, Xs, ..., X,.}. For an instance, supposey; andx; = {z;1, Z, ..., T; } are
the random variables correspondingtfand X, respectively. Let, = P(y; = 1|x;). In this model, the

dependence df; onx; is expressed by the logit function:

0;
logit(0;) = log(l — 9') =a+ ' =a+ fizg + Boin + ... + Brxyy OF (3.1)
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Figure 3-1:Schematic of our method for (a) SRUCTONLY (b) STRUCT&O THERINFO
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Logistic regression is a special case of a Generalized LiNemel. In such a model, the outpyt
depends on a linear combination of the inputsThe relation between the expected valug)) of the
output variable and the linear combination of the inputs (3'x; is defined by dink function Linear
regression can be thought of as the special case where khauhotion is simply the identity function
(i.e. E(y) = a + ('x;). In contrast, the link function in logistic regression stthe logistic function
(3.2). Logistic regression is suitable for modeling caséem a binary-valued output variable depends
on a combination of real-valued input variables. More melyi the decision boundary (between positive
and negative cases of the output) is assumed to be a stranghhlthen-dimensional space of input
variables. As a machine learning classifier, logistic regjian provides us certain advantages. Itis a simple
model that avoids some of the overfitting pitfalls that masenplicated approaches might have. Also, its
predictions are real-valued scores that take values bat@eed 1. In contrast, other approaches (e.g.
decision trees) would output just 1 or 0. The use of a realegiscore allows us to express confidence
in our prediction and is particularly amenable to combwratwith functional genomic data (e.g., co-

expression) in a larger classification framework.
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In our case, the output variabléis the probability of interaction of two proteipsandg. The predictor
variables come from the first stage: the interfacial endfgy the alignment scores, andE,, as well as
their associated z-scores, (z,) and alignment probabilitiesH,, F,). In addition to these, we introduced
additional predictor variables that normalize the enem@yes for protein size. Thug;,/|s,|, E,/|s,| are
the energy scores for the two template sub-structures niazedaby the respective sequence lengths. We
intentionally built an initial model with an excessivelyd@ set of predictor variables: one of our goals
was to identify the most informative subset of predictorswards this purposes, we performed stepwise
variable addition/elimination i, using the Akaike Information Criterion (AIC) at each step valaate
whether the variable should be included in the model. The §ebof selected variables makes intuitive

sense: except for one, all of the energy terms enter onlyein ttormalized, size-adjusted form:

normalized alignment z-scores for the two sub-structutg§s,| andz,/|s,|

alignment probabilities?, and P,

normalized alignment energy scoréds;/|s,| and £, /|s,|

raw interfacial energyt,,

To further gain confidence in our choice of selected predicadables, we performed a similar feature
selection using an alternative technique: L1 regulamratRegularization is the technique for adjusting a
regression framework’s objective function so that we mimgrboth model complexity as well prediction
error. Plain vanilla logistic regression aims to find coeffits (represented here as a vegtprfor the
predictor variables such that the error in classificatipis minimized. In L1 regularization, a penalty term
A|A]1 is added to the objective function. The intuition is thattttiee penalty term forces the aggregate
weight of the coefficient§3|; to be small. As\ is increased from 0, the least useful predictor variablds wi
successively drop out of the model (i.e., their coefficightaill become 0). Eventually, for high-enough
A, no variable will remain. This analysis generates what Ikedaa regularization path a sequence in
which predictor variables should be added to the model,noegg with the most useful. We usetito
compute the regularization path for our case. Here is thaesegp of variables (in decreasing order of

importance) as suggested by this analysis:
1. normalized alignment z-scores for the two sub-strusturg |s,| andz,/|s,|
2. normalized alignment energy scorés:/|s,| andE,/|s,|

45



3. alignment probabilitiesP, and P,
4. normalized interfacial energyz,,/(|s,| + [4])
5. raw interfacial energyE,,

6. raw alignment z-scores for the two sub-structurgsindz,

~

raw alignment energy scorek,, and £,

Reassuringly, this mostly agrees with our original featwlecion approach. If we were to only use
the terms from Steps 1-4, our model from this approach woelddny similar to the original model. The
only variation would be that this model ranks normalize@ifgcial energy as slightly more useful than

raw interfacial energy, in contrast to the original.

3.3.3 Algorithm for STRUCT&OTHERINFO

For classification purposes one can associate, with eaclopproteinsp andq, a data-vectoD,, =
(dq,...,ds) that contains information from the six non-structure-lobisdormation sources described in
Table[3.2. To add structure-based information to this, wephi add one more featur to D,,. Here,

d- is the probability of interaction between protemandq as computed using logistic regression. Given
some training data consisting of known true and likely fatderactions, we then train a random forest to
classify a possible interaction based on its data-veces Fsg 3-1b).

Random forests [16] (RF) generalize the intuition behind gleni trees, by employing ideas from
bagging. They are an ensemble approach, like AdaBoost onrmaf26]. Instead of creating a single
decision tree, in RF we create an ensemble of decision treexlagsify a point in the input space, a
majority vote over the set of trees is used. Both the featused in each tree and subset of the training set
used to construct it are randomly determined. This randedh@&proach has certain similarities to other
ensemble approaches like bagging and boosting. Like bggegach tree may be trained only on a subset
of the training set. Like boosting, each tree may be trair@dgua subset of features. Unlike boosting,
where feature-selection is guided by a deterministic winghscheme (that emphasizes mis-classified
examples), the features in each RF tree are randomly seléntecestingly, Brieman has conjectured that
in later stages of boosting, the deterministic approacthtrsglect features in a pseudo-random fashion,

resulting in similar behavior to that in random forests.
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Dataset Interactions Motivation behind Post
Pos. Notes Neg. | creating the dataset Filtering
Interctns.
100 From high-quality 400 | Low-throughput 69
LT low-throughput interactions provide
experiments “gold-standard” positives
508 Between 1000 proteins2000 | Existing guilt-by-association 332
HTFEWANNOT with little functional methods do not work
annotation well with these
489 Between proteins with 300 | Test how to combine 160
HTMANYANNOT a lot of functional structure-based methods
annotation with other info.

Table 3.3:The construction of three datasets for yeast PPI dataThe positive interactions (#'s shown
in table) were retrieved from BioGRID while (putative) negatinteractions were generated by randomly
pairing two yeast proteins. The difference between thesg#dds primarily in how different positive sets
were picked. The datasets were filtered to keep only thogseaictions for which homologous models
could be found.

Random forests have many desirable characteristics. Likg/ mier ensemble approaches, they are
robust to overfitting errors. More importantly, even in casdere some of the training examples might
be mislabeled, their performance does not degrade mucls. i§ ki significant advantage over a method
like AdaBoost and is especially useful in our context. Thespallow classification when features are
not independent and have a good ability to estimate (andhjilhissing data. Thus, they are good at
handling datasets with lots of missing values (again, auli$éedture in this context). They are also useful
in estimating the importance of many variables.

Our use of random forests is rather straightforward. Outufeaspace consists of the 7 features de-
scribed earlier. We used the program written by Brieman andeC[it6] to perform the training, the

classification and the analysis.

3.4 Results

Datasets We have focused our classification and evaluation anatysigedicting PPIs in yeas§( cere-
visia@ and fly (O. melanogastgr The list of experimentally discovered PPIs for these gsewas re-
trieved from BioGRID[83]. From this database, three dataset®e created: £, HTFEWANNOT, and
HTMANYANNOT (see Table 3/3). The datasets differed in how their pos#ix@&mples (true interac-
tions) were selected (see Notes in Table 3.3). Note thatuseocaf the significant error-rate[90] in high-

throughput experiments, some of the training data FEMWANNOT and HTMANYANNOT is likely to
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be incorrectly labeled, i.e., some of the protein pairs & pbsitive dataset in these sets might not truly
interact.

Our criteria for constructing positive and negative dakaseere guided by the following intuitions:

1. Certain kinds of experiments are more reliable than otfeegs co-crystallization experiments are

likely more reliable than Yeast Two-Hybrid experiments)

2. Data from a paper publishing a very small number of datapas likely to be better validated than

data from a paper with hundreds or thousands of observations

3. Previous research on the clustering characteristicBbh@works has suggested that if protein pairs

(A, B) and(B, C') are known to interact, then it is likely that the proteit@ndC also interact.

We encode these intuitions as per the following criteria:

Positive Dataset: We aimed to identify the class of high-confidence, low-tlyigout experimental tech-
niques in the BioGRID database. For this, we excluded teclesitjke affinity capture, two-hybrid, and
those based on phenotypic activation/suppression or stfatinteraction. That left a set of experimental
protocols that we deemed high-confidence. The most commmaingng techniques were: reconstituted
complex, biochemical activity, and dosage rescue. Tylyicklere were only a few interactions per publi-
cation for these experiments, further suggesting thaethes low-throughput experiments. We included
all interactions from these experiments.

We also included all interactions from papers where theiphbtl dataset has 5 or less reported PPIs.
The intuition here is that the PPIs will be better validateduch papers than in papers with much larger-
scale scans. Additionally, we included all reported PPthisbat the interacting paird, B) was connected
by another proteit’ as well, i.e., there also existed PRK, C') and(B, C').

Negative Dataset:n literature, it is difficult to find conclusive experimehtkata that some pair of proteins
do not interact. Much of the previous work in PPI predicti@s ltonstructed negative training/test sets by
using random pairs of proteins (and excluding those with@ninteraction) [76]. The argument here
is that the likelihood of interaction of a random pair of @ios is very small so it is reasonable to treat a
random pair as a negative example of PPIl. We chose a strietsion of this approach: we required the
chosen (randomly selected) pair of proteins to either beodisected in the experimentally-determined
PPI network or be at least 3 hops away from each other in ieriEsdly, we require that the two proteins

not be co-clustered in the PPI network.
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Figure 3-2:Specificity-vs.-Sensitivity curve when using only the strature-based approach.TP=True
Pos., FP=False Pos., TN=True Neg., FN=False Neg. The ddiagdnal line indicates the baseline, a
method with zero predictive power. The performance of outhoe is better for IL than for HrFe-
WANNOT +HTMANYANNOT. A possible reason might be that the latter datasets theesalight have
mislabeled instances.

However, not all interactions in the datasets correspotmpdbtein pairs for which homologous com-
plexes could be found. Therefore, we had to filter out a sulfsbe dataset. As discussed before, as more
structures become available, the coverage of the homdlaggd methods will increase and fewer pairs

will be filtered out.

Using Only Structure-based Method(STRUCTONLY): We tested our method by 4-fold cross-validation
on the LT dataset. In addition, the method was trained on the entirddtaset and tested on the com-
bined HTFEWANNOT + HTMANYANNOT dataset. By comparing against some threshold value (say
pinresn = 0.5), the probabilities of interaction predicted by logistegression can be interpreted as true/-
false interactions. By varying,...», we can plot the sensitivity-vs.-specificity (ROC) curvelwd method
(see Fig 3-2). As can be seen, the structure-based metheidigssignificant signal for prediction pur-
poses. The performance of the method is better on the loowgiput (IT) dataset than on the high-
throughput datasets. A possible cause might be that thethighhghput datasets have more errors, i.e.,

negative examples mis-labeled as positive.
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Combining Various Information Sources (STRUCT&OTHERINFO): We tested our entire framework on
the HTMANYANNOT dataset, a dataset specifically chosen for proteins wighdbfunctional annotation
available. We used 5-fold cross-validation to evaluateroethod, using the cross-validation error (CVE)
as the quality metric.

With average sensitivity = 94.1% and specificity = 92.1%, alierall performance of our method is
better than that of existing work, e.g., Zhagigal 's[99] (sensitivity = 81% at specificity = 80%, approx-
imately)y. Even when experimental PPI data itself has been used ad ¢time gredictors by others (e.qg.,
Lin et al. [61]: sensitivity = 98%, specificity = 92%, approximatelgyr method — which igompletely

independent of experimental PPI information — performs garably.

3.5 Struct2Net Web-Server

To make the predictions of our approach widely availablehaxe created Struct2Net (http://struct2net.csail.ichit)e
It is a web-service that predicts interactions betweengmetusing a purely structure-based approach. We
believe that it is the first community-wide resource to pdavstructure-based PPI predictions that go be-
yond homology modeling. Currently, most web-resources phatide computationally predicted PPIs
(e.g., STRING[84]) rely on using functional genomic data(eGO annotation, gene expression, cellular
localization, etc) to make predictions. Our structuredolimethod is completely independent of such ap-
proaches; it can thus provide new information about thdiliked of a given protein-protein interaction.
The displayed output includes the logistic regressionesatowing users to further filter the algorithm’s
predictions.

A fundamental trade-off with web-servers (especiallydove ones) is between speed and quality:
waiting for the results can be frustrating for some users whald prefer a quick (albeit, approximate)
answer; for others, the quality of the produced predictisngaramount, even if the response is slow.
With Struct2Net, we have strived to achieve a good balantveds the two scenarios, and have aimed to
provide full flexibility to the user. For the most commonlydied organisms (fly, human and yeast), we

have precomputed all-vs.-all predictions and stored tHdsers can retrieve these nearly instantaneously.

1Computing 5-fold cross-validation error (CVE): data wasdamly partitioned into five equal parts. Four of the parts
constituted the training set while the fifth one made up teeget. The error was computed as the classification errdnisn t
test set. By repeating this error computation for each ottasses, five error values were computed and averaged toutemp
the CVE.

2We compared against Zhargjal’s performance in the case when they did not use experimBRiatlata as a predictor
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For proteins from other species, if the user desires a q@isRanse of reasonable quality, we find the
orthologs of the given protein(s) in the stored-set of ybashan/fly proteins, map back the corresponding
set of stored predictions to the given protein(s), and dutps result. Finally, we provide the option of
performing a full-blown prediction (which involves a tho#ag algorithm and a machine learning algo-
rithm); the user is emailed when the results for this arelalvhs.

We believe that this web-server is the first of its kind and d of value to systems biologists in-
terested in PPIs. Its predictions may be used by themseivas one of the inputs into a computational
framework that combines it with other sources (e.g. lowhtypaxperimental data or predictions from

functional genomic data).

3.6 Conclusion

We have described how structure-based methods can beatgdgrith other genomic and proteomic
information for predicting PPIs. Structure-based metluzasbe used by themselves when other functional
annotation is not available. When used in conjunction witicfional annotation, their addition improves
prediction accuracy over existing methods. A possible eanmight be that current structure prediction
methods are not sufficiently accurate and may not work welet@ry protein pair. In response, we note
that our framework is modular so that better methods can bstisuted in, as they become available.
Second, our method is homology-based and will improve ifoperance and coverage as the recent NIH-
funded push to elucidate more structures gains momentum.

Another concern might be that just because two protein stres interacin-silico, they might not
interactin-vivo. This risk can be mitigated by combining inferences basesdtrctural-techniques with
other kinds of data. Also, note that this concern is equaliyliaable to existing approaches. Similarly,
like many previous approaches, we restrict ourselves toviss protein interactions, even though more

than two proteins may simultaneously interacvivo.
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Chapter 4

Modeling Systematic Errors in Yeast

Two-Hybrid Data

This chapter describes joint work with David Sontag and Bonnie Berger.

4.1 Introduction

One of the issues associated with any high-throughput erpatal approach is dealing with the errors,
both random as well as systematic, associated with the gsod&ddressing these errors requires either
changes in the protocol design, or a post-processing catipuoal analysis or, often, both. Sometimes, the
protocol is designed specifically to provide redundant nlzgens or control data that make computational
post-processing easier. For example, during the Human i@eriroject, the genome was sequenced at
approximately 12x coverage, i.e., each position in the genwas covered by about 12 independent,
overlapping sequence fragments. This was to enable thesegassembly software to robustly stitch
together the true sequence while allowing for sequencirggem individual fragments.

Here, we focus on methods for modeling and mitigating ermoisigh-throughput methods for dis-
covering PPIs. The two commonly used approaches, Yeasti?idHfY 2H) and Co-Immunoprecipitation
(ColP) are both liable to random as well as systematic errors.

In this chapter, we aim to improve the quality of experiméntavailable PPl data by identifying
erroneous datapoints from certain PPI experiments. Wafgaly focus on data fronYeast Two-Hybrid

(YTH) experiments [48, 87], which are one of the most pophigh-throughput methods for elucidating
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protein-protein interaction. Data from YTH experimentsnig a large fraction of the known PPI data for
many speciesD. melanogaster, C. elegans, H. sapi@ts. However, currently available YTH data also
has unacceptably high false-positive rates: von Meeihal. estimate that more than 50% of the reported
interaction in the early YTH interactions were spurious][90hese high rates of error seriously hamper
the ability to perform analyses of the PPI data. As such, eor enodel that performs better than existing
models — even if it is tailored to YTH data — is of significantptical value, and may also serve as an

example for the development of error models for other biglalgexperiments.

4.1.1 Error Modeling in PPI Experiments

Previous computational methods of modeling systematargin PPI data can be broadly classified into
two categories. The first class of methods [51, 90, 49] eiplbie observation that if two very different
experimental setups (e.g. YTH and Co-IP) observe a physitalaction, then the interaction is likely to
be true. However, this approach requires many costly anel¢mnsuming genome-wide PPI experiments,

and may still result in missed interactions, since the erpants have high false negative rates.

The second class of methods is based on the topological npiegef the PPl networks. Badet
al.[4], in their pioneering work, used the number of YTH intdrans per protein as a negative predictor
of whether two proteins truly interact. Since the prior @bitity of any interaction is small, dispropor-
tionately many YTH interactions involving a particular pem could possibly be explained by it being
self-activating or promiscuous. However, such an appraachable to make fine-grained distinctions: an
interaction involving a high-degree protein need not beirect, especially if there is support for it from
other experiments. Furthermore, the high degree of a pouoiss protein in one experiment (e.g. &b
al.’s) should not penalize interactions involving that protebserved in another experiment (e.g. Usttz
al.’s) if the errors are mostly independent (e.g. they use whffereporters). Our proposed probabilistic

models solve all of these problems.

The key contribution of this work is a comprehensive errodeidor YTH experiments that accounts
for both random as well as systematic errors and is guidech&ights into the systematic errors of the
YTH experimental protocol. We believe this is the first mottehccount for both sources of error in a
principled manner; in contrast, previous work on estingagmror in PPI data has assumed that the error

in YTH experiments (as in other experiments) is independadtrandom.
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4.1.2 The Yeast Two Hybrid Protocol: Origins, Design, and Limitations

The Yeast Two Hybrid protocol was invented and describedibids and Song in 1989 [31]. Although
the initial work described the protocol for just a single starotein-pair, it quickly became clear that the
protocol itself was much more generalizable, amenablegio-tiiroughput approaches, and was useful for
other species as well. Also, itis anvivoapproach, unlike many other approaches (e.g. co-puriicati
co-crystallization) which arm vitro. This is useful because the artificial conditions inrawitro setup may
distort the experimental results. At the time when the YTHtpcol was invented, there were no other
approaches for detecting PPIs that were nearly as poweartuke#icient. As such, the advent of YTH
marked a significant advance in the ability to investigate analyze protein interactions. Furthermore,
the protocol was shown to have utility beyond just proteiot@in interactions: it has also been used for

DNA-protein, RNA-protein and protein-ligand interactions

The basic insight driving the YTH protocol is simple yet elag 1t emerged from an understanding of
how transcription factors (e.gsal4pin yeast) function. A transcription factor typically acies its target
gene by binding to the latter's upstream activating DNA szge (UAS). In many transcription factors,
the DNA-binding (DB) domain and the activation domain (ADEg(j the part responsible for activating
the target gene) are in structurally separable parts of thlegule. The key insight in YTH protocol is to
actually separate out the two domains and fuse them into iffeseht proteins. If the two proteins interact,
the DB and AD domains will be able to function in sync. Thug, tlombined entity will successfully bind
to the UAS region of the target gene and activate it. The taggae is typically a reporter gene (e.g.,
lacZ) whose activity can be easily measured using some well-knoethods. The protocol lends itself
to genome-scale analysis by pre-constructing librarieBBfdomain-fused genes (“bait” libraries) and

AD-domain-fused genes (“preys”). These can then be crassaal all-vs-all setup.

Like most experimental protocols, YTH experiments can gkeneous results, producing both false
positives and false negatives. While there always are raretomns (as in most experiments), the protocol
itself is particularly susceptible to certain kinds of @s:.0 For example, membrane proteins can not be
easily localized to nucleus, a crucial requirement in YTHanscription-based approach. This causes
systematic false negatives related to interactions imeglsuch proteins. On the other hand, false positives
can be also occur in a systematic way in YTH experiments. & hex two main ways such false positives
occur. The first case is where the proteins interact in themx@ntal setup but do not actually interact

inside the cell's natural environment (e.g., because déuwiifg localization, expression profiles). The
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second, and more frequent problem with YTH [89], is thataiarproteins can trigger the expression of
the reporter gene independently of any protein-protegradtion. These may be proteins that can activate
transcription by themselves when bound to the DB-domain @rAB-domain. Alternatively, they may
be involved in the constitutive expression of the reporemey In YTH output, these proteins show up
repeatedly (i.e., in multiple PPIs), displaying what hasrbealledpromiscuousinding. Vidalainet al.
have and described some changes in the experimental setqgiuice the problem [89]. Our work aims to
provide a parallel, computational model of the problengwaihg post-facto filtering of data, even if the

original experiment retained the errors.

4.2 Probabilistic Modeling of Yeast Two-Hybrid Errors

We use the framework of Bayesian networks to encode our aggumtpat a YTH interaction is likely to
be observed if the corresponding protein pair truly intesacif either of the proteins is self-activating/promiecs.
The Bayesian framework allows us to represent the inherecgrtainty and the relationship between
promiscuity of proteins, true interactions and observedHYdata, while using all the data available
to simultaneously learn the model parameters and predeciriteractions. We use a Markov Chain
Monte Carlo (MCMC) algorithm to do approximate probabilistiderence in our models, jointly in-
ferring both desired sets of quantities: the probabilityndéraction, and the propensity of a protein for
self-activation/promiscuity.

Our models can also adjust to varying error rates in diffeexperiments. For instance, while we
account for random noise and false negatives in our errorehfod data from both Uetet al. [87] (the
UETZ2H dataset) and Itet al. [48] (the ITO2H dataset), we only model self-activation/promiscuity fo
ITO2H observations. The &irz2H data set was smaller and included only one protein witheselarger
than 20; ro2H had 36 proteins with degree larger than 30, one with demgdegh as 285. Thus, while
modeling promiscuity made a big difference for th@PH data, it did not significantly affect our results

on the WETZz2H data.

4.2.1 Generative model

We begin by describing a novel generative model in which #iéativating/promiscuous tendencies

of particular proteins are explicitly modeled. We représée uncertainty about a protein interaction
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Figure 4-1: The origin of systematic errors in YTH data. The cartoons shown above demonstrate
the mechanism of YTH experiments. Protein A is fused to theADdhding domain of a particular
transcription factor, while protein B is fused to the adiiva domain of that transcription factor. If Aand B
physically interact then the combined influence of theipessive enhancers results in the activation of the
reporter gene. Systematic errors in such experiments nisg/. dalse negatives occur when two proteins
which interacin-vivofail to activate the reporter gene under experimental dmrdi. False positives may
occur due to proteins which trigger the reporting mecharo$rime system, either by themselves (self-
activation) or by spurious interaction with other prote{psomiscuity). Spurious interaction can occur
when a protein is grossly over-expressed. In the above figuogein A in the lower right panel is such a
protein: it may either promiscuously bind with B or activéite reporting mechanism even in the absence
of B.
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as an indicator random variabl€;;, which is 1 if proteinsi andj truly interact, and O otherwise. For
each experiment, we construct corresponding random VasidRVs) indicating if; and j have been
observed to interact under that experiment. Thgsjs the observ&drandom variable (RV) representing
the observation from BTz2H, and’;; is the observed RV representing the observation from2H.
The arrow fromX;; to I;; indicates the dependency 6f on X;;. The latent Bernoulli RVFj, is 1 if
proteink is believed to be promiscuous or self-activating. In theteginof our data set, this RV applies
specifically to the To2H data; if self-activation/promiscuity in multiple exp@ents is to be modeled, we
may introduce multiple such variablég§” (for proteink and experiment{). TheI,; RV thus depends
on F; and F}. Intuitively, I;; will be > 0 if either X;; = 1 or F;, = 1. As we show later in the Results
section, this model of noise is significantly more powerharn the earlier model, because it allows for
the “explaining away” of false positives im®2H. Furthermore, it allows evidence from data sets other
than ITo2H to influence (through th&’;; RVs) the determination of the), RVs. We also added the latent
variables()g andO{j, which will be 1 if the Uetzet al. and Itoet al. experiments, respectively, have the
capacity to observe a possible interaction between poieand j. These RVs act to explain away the
false negatives in BTz2H and To2H. We believe that these RVs will be particularly useful $pecies

where we have relatively little PPI data. The distributionthese models all have Dirichlet prior®) (vith

associated hyperparametergsee Supp. Info. for more details).

The model is called “generative” because the ground trututhe interactionX;;, generates the
observations in the YTH experiments; andU,;. Compared to previous generative models, our approach
allows for more fine-tuned modeling of false positives angdaegatives. To our knowledge, all previous
generative models of experimental interactions alloweddise positives by saying th&t-(1;; > 0|.X;; =
0) = dy,, Wheredy, is a parameter of their model. Similarly, they allowed fdséanegatives by saying
that Pr(I;; = 0|X;; = 1) = d,,, for another parameter;,,. However, these models are missing much of
the picture. For example, many experiments have particlifficulty testing the interactions of proteins
along the membrane. For these proteifis, should be significantly higher. In the YTH experiment,
for interactions that involve self-activating/promisasoproteinsd;, will be significantly higher. Our

approach allows for such variations.
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Figure 4-4:0ur Bayesian logistic model, with noise variables (BYESLR)
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4.2.2 Bayesian logistic model

In Fig./4-3 we show Badeat al.’s model (BADERLR); it includes three new variables in addition to some
of the RVs already mentioned, whose values are pre-caémilasing the YTH network. Two of these
encode topological information: variahlg; is the number of adjacent proteins in common betwiegmd

J, and variableD;; isIn(d; + 1) +1n(d; 4+ 1), whered; is the degree of protein VariableL,; is an indicator
variable for whether this protein interaction has been nleskin any low-throughput experiments. In
Baderet al.s model,lg is an indicator variable representing whether the inteyadbetween proteins

i andj was in the TOoCoRE data set (IST> 3). X;,’s conditional distribution is given by the logistic

function:

1
~ l+exp (—(wogser + Ujjwy + ISwI + Lijjwg + Ajjwa + Dijwp))’

p(Xi; = 1)

The weightsw are discriminatively learned using the Iterative Re-wesghteast Squares (IRLS) algo-
rithm, which requires that all of the above quantities argesbed in the training data.

In Fig./4-4 we propose a new model{BesLR), with two significant differences. First, we no longer
use the two proteins’ degreé);;, and instead integrate our noise model in the form of Khgandom
variables. Second, instead of learning the model using IRIESassign the weights uninformative priors
and do inference via Markov Chain Monte Carlo (MCMC) methodssWill be necessary becausg;
will have an unobserved parerﬂ;?g. The new RVI% will be 1 when the Itoet al. experiment should
be considered for predicting;;. Intuitively, its value should b¢l;; > 0) A —(F;V F;). However, to
allow greater flexibility, we give the conditional distritoon for [}; a Dirichlet prior, resulting in a noisy
version of the above logical expression. The RYs are not needed in this logistic model because the
parameterization of th&;; conditional distribution induces a type of noisy OR distitibn in the posterior.

Thus, logistic models can easily handle false negatives.

4.2.3 Inference

As is common in probabilistic relational models, the partrsefor the conditional distributions of each
RV are shared across all of their instances. For exampldeirgénerative model, the prior probability

Pr(X;; = 1) is the same for ali and j. With the exception ofX;; in BAYESLR, we gave all the

1Clear nodes are unobserved (latent) RVs, and shaded nadebserved RVs.
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distributions a Dirichlet prior. In BYESLR, the conditional distribution of;; is the logistic function,
and its weights are given uninformative Gaussian priorl wieanux = 0 and variance3, = 100. Note
that by specifying these hyperparameters (g.g, 0%), we never need to do learning of the parameters
(i.e., weights). Given the relational nature of our datal @re relatively small amount of it, we think that
this Bayesian approach is well-suited. We prevent the mddats growing too large by only including

protein pairs where at least one experiment hinted at areictien.

We used BUGS [62] to do inference via Gibbs sampling. We raMCMC chains for 6000 samples
each, from which we computed the desired marginal postpraiyabilities. The process is simple enough
that someone without much knowledge of machine learnindgddalte our probabilistic models (Tab 4.1,

4.2, 4.3) and use them to interpret the results of their YTpeexnents.

4.3 Data Sets for Evaluation

We constructed a gold standard data set of protein-pratégnactions irS. cerevisiagyeast) from which
we could validate our methods and compare the results totlizdaderet al. Our gold standard test set is
an updated version of Badet al’s data. Badeet al’s data consisted of all published interactions found
by YTH experiments; data from experiments by Uetal. [87] (the UETz2H data set) and Itet al. [48]
(the ITO2H data set) comprised the bulk of the data set. They alsoded as possible protein interactions
all protein pairs that were of distance at most two in the YTgtiwork. Baderet al. then used published
Co-Immunoprecipitation (Co-IP) data to give labels to theseerted interactions. When two proteins
were found in a bait-hit or hit-hit interaction in Co-IP, thergre labeled as having a true interaction. When
two proteins were very far apart in the Co-IP network (distalarger than three), they were labeled as
not interacting. We were able to update Badeal’'s data with additional YTH interactions. Since the
goal of our algorithms is to model the systematic errorsifipatly in YTH experiments, we evaluated our

models’ performance on the test data where at least on&EoZ2H or ITo2H indicated an interaction.

We were left with 397 positive examples, 2298 negative exasjpnd 2366 unlabeled interactions. We
randomly chose 397 of the 2298 negative examples to be paurdést set. For all of the experiments we
performed 4-fold cross validation on the test set, hiding fmurth of the labels while using the remaining

labeled data during inference.
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4.4 Results

We compared the proposed Bayesian logistic model@3LR) with the model based on Badet al’s
work (BADERLR). Both models were trained and tested on the new, updatesibweof Baderet al.s
gold standard data set. We show in Fig. |4-5 thatBsLR achieves 5-10% higher accuracy at most
points along the ROC curve. In all regimes of the ROC curveyEsLR performs at least as well as
BADERLR; in some, it performs significantly better (Fig. 4-7). Téseamples that follow demonstrate the
weaknesses inherent imBERLR and show how the proposed model&SLR solves these problems.
When IRLS learns the weight for the degree variable (k\DBRLR), it must trade off having too high
a weight, which would cause other features to be ignored,hawthg too low a weight, which would
insufficiently penalize the false positives caused by aetivation/promiscuity. In BDERLR, a high
degreeD;; penalizes positive predictors from all the experimebts, ((;;, L;;). However, the degree of a
protein in a particular experiment (say, #bal.s) only gives information about self-activation/promisgy
of the protein in that experiment. Thus, if a protein has aldggree in one experiment, even if that
experiment did not predict an interaction (involving sontieen protein), the degree will negatively affect
any predictions made by other experiments on that proteiar gpoposed models solve this problem
by giving every experiment a different noise model, and byirigaeach noise model be conditionally
independent given the(;; variables. Thus, we get the desired property that noise eéexperiment
should not affect the influence of other experiments onXhevariables.

Fig. |4-7(a) illustrates this by showing the prediction aecy for the test points wher®;; > 4 and
Uy = 1orL;; =1 (called the ‘medium’ degree range). When the degree of aipratevery high,
BADERLR will always classify interactions involving it as falsegitives. Fig. 4-7(b) shows the setting
of D;; > 6& With a false positive rate of less than 1% @BERLR detects 42% of the true interactions,
while BAYESLR detects 74% of the true interactions, a 76% improvementleBet al. found that they
got better performance by using only a subset (whereX*S3) of the interactions in1o2H. Our noise
model allows us to make use of all of the predicted interastiovithout hurting our overall results. As a
result, our predictions for the proteins pairs where Badel.'s model ignored T02H’s interactions (i.e.
IST < 3) are highly more accurate. This is illustrated in Fig. 4}7€nally, we show in Fig. 4-7(d) that
at the very extreme when neitherdCoRE, nor the low-throughput YTH experiments (Lit), noewz2H

showed an interaction, we can still make meaningful premtist using a combination of the noise model

2Recall thatD;; is on a log-scale, and is the sum for both proteins.
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and the observed interactions in &bal. where IST< 3.

We next compared the various generative models, with thdtseshown in Figl 4-6. Naively imple-
menting a simple random-error model (by omitting thend I variables from Fig. 4-2) and by using an
indicator variable for whether the interaction was obseénvel TO2H, results in the worst performance.
Changing the indicator variable to a discretized IST cougnificantly improves performance. Using our
noise model (i.e. the model from Fig. 4-2) provides furtmapiovements, especially in the lower left
corner, where the previous two had performed poorly. Howelere simplify that generative model by
removing the noise variables from that model and insteadilpee the data as Badest al. did, using an
indicator variable for whether IS® 3 in ITO2H, we performance that is almost as good. The noise model
still does better in the upper half of the ROC curve, whichrgaiably where it matters the most. It is also

interesting that our noise model is able to recover the aoyunf the hand-filtered IST 3 criterion.

4.5 Conclusion

We have presented a principled approach to modeling theorarmhd systematic sources of error in two-
hybrid experiments, and showed how to integrate our noisgehsanto the two most common probabilistic
models for integrating PPI data. Comparisons with previoagkwlemonstrate that explicit modeling of
the sources of error can improve protein-protein inteoactirediction, making better use of experimental
data.

Future work could involve discriminative training of therggative models, investigation of systematic
sources of noise in other biological experiments such asRfCaAd applying noise models to the Markov
networks of Jaimovictet al. [49] and possibly even in a first-order probabilistic modehere more

intricate properties of proteins can be described andlyopredicted.
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model {

itodist[1,1,1,1:4]
itodist[1,1,2,1:4]
itodist[1,2,1,1:4]
itodist[1,2,2,1:4]
itodist[2,1,1,1:4]
itodist[2,1,2,1:4]
itodist[2,2,1,1:4]
itodist[2,2,2,1:4]

uetzdist[1,1,1:2]
uetzdist[1,2,1:2]
uetzdist[2,1,1:2]
uetzdist[2,2,1:2]

litdist[1,1,1:2] ~
litdist[1,2,1:2] ~
litdist[2,1,1:2] ~
litdist[2,2,1:2] ~

ppiprior[1:2]
itofpprior[1:2]

seeitoprior[1:2]
seeuetzprior[1:2]

“ ddirch (alphaitol [
“ ddirch (alphaito2 |
" ddirch(alphaitol [
“ ddirch(alphaito2 |
“ ddirch (alphaitol [
“ ddirch (alphaito2 [
“ ddirch(alphaito2 |
" ddirch(alphaito2 |

[ S O S S S O S —)

)
)
)
)
)
)
)
)

" ddirch (alphabinl[])
“ ddirch (alphabinl[])
“ ddirch (alphabin1[])
“ ddirch(alphabin2]])

ddirch (alphabinl[])
ddirch (alphabinl[])
ddirch (alphabinl[])
ddirch (alphabin2[])

~ ddirch (alphappi[])
~ ddirch (alphafp[])

~ ddirch(alphasee[])
~ ddirch(alphasee[])

seelitprior[1:2]

for (

}

for (

~ ddirch (alphasee[])

pin 1 : N){
itopfp[p] ~ dcat(itofpprior[])
i in1:M) {

ppi[i] © dcat(ppiprior[])

# Explaining away variablefor ito,uetz,lit (if 0)
seeito[i] © dcat(seeitoprior|[])

seeuetz[i] ~ dcat(seeuetzprior|[])

seelit[i] 7 dcat(seelitprior[])

itofp[i] <— step(itopfp[parentl[i]] + itopfp[parent2[i]]- 3) + 1
ito[i] © dcat(itodist[seeito[i],ppi[i],itofp[i],])

uetz[i] ~ dcat(uetzdist[seeuetz[i],ppi[i].])
lit[i] ~ dcat(litdist[seelit[i],ppi[i].])

Table 4.1:BUGS code for Generative Model in Fig 4-2
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Figure 4-7:Examples of regimes where the noise model is particularly hpful. In parentheses we
give the number of test cases that fall into each category.

model {

# Uninformative priors for logistic regression weights
logoffset ™ dnorm(0.0, 0.01)

logdegree ~ dnorm (0.0, 0.1)

loglit ™ dnorm (0.0, 0.01)

logito ™ dnorm (0.0, 0.01)

loguetz © dnorm (0.0, 0.01)

for( i in1:M) {
val[i] <— logoffset + loglit«(lit[i] —1) + logitox(ito[i]—1) + loguetzx(uetz[i]—1) + logd

ppiprior[i] <— 1 / (1 + exp(vallil]))
ppi[i] © dbern(ppiprior[i])

Table 4.2:BUGS code for Bader’s Logistic Model in Fig 4-3
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model {
itofpprior[1:2] ~ ddirch(alphafp|[])

# Uninformative priorsfor logistic regression weights
logoffset ™ dnorm (0.0, 0.01)

loglit ™ dnorm (0.0, 0.01)

logito © dnorm (0.0, 0.01)

loguetz ~ dnorm (0.0, 0.01)

titodist[1,1,1:2] © ddirch(alphatitol[])
titodist[1,2,1:2] © ddirch(alphatitol[])
titodist[2,1,1:2] © ddirch(alphatito2][])
titodist[2,2,1:2] ~ ddirch(alphatitol[])
titodist[3,1,1:2] © ddirch(alphatito2[])
titodist[3,2,1:2] 7 ddirch(alphatitol[])
titodist[4,1,1:2] © ddirch(alphatito2[])
titodist[4,2,1:2] © ddirch(alphatitol[])

for( p in 1 : N) {
itopfp[p] ~ dcat(itofpprior[])

for( i in 1 : M) {
itofp[i] <— step(itopfp[parentl[i]] + itopfp[parent2[i]]- 3) + 1
tito[i] © dcat(titodist[ito[i],itofp[i],])

val[i] <— logoffset + loglit«(lit[i] —1) + logitox(tito[i]—1) + loguetztx(uetz[i]—1)
ppiprior[i] <— 1 / (1 + exp(val[i]))
ppi[i] ~ dbern(ppiprior[i])

Table 4.3:BUGS code for Our Logistic Model in Fig/4-4
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Chapter 5

Comparative Analysis of Protein Interaction

Networks

Section 5.2 describes joint work with Jinbo Xu and Bonnie Berger. SecBateScribes joint work with Chung-Shou

Liao, Kanghao Lu, Michael Baym and Bonnie Berger

As the size of PPI datasets for various species rapidly &sa® comparative analysis of PPl networks
across species is proving to be a valuable tool. Such asalysimilar in spirit to traditional sequence-
based comparative genomic analyses; it also promises cosurae insights. As a phylogenetic tool,
it offers a function oriented perspective that compleménsigitional sequence-based methods. Compar-
ative network analysis also enables us to identify consefuactional components across species [33]
and perform high-quality ortholog prediction (i.e., idiéyihg genes in different species derived from the
same ancestral region). Solving these problems is crumiatdnsferring insights and information across
species, allowing us to perform experiments in (say) yealy@nd apply those insights toward under-
standing mechanisms of human diseases [88]. Indeed, Baadlypay et al. [6] have demonstrated that
the use of PPI networks in computing orthologs produceototly mappings that better conserve protein
function across species (i.e., functional orthologs).

One of the first comparative analyses of PPl networks wasdah@lentifying the general network
characteristics (e.g., the degree distribution, conmkeess etc.) common across various PPl networks
[52]. This analysis suggested that most PPI networks fod@egale-free topology: the degree distribution
f(d) of the nodes in these networks follows a power-law distidsutf(d) ~ cd*, where f(d) is the

frequency of nodes with degrek Similar analyses have revealed the important roles thyt-tiegree
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proteins (“hubs”) play in PPI networks. Most of the paths iRRI network are routed through such hub
proteins.

Another approach to comparing PPl networks has focusedeid#a of network motifs: each such
motif is a small graph (typically, with 4 or less nodes). Givae PPl network, we construct a motif-
based signature of the network by enumerating how many teael motif occurs in the network. Such
signatures do capture some information about the netwarkexXample, if triangles are relatively more
frequent than other 3-node motifs, it would suggest a higyrele of co-clustering in the network. In
principle, these signatures can also be used to compamugd?Pl networks. However, such comparative
analysis is not very fruitful. While the intuition behind meirk motifs is similar to the concept of sequence
motifs popular in comparative sequence analysis, the fooenot seem to be as useful as the latter.
The key problem with the network motif approach is its weakensummarizing PPI data. Sequence
motifs have proven very useful because the fundamentahctarstic of the underlying data — sequential
ordering of nucleic-acids/amino-acids — is well capturgdsbquence motifs. Sequence motifs reduce a
gene/protein sequence to its most-interesting segmentsoritrast, the combinatorial nature of a large
PPI network can not be easily captured by representing ih asmardered collection of many tiny graphs.
A lot of biological detail is lost in the process.

Local alignment of PPI networks has been a particularly paopapproach to comparative analysis
of PPI networks. Here the goal is to find pathways and netfi@ggments common to two or more PPI
networks. More precisely, the subgraphs from each netwarkezjuired to be approximately isomorphic
while the sets of corresponding nodes should be sequemtiassiln a variation of this approach, a query
graph pattern is searched for in a given network. The piongeavork of Kelley et al. [54] described
how BLAST similarity scores and PPI network information abbk used to identify conserved functional
motifs. Koyuturk et al. [58] proposed another method, nadtid by biological models of duplication
and deletion. Recently, Flannick et al. [33] proposed a néwieft approach, using modules of proteins
to infer the alignment. Berg and Lassig [9] have proposed a 8ageapproach to this problem. Many
of these methods limit the set of possible node-pairingedas sequence-based similarity scores or
orthology predictions, and then add in network data to itiferalignment. This approach helps reduce the
problem complexity, but lacks the flexibility of producingde-pairings that diverge from sequence-only
predictions.

In this chapter, we introduce an approach to comparativiysisaof PPl networks that addresses the

problem of finding the optimal global alignment between twarmre PPl networks. We propose the
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ISoRANK algorithm for multiple network alignment, aimed at finding@respondence between nodes
and edges of the input networks that maximizes the overak¢hi’ between the networks. To the best of
our knowledge, it is the first such algorithm of its kind. Ingiltaneously uses both PPI network data and
sequence similarity data to compute the alignment, thdivelaveights of the two data sources being a
free parameter. The algorithm is intuitive: a nade G is mapped to a nodgin G, if the neighborhood
topologies ofi andj are similar, i.e., the neighbors ottan be well-mapped to the neighbors;jofThis
approach has parallels to Google’s PageRank techniquethigkéatter, we formalize our intuition as an
eigenvalue problem (s€g.2). ISORANK is, by design, tolerant to errors in the input (e.g., misging
spurious edges) and takes advantage of edge confidences ssoveell as other biological signals (e.g.
sequence similarity scores), when available. We use tharidigh to compute the first known global

alignment of the most-commonly studies eukaryotic species

We use BORANK to simultaneously align the PPI networksS@diccharomyces cerevisiae, Drosophila
melanogaster, Caenorhabditis elegans, Mus musc@ndHomo sapiensthe species that make up the
bulk of available PPI data. The conserved subgraphs in tiggraent are larger and more varied than
those produced by previous methods, which performed psgrwetwork alignments. We also use the
alignment results to predict functional orthologs acrgsscges and demonstrate that incorporating PPI
data in ortholog prediction results in improvements ovestexg sequence-only approaches such as Ho-
mologenelit t p: / / www. ncbi . nl m ni h. gov/ honol ogene) and Inparanoid [77]. Moreover, we
find our pairwise alignment of yeast and fly networks proddoestional orthology mappings that com-
pare favorably with those from local alignments of the twonteks. To test the biological quality of our

predictions, we introduce a direct, automated method forisg the quality of an ortholog list.

We note here that the graph alignment problem has also beéedtin other domains. For example,
in computer vision, the problem of matching a query imagentexsting image in the database has often
been formulated as a graph-matching problem, each imageseted as a graph. Some of the solutions
proposed in that domain use spectral techniques, i.e. ubegigenvalues computed based on each graph
(14, 15). Our approach, which also constructs an eigenyahtd@em (although, not for individual graphs)

may be relevant in this domain as well.
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5.0.1 Global vs. Local Network Alignment

In general, the goal in a network alignment problem is to fied@mmon subgraph (i.e., a set of conserved
edges) across the input networks. Corresponding to thesew@d edges, there exists a mapping between
the nodes of the networks. For example, when praigifiom networkG, is mapped to proteing, from

GG, andas from G3, thenay, a2, andas refer to the same node in the set of conserved edges. What makes
the problem difficult is the tradeoff involved: Maximizinge overlap between the networks (i.e., the
number of conserved edges), while ensuring that the poteapped to each other are, as far as possible,
evolutionarily related. In most existing approaches, anthis work, sequence similarity is used as a
measure of evolutionary relationship, albeit an approxenmame. However, more sophisticated measures

are certainly possible; e.g., those that incorporate gesher ¢synteny).

The network alignment problem can be formulated in varioaysy depending on the kind of input
(pairwise vs. multiple alignments) and the scope of nodepimgpdesired. Here, we draw an analogy
from the sequence alignment problem to distinguish betweeal and global network alignment, the

latter being the focus of this article.

Local Network Alignment (LNA)fhe goal in LNA is to find multiple, unrelated regions of isamleism
(i.e., same graph structure) between the input networks, egion implying a mapping independently of
others. Many independent, high-scoring local alignmergsiaually possible between two input networks;
in fact, the corresponding local alignments need not evemineally consistent (i.e., a protein might be
mapped differently under each alignment). The motivatibelsind local sequence alignment and local
network alignment are similar— the former is often used tarcle for a conserved motif in the target
species; the latter would be used to search for a known fumaticomponent (e.g., pathways, complexes,

etc.) in a new species.

Global Network Alignment (GNA)The aim in GNA is to find the best overall alignment between the
input networks. The mapping in a GNA should cover all of thpuinnodes: Each node in an input
network is either matched to one or more nodes in the othevamk(s) or explicitly marked as a gap
node (i.e., with no match in another network). In contradtN& algorithm is essentially intended for
finding similar motifs/patterns between two networks, dr@rmappings corresponding to different motifs
may be mutually inconsistent. In GNA, however, our goal ifind a single consistent mapping covering
all nodes across all input graphs. Furthermore, it mustdmesitive: Ifa; in G is mapped tai, in G

anday is mapped to nodess, aj in Gs, thena,; should also be mapped tg, ;. The global scope of
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GNA enables species-level comparisons. Analogous to bkdzpuence alignment, which is often used
for comparing genomic sequences to understand variatietvgelen species [55], GNA may be used to
compare interactomes and for understanding cross-spauisions. Also, the GNA problem is related

to the detection of functional orthologs, as we discuss inuRes

The focus of this chapter is on the global network alignmeablem, which has previously received
little attention in the literature. One can imagine usingALté estimate GNA: Use LNA methods to com-
pute possible matches for each protein; then select theinmppst supported overall by the alignment
results. A similar approach has been used for functionflotwy detection [6]. Unfortunately, this ap-
proach is somewhat complex, and more importantly, ignaresnsistencies across local alignments so
that the node matches in the final alignment might not evenudteaily consistent. Instead, we propose a

simpler, yet powerful algorithm.

5.1 Problem Formulation

The input to the algorithm consists of two or more PPI netwd@rk, G», . . ., G,. Each edge may have
an associated edge weighte) (0 < w(e) < 1). In addition, other measures of similarity between the
nodes may be available. In this paper, we use BLAST similagiyres, but additional measures (e.qg.,

synteny-based scoring, functional similarity) can be rpooated.

The desired output, given only PPl network data, is the marincommon subgraph (MCS) across
the graphs (i.e., the largest graph that is isomorphic tobgrsyph of each graptyy, ..., Gy) and the
corresponding node-mapping. Even for the simplest casaioivize networks (i.e.k = 2), MCS is
known to be a NP-hard problem [38]. Thus, approximate smhsti especially for the large-sized PPI
networks, are essential. Furthermore, when incorpora@tgience data, the global alignment problem
is no longer a pure MCS problem. To address these issues, wrilide an eigenvalue problem that

approximates the desired objective.

1We note that in some previous works on network alignmenigistenction between “global” and “local” network alignnten
has centered on the relative input sizes for each. Theregtire“global network alignment” is used when the input cetssof
roughly equal-sized networks (e.g., two species-wide ags) while “local network alignment” is used when one inpua
small query network and the other is a large species-widgarkt In both instances, however, the output consists ofipial
local subgraphs (and corresponding local alignments).uh,swe believe that both these instances are best characteis
local network alignments, regardless of input sizes.
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5.2 ISORANK Algorithm

To start with, we consider the simple case of pairwise GNAgHthe input consists of two PPI networks
G, and G, (recall that the nodes of these networks correspond toipg)teEach edge may have an
associated edge weighte) (0 = w(e) = 1).

Furthermore, the input also consists of a similarity measigtween the nodes of the two networks
(here we use BLAST similarity scores). These scores may beeatkfinly for some node-pairs (i.e.,
protein-pairs). The desired output is a mapping betweemdldes of the two networks that maximizes
a convex combination the following objective functions) {ie size of the common graph implied by
the mapping, and (2) the aggregate sequence similaritydegtwodes mapped to each other. Given the
inputs, we construct an eigenvalue problem whose soluéiadd to a mapping between the nodes. From

this mapping, the set of conserved edges can be easily cethput

Our algorithm works in two stages. It first associates a fonet similarity score with each possible
match between nodes of the two networks. Egtbe this score for the protein pdif, j) wherei is from
network G; andj is from networkG,. Given network and sequence data, we construct an eigenvalu
problem and solve it to comput® (the vector of allR;;). The eigenvalue problem explicitly models
the tradeoff between the twin objectives of high networkriamand high sequence similarity between
mapped node-pairs. The second stage constructs the mdppitigg GNA by extracting a set of high-

scoring, mutually consistent matches frdtn

Computing R (setting up the constraints): To computeR;; we pursue the intuition that, j) is a good
match ifi andj’s respective neighbors also match well with each other. éMwecisely, we require the

following equality to hold for all possible pai«s, j):

1
Rij— R i€V, jeV (5.1)
1= 2 2 W@V LIV,

uEN (i) vEN
whereN (a) is the set of neighbors of node | N (a)| is the size of this set; and, andV; are the sets of
nodes in networks/; andG.,, respectively.
These equations require that the scfirefor any match(é, j) be equal to the total support provided
to it by each of the N (i)|| N ()| possible matches between the neighborsasfd;. In return, each match
(u, v) must distribute back its entire scakg, equally among theéV (u)|| N (v)| possible matches between

its neighbors. We note that these equations also capturtonahinfluences o®;;: the scorek;; depends
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Figure 5-1: Cartoon comparing global and local network alignments The local network alignment
betweenz; andG, specifies three different alignments; the mappings for @aehlmarked by a different
kind of line (solid, dashed, dotted). Each alignment déssa small common subgraph. Local alignments
need not be consistent in their mapping— the points markéd ‘Wi each have ambiguous/inconsistent
mappings under different alignments. In global networlgrainent, the maximum common subgraph is
desired and it is required that the mapping for a node be uigarobs. In both cases, there are ‘gap’ nodes
for which no mappings could be predicted (here, the noddsnatincident black edges are such nodes).

0.0312 0.0937

0.1250 0.0625 | 0.0625

0.0937 0.2812

Figure 5-2:Intuition behind the algorithm : Here we show, for a pair of small, isomorphic graphs how
the vector of pairwise scoreg?) is computed. For each possible pairifigj) between nodes of the
two graphs, we compute the scalg;. The scores are constrained to depend on the scores from the
neighborhood as described by Egn./5.1. Only a partial sedmdteaints is shown here. The scofgsare
computed by starting with random values 1@y and using the methods described below to find values that
satisfy these constraints; here we show the veBtoeshaped as a table for ease of viewing (empty cells
indicate a value of zero). The second stage of our algoritbes i to extract likely matches. One strategy
could: choose the highest-scoring pair, output it, reméedorresponding row and column from the
table, and repeat. This strategy will return the correctpivag {(c, ¢’), (b,V'), (a,d’), (d,d’), (e, €')}. The

{d,e} — {d’, €'} mapping is ambiguous; using sequence information, suclicaities can be resolved.
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on the score of neighbors ofandj and the latter, in turn, depend on the neighbors of the neighénd
so on. The extension to the weighted-graph case is intuitive support offered to neighbors is now in

proportion to the edge weights:

w(i, u)w(j, v) . .
Rij = Ry i€V, jEV, (5.2)
’ uez:N(i) UGJZV:(j) ZrEN(U) w(r, u) ZqEN(v) w(Qa U)

Clearly, Egn. 5.1 is a special case of Egn. 5.2 when all the egights are 1. We can rewrite Eqn. 5.1 in

matrix form (Eqn. 5.2 can be similarly rewritten):

R = AR

1 - . .

Al flju, 0] = NN if (i,u) € Fy and(j,v) € Es (5.3)
0 otherwise

where A is a|Vi||Va| x |V1]|Va| matrix and A[é, j][u, v] refers to the entry at the rog, j) and column

(u,v) (the row and column are doubly-indexed).

Another interpretation of the above equations is that theycdbe a random walk on the product
graph ofG; = (V4, E) andG, = (Va, E,). We defineG* = (V*, E*) whereV* =V} x V, and E* =
{((2,9), (u,v)) | (i,u) € Ey, (3,v) € Es}. Also, if G; andG,, are weighted, so iI§*: w( (7, ), (u,v) ) =
w(i, u)w(j,v). We now specify a random walk among the nodes;of from any node we can move to

one of its neighbors, with a probability proportional to #age weight:

w(i, u)w(j,v)
ZTEN(u) w(r, u) ZqEN(v) w(Q? U)

P(sy = (i,7) | s1-1 = (u,v)) = (5.4)

wheres; is the node occupied at timte Eqns! 5.1, 5.2 and 5.3 can now be interpreted as defiRitgbe
the stationary distribution of this random walk (its traims matrix isA). Thus, a highR;; implies that
the nod€(i, j) of G* has a high probability of being occupied in the stationasgriiution.

The vectorR is determined by finding a non-trivial solution to these dmums (a trivial solution is to
set allR;;s to zero). As Eqgn 5/3 indicateB, is the principal eigenvector of.

In Fig/5.2, we illustrate, on a pair of small graphs, how theatipns capture the graph topology; their

solution also confirms our intuition: node pairs that matehl Wwave higher;; scores.

Computing R (solving the constraints): In general, to solve the above equations, we observe thsd the

equations describe an eigenvalue problem (see Egn. 5.3.vdlne of R we are interested in is the
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principal eigenvector ofA. Note thatA is a stochastic matrix (i.e., each of its columns sums to 1) so
that the principal eigenvalue is 1. Also, for numerical digbpurposes we require thdt be normalized,

ie.,

R|; = 1. In the case of biological networks, is typically a very large matrix (about® x 108 for
fly-vs.-yeast GNA); howeverd and R are both very sparse, gdcan be efficiently computed by iterative
techniques. We use thmower methogdan iterative technique often used for large eigenvaluélpros.
The power method repeatedly updafess per the update rule?(k + 1) «— AR(k)/|AR(k)|, where
R(k) is the value of the vectoR in the k-th iteration and has unit norm. In case of a stochastic matri
(like A), the power method will provably converge to the principgleavector; the convergence can be
sped up significantly by a judicious choice of the initialu@R(0). As we describe shortly, a good initial
value R(0) is often available in our case.

The incorporation of other information, e.g. BLAST scores$pithis model is straightforward. Lét;;
denote the score betweénndy; for instance B;; can be the Bit-Score of the BLAST alignment between
sequencesandy. B;;s need not even be numeric— they can be binary.22 e the vector of3;;s. We

first normalizeB: E = B/|B|. The linear system of equations is then modified to

R=aAR+ (1—a)E where 0 <a<1. (5.5)

Eqgn. 5.5 is solved by similar techniques as Eqn| 5.3.

Also, node matches based purely on sequence similarityraag@@roximation to the node mappings
desired; hence, the vectaris a good choice for the initial valug(0) in the power method. We emphasize
that this choice of starting value does not change the filakvaf R— it just speeds up the computation.
We emphasize that in each iteration the vedias used.

In this computationg controls the weight of the network data (relative to seqeeatata), e.g.q = 0
implies no network data will be used, white = 1 indicates only network data will be used. Tuning
allows us to analyze the relative importance of PPI data ghrigppthe optimal alignment. Until now, such
an analysis has been difficult to perform, even for existougl network alignment methods.

Compute R for multiple species: When performing multi-species GNA, the eigenvalue comparat
described above is performed independently for each paietforks. The resulting;; values are con-
catenated into the vectdt. For each node pairs, t), the scoreRy, is present if and only it and¢ are
nodes in different networks. Onéehas been computed, we extract the node mappings from it.

Extracting the mapping from R (Simple Case):Suppose that there are only two networks that need to
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be aligned to each other. Furthermore, suppose we resteciltowed node-mappings to those where,
for each node in a species, there is at most one correspondd®in the other species. The motivation
behind imposing this restriction is to simplify the problevhile still retaining biological relevance. The
at-most-one-correspondence requirement has an intuntegretation: the corresponding nodes are then
the closest functional orthologs of each other in the twaigse

For this special case, there is an intuitive solution. ThetareR can be interpreted as describing a
bipartite graph between the nodes of the two species: an(gdgeexists in this graph if and only if the
scorelz;; > 0. Furthermore, the weight of the edgefis;. The set of allowed mappings as per the restric-
tion described in the previous paragraph then correspanitie tset of possible matchings in this bipartite
graph. Furthermore, our goal is to extract the set of mutuahsistent, pairwise matchés, ¢) such
that the sum of their scords,, is maximized. This is precisely the maximum-weight bigarthatching
problem, a problem with a well-known polynomial time soduiti{ 70]. We compute the maximum-weight
matching in this bipartite graph and output the paired nodeg remaining unpaired nodes are designated
as gap nodes. This algorithm guarantees the set of matchtesatisfy our criterion.

While this algorithm does give good results, in practice wenfibthat the following greedy matching
algorithm sometimes performs even better from a biologieabpective: identify the highest scakg,
and output the pairingp, ¢). Then, remove all score®,. and R., involving p or ¢. We then repeat this
process until the list is empty. In the bipartite graph, gtrategy corresponds to removing, at each step,
the maximum weight edge and the incident nodes.

Extracting the mapping from R (General Case): The more general case is when a node can be
mapped to more than one node in another species. The mapmidgcged here is of the same form as
Clusters of Orthologous Genes (COGSs) [86]: The entire set dés@cross all networks is partitioned,
each partition corresponding to a set of nodes mapped to@aeln Each set may contain zero, one
or many nodes from each species. The intuition here is tleaptbteins in a single set are functional
orthologs of each other, i.e., are evolutionarily relatad perform the same function in their respective
species.

To construct such a partition of genes from the set of scBresmputed in the previous approach, we
design an algorithm that searches for sets of genes suckdbhatset obeys the following requirements:
(1) each gene in the set has high pairwise R scores with mbst genes in the set; (2) there are no
genes outside each set with this property; and, (3) thera lm@ted number of genes from each species.

This limit varies from species to species: more genes froreapiensare allowed in the set than fros
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cerevisiaereflecting the intuition that there is greater gene dugibbcein the former.

Our algorithm computes each set of orthologous proteindémtifying a seed pair of match nodes and
extending it by using a modified greedy algorithm. We firststaict ak-partite graphH from the scores
R. Each of itsk parts contains nodes from one of the input networks. Edgesmy allowed between
nodes from different parts. The presence of an edgenplies that node (from G,) can potentially be

mapped tgj (from Gy), i.e., R;; > 0; the edge-weighk;; indicates the strength of the potential match.

While thek-partite graph// has any edges remaining:

1. Select the edge; with the highest score (lébe fromG, and;j from G5). Initialize a new match-set

with 7 andj as its initial members.

2. In every other speciess, . .., Gy, if a nodel exists such that (i?; and R, are the highest scores
betweenr and any node id-; andG’,, respectively and, (i) the scorés, > 5, R;;, andR;; > 51 R;j,
add it to the set. This set of nodes forms the primary matthitdeas at most one node from each

species.

3. Add uptor — 1 nodes from different parts of the graph to the primary maeth-Suppose (from
G.) is in the primary match-set. Then, a nod€rom ) is added to the set iR, > (2R, for

each nodev(w # u) in the primary set.

4. Remove fron¥ all of the nodes in this match-set and their edges.

Here, the parameters 5, 5, are user-defined)(< f;, 52 < 1); we chose their values such that the

functional coherence (defined in next section) of the ragykets of matched nodes was maximized.

Once a comprehensive alignment has been computed, thesgonaing subgraph in the GNA can
be identified relatively easily. For example,df is aligned toa,, andb, is aligned tob,, the output
subgraph should contain an edge betwéena,) and (b, b,) if and only if both the input networks
contain supporting edges (i.€q;, b1) in G; and(az, by) in G3). When edges also have associated weights,
formalizing the intuition depends on how the edge weightskaaing interpreted; for example, we could
require that the combined weight be higher than a threshottlad the minimum of the two be greater
than a threshold.
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5.3 IsoRank-N: Using Spectral Partitioning

In this section, we discuss an alternative approach to@&xtgaa mapping from the set of scorBsby
posing the problem as a clique-finding task. If the data weigafree and complete, each set of functional
orthologs would be a clique in the gragh (defined above) described by the scofes Furthermore,
finding the optimal mapping would essentially be the maxgheclique identification problem. While
this problem itself is NP-hard, an added complication i¢ tha PPI data is noisy and incomplete. Here,
we need to find near-cliques of large weights. We take a gpaptitioning approach to solving this
problem.

We start with an ordering of the PPI network netwoéks . . . , G, (later, we discuss which orderings
work better than others). Starting with the first network, égery proteinv in the chosen network, we
construct thestar subsetS, of nodes which are connected#awith a large weight, i.e.R,, > ~, for all
u € S,. Intuitively, each such set is the superset of one (or mdigjies in H. We order the sets, in
decreasing order of total weight,,, = 3_, ,cs .. FOr each successive sgt, we compute the subgraph
of H implied by its members and identify a high-weight cliquieslineighborhood in this subgraph. The
nodes in this near-clique correspond to a set of a functioriablogs. We remove these nodes from further
consideration and proceed down the list of subsgtsintil no nodes are left to be matched.

The problem then reduces to identifying high-weight ndgues in the subgraph implied by nodes in
S,. We find an approximate solution for this using spectral apphes. Instead of finding a maximally
weighted clique containing, we find a low-conductance set containingThe conductance®(S), of a
subsetS of a graphH is a measure of the separation betwSeand H \ S (i.e., the subgraph aff formed

by nodes not inS). It is the ratio of the edge-cut that separaterom H \ S) to the maximum edge-

weight in eitherS or H \ S. More formally, &(S) = @@ e, whereo (S) = [{(vs,v,); v, €
S,v, € H\ S} andvol(S) = > ;c5 deg(v;). This measures provides a very natural measure of the extent
to which the nodes i’ are co-clustered, relative to the other node#&/in
Anderson et al. [2] showed that a low-conductance set aunt@i can be computed efficiently via the
personalized PageRank vectonofA personalized PageRank vector (v, v) is the stationary distribution
of the lazy random walk o, in which at every step, with probability, the walk jumps back te and
with probability 1 — v performs a lazy random walk with transition probabilitieegortional to the values
in R (thelazy part means that with probability 0.5, the walk does not movég desired PageRank vector

Pr(~,v) can be found by solving the following equation:
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PT(’% U) =YXov T (1 - ’y)PT(’}/,U)W, (56)

where0 < v < 1, andy,(z) = d,,, is the indicator vector of, W = 1(I + D~'R) is the lazy random
walk transition matrix and is the diagonal of the column sums Bf

While highly efficient, the above “star” method has the lirtida it only contains one node) in S,
from the original networlG;. To address this, we merge the “stars” as follows: given timess$*,, and
Sx,,, Wherevy, v, are in the same PPI netwogk;, we combine the two subgraphs if every neighbooof

in Sx,, IS connected t@, and vice versa. We can now describe the full algorithm

The IsoRankN Algorithm

Givenk PPI networks7,, G, . .., G), and a threshold, IsoRankN proceeds as follows:

1. Using the methods described in the previous section, atertpe score#;; and the corresponding

k-partite graphH

2. For every node in H, compute the staf, = {v; € N(v)|w(v,v;) > fmax; w(v,v;)}, where

N(v) is the neighborhood af in the graphH

3. Pick an arbitrary remaining PPl netwotk and order the proteins € G, by the sum of edge
weights in the induced graph &). Spectrally partitions, to obtainSx,, after excluding proteins

already assigned to clusters.
4. Merge every pair of clusters,, andSx,, inwhichVv; € Sx,, \{v1}, w(vy,v;) > fmax; w(vy, v;)

5. Repeat steps 3 and 4 until all proteins are assigned tot@clus

5.4 Results: Two-Species Case

In this section, we describe the results of two-way glolghathent of theS. cerevisiaandD. melanogaster
PPI networks, the two species with the most available nétwata. We also evaluate the algorithm’s ro-
bustness to error, the sensitivity to the parameteand discuss heuristics for choosing an appropriate

Q.
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The PPI network data for the species was retrieved from the&3RID [83], DIP [92], and HPRD [67]
databases, and the sequence data was retrieved from Efd@inidlhe edges in the PPI networks did not
have associated weights. We applistbRANK to this pair of networks, using it to identify the common
subgraph.

The common subgraph corresponding to the global alignmetmtden the yeast and fly PPI networks
has 1420 edges (where= 0.6). While the amount of overlap might seem relatively $r(fadth the
networks have more than 25000 edges each), it is not surgrigihe is primarily because the currently
available PPI datasets are noisy and incomplete. They an@rkito contain many false-positives. Also,
current PPl data is far from comprehensive; e.g., the fly agtivas no known PPIs for about 6500 proteins
(almost 50% of the genome). As these issues get resolvedxpeeiethe size of the global alignment to
grow substantially. Nevertheless, the current globalhalignt already provides many valuable insights.

Such global alignment of PPI networks provides insightscigify unavailable from local network
alignment (LNA) approaches like Pathblast [54]. The comreobgraph described above has many dis-
connected components, an artifact we believe is relatdtetoadise and completeness issues with the data.
Still, its largest component which has 35 edges (Fig. 5-3)gsificantly larger than any common sub-
graph we could identify using Pathblast. The longest payhika component identified by the latter had 4
nodes, and the largest complex-like component had 16 nédethermore, some of the LNA methods are
limited [54, 58] in that they are well-suited to identifyilogly certain specific topologies (e.g. linear path-
ways or clique-like protein complexes). In contrast, thexponents of the global alignment span various
topologies, from linear pathways (Fig. 5-4(a)) to compdsemrresponding to protein complexes (Fig
5-4(d)). We emphasize that our components were discoveradtaneously— they are just subgraphs of
the larger alignment graph. Many of our discovered comptenare de-factéunctional modulegthough
not in the sense Flanniek al. [33] use the term): they are enriched in proteins involvea $ngle biolog-
ical process and can thus be mapped to specific cellularifurscfe.g., see Fig 5-4(d)). These functions
range from various signaling cascades (Fig. 5-4(b)) to cellelar functions like ribosomal synthesis and
function (Fig.| 5-4(c)), DNA transcription and translatjarell division etc. The preponderance of core
cellular functions in the conserved subgraph is not toorsing— it is exactly these mechanisms that are
likely to be highly conserved across species.

The global alignment may be used to predict protein functleor example, Fig 5-4(d) shows a sub-
graph of the global alignment, most of the proteins in whiahiavolved in SCF ubiquitin ligase activity.
Hence, we predict the function of two hitherto-unannotdiggroteins CG7148 and CG13213 as being
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Figure 5-3:Largest connected component of the yeast-fly Global Network lignment: The node labels
indicate the corresponding “yeast/fly” proteins (the twpagated by a “/”). The proteins in this graph span
a variety of functions: metabolic, signaling, transcioptietc. For a discussion of this subgraph’s size, see

text.
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(a) Pathwa (b) Kinases (c) Ribosome Complex (d) Ubiquitin Ligase

Figure 5-4:Selected subgraphs of the yeast-fly GNAFhe node labels indicate the corresponding “yeast-
/fly” proteins (the two separated by a “/”). The subgraphsnspavariety of topologies and are often
enriched in specific functions (c) and (d). In (d), the nodaswihich at least one of the corresponding
proteins is known to be involved in ubiquitin ligase actvére shaded.

involved in ubiquitin protein ligase activity. In support this, we note that the FlyBase database [20]
indicates that the involvement of these proteins in ubiguigase activity has been postulated before in
the literature. Of course, more sophisticated methodsatsfer annotation may perform even better at

elucidating function of such proteins [68].

Evaluating the algorithm’s error tolerance: Our simulations indicate that the algorithm is tolerant to
error in the input (Fig 5.4); this is valuable since PPI nekgdave high false positive and false negative
rates. To evaluate the algorithm’s error-tolerance, wedxtracted a 200-node subgraph of the yeast PPI
network. We then randomized a fractipof its edges using the Maslov-Sneppen trick that preservds n
degrees [65]: we randomly choose two edges) and (¢, d), remove them, and introduce new edges
(a,d) and(c, b). We then computed a GNA between these two graphs,withl anda = 1 — 107%. For
each choice op, we created 5 such randomized graphs and computed the aveaaton of nodes that
are mapped to themselves in the original graph after a GNA.

Usinga = 1 results in a significant underestimate because there aanualtiple possible isomorphism-
preserving mappings between two isomorphic graphs (&g Fig 5.2) and our algorithm— even if work-
ing correctly— might choose a mapping that does not presarde labels. Adding a very small amount
of sequence informatiom(= 1 — 10~°) helps avoid this, but also results in a slight overestimate
believe the true curve (for Fig 5.4) is closer to the top cuhan the bottom one. Clearly, the algorithm

makes very few mistakes when the error ratis low and even for fairly high error rates (20-50%), its
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Figure 5-5:Impact of « on the size of the alignment graph.

performance degrades smoothly and very slowly. When comgukie yeast-fly GNA, we assigned a
significant weight to sequence informatiom = 0.6).

Evaluating the influence ofa: As « increases, so does the importance of network data in thenadéigt
process, for both the greedy strategy and the maximum weighttite matching strategy (Fig 5.4). In
line with our expectations, the size of the common subgraggredds on this parametet: = 0 results

in a graph with 266 edges, white = 0.9 results in 1544 edges (for the greedy strategy). Intrigying
asa gets very close to 1, the common graph’s siilsereases We believe that this discrepancy is an
artifact of the current PPI data sets being noisy and cogeha interactome only partially, resulting in a
relatively small overlap between the yeast and fly PPI ndistoConsequently, in absence of any other
information a random mapping of nodes between the two nésumight satisfy Eqn.5!1 better than the
one corresponding to the “true” alignment. The use of secgdaased scores helps mitigate this, by
directing the algorithm towards the true alignment.

When choosing the most appropriate value of the free paramgetee rejected the choice correspond-
ing to the largest common subgraph size— the input netwarkshaisy and conserved edges may be
simply due to noise; thus, theleading to the largest-size subgraph may not be a bioldgiappropriate
choice. Instead, for each choice ®f we compared the resulting node mappings to sequence-based

tholog predictions from the Inparanoid database [77] arasetihex (= 0.6) that resulted in the greatest
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Figure 5-6: Effect of PPI errors on the algorithm’s performance We believe the solid (red) curve

slightly overestimates the algorithm’s performance, witile dashed (blue) curve grossly underestimates
it (see text).

overlap with these. While this approach is conservative aightmundervalue the network component

during the alignment, it also lowers the adverse impact cfenm the PPI data.

The differences between the node pairings found by our itgerand those from Inparanoid broadly
fall into two categories: (1) those corresponding to |Byy values indicating low confidence of our ap-
proach in that mapping, and (2) functional orthologs whieeuse of network data genuinely changes the

node mapping. We discuss the latter in more detail laterignsiction.

Comparing global and local alignment results: Our global alignment results compare favorably to the
those of NetworkBlast [1] (an implementation of PathBlast) aequence-only approaches. We compared
the aggregate set of local alignments from NetworkBlast withglobal alignment. Each local alignment
defines one-to-one matches between some yeast and fly groddany of the matches from our global
alignment are seen in these local alignments: of the 701hwdtprotein-pairs in the former that consist
of proteins seen in at least one local alignment, 83% (582 @pairs are also observed in one or more
local alignments. However, there are many overlappingl laibignments, resulting in ambiguity and in-

consistency: averaged across the entire set of local akgtsna yeast protein is aligned to 5.36 different
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fly proteins. Sometimes, such ambiguity may be biologicaianingful, e.g., in instances of gene du-
plication. However, the degree of ambiguity in some of ththBlast results is clearly implausible. For
example, the yeast protein SNF1, a Serine-Threonine Ki(88K), is matched to 71 different fly pro-
teins. In fact, PathBlast results for many of the yeast STksvary ambiguous— over the set of 72 yeast
proteins annotated as STKs, the average number of matckipgpteins per yeast STK is 29.3. STKs are
part of many important signaling pathways, e.g, the MAPKKId AKT cascades. Sequence-only ap-
proaches. (e.g. Inparanoid) too have performed poorlycdrtsning the correspondence between yeast
and fly STKs: Inparanoid does not predict any fly orthologssi®iof the 72 yeast STKs. Thus the use of
GNA to resolve this ambiguity in correspondence is paréidylvaluable.

GNA and functional orthologs: In analogy with sequence-based comparative genomicsote({b5],

we apply BORANK to the detection of functional orthologs (i.e., sets of g that perform the same
function in two or more species) by exploiting the strongroection between these two problems: proteins
that are aligned together in the global alignment shoule lsawilar interaction patterns in their respective
species and are thus likely to be functional orthologs. &hess been a lot of recent interest in the discovery
of functional orthologs (FO). In particular, Bandyopadhgayl. [6] took a fairly complex approach to FO
detection between yeast and fly through local network aligmniLNA): first, possible FOs for a protein
are short-listed using a sequence-only approach; themg asprobabilistic technique (based on Markov
Random Fields) and the results of a LNA of the yeast and fly ndtsv(performed using PathBlast), the
probability of each short-listed pair of proteins beingetikOs is computed.

The results of §ORANK compare favorably with Bandyopadhyayal’s. Our method has the advan-
tage that it guarantees the predicted sets of FOs will be atiytconsistent and achieves higher genome
coverage— PathBlast's yeast-vs.-fly local alignments covdy 20.56% of the genes covered by our
global alignment. In many cases the FO predictions betweetvio methods are partially or fully con-
sistent (see Table 1), i.e, FOs predicted by our method acethé likely FOs predicted by their method.
Furthermore, their method often proposes multiple FOs footein, and our method resolves the ambigu-
ity in their results. In a few other cases, predictions oftthe methods differ. At least in some such cases,
our method’s predictions are better supported by evidelRoeexample, our method predidasc (in fly)
as the FO oEgd (in yeast). Bandyopadhyast al's method is ambiguous here Bsd its predicted FO
of Egd is also predicted as a FO Bttl. Furthermore, there is experimental evidence that Egfthand
Bic are components of the Nascent Polypeptide-Associated @niIAC) in their respective species,

lending support to our prediction; in contraBt;ddoes not seem to be involved in NAC.
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Protein Predicted Related Predictions Remarks

(species) Functional | from
Ortholog (Bandyopadhyay et al.)
by Our

Method Yeast/Fly pair Prob.
Gid8 (yeast) | CG6617 Gid8/CG6617 76.51% | Our predictions consistent
Gid8/CG18467 - with Bandyopadhyay et al.
Tpm2 (yeast) | Tm1 Tpm2/Tm1l - Consistent predictions.
Tpm1l (yeast) | Tm2 Tpm1/Tm2 43.98% | Consistent predictions.
Gpal (yeast) | G-oad7a Gpal/G-@47a | 41.53% | Consistent predictions.
Gpal/G-iabba -
Rpl12 (fly) Rpll12a Rpll2a/Rpl12 48.39% | Consistent predictions.

Rpl12b/Rpl12 -

Btt1 (yeast) CG11835 | Btt1/CG11835 70.5% | Consistent predictions.
Btt1/Bcd 40.86%

CG18617 (fly)| Vphl Vph1/CG18617 | 43.53% | Consistent predictions.
Stv1l/CG18617 | 38.44%

Kapl104 (fly) | Trn Kapl104/Trn 40.64% | Partially consistent
Kapl104/CG8219 46.78% | predictions®

Actl (yeast) | Act5c Actl/Act5c 39.56% | Partially consistent

Actl/Act42a 39.24% | predictions®
Actl/Act87e 43.53%

Actl1/Act88f 40.17%
Act/CG10067 38.20%
Kel2 (yeast) | CG12081 | Kel2/CG12081 - Partially consistent
Kell/CG12081 | 45.41%/| predictions’
Cmd1 (yeast) | Cam Cmd1/Cam 35.90% | Partially consistent
Cmd1/And 44.39% | predictions’
Hsc70-4 (fly) | Ssa3 Hsc70-4/Ssa3 - Partially consistent

predictions

Table 5.1:Interpreting two-way global alignment results as functioral orthologs (FOs) Comparison
of our results with Bandyopadhyagt al.s results [6]. Our method is often consistent with theirutes
and, moreover, often resolves the ambiguity in their prtestis. ! Our predicted FO for the protein matches
Bandyopadhyagt al’s predicted FO, or the most likely FO if their method predatmultiple FOSOur
predicted FO for the protein is one of the likely FOs predidiy Bandyopadhyagt al. (but not the most
likely one).
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IsoRankN| IsoRank| Graemlinx [33] | Graemlink [33] | NetworkBlast [1]
Mean entropy 0.274 0.685 0.857 0.552 0.907
Mean normalized entrop 0.179 0.359 0.451 0.357 0.554
Exact cluster ratio 0.380| 0.253 0.306 0.355 0.291

Table 5.2:Consistency of IsoRank & IsoRankN’s multi-species prediagbns. IsoRankN and IsoRank
have lower (i.e. better) GO entropy scores than the otheroappes. IsoRankN also produces more
ortholog-sets where all the genes have exactly the same @G@Qadion. The two instances of Graemlin
above refer to the different training set sizes for the atgor.

5.5 Results: Multi-Species Case

We performed a global alignment of PPI networks from 5 eutcyspecies: fly, yeast, worm, mouse and
human. From this alignment, we inferred functional ortlgsidetween the various species. To evaluate
these results, we looked at the coverage and consisteney oésults. Herecoveragerefers to the set of
genes for which orthology relationships could be inferr8dme network alignment methods may have
low coverage, especially if they rely on the availabilityfahctional annotation to infer the alignment.
ISORANK and IsoRankN have significantly better coverage than Graejd8]. We measure this by
counting the number of genes successfully matched to dtdeaggene in another species and the number
of unique clusters (ortholog-sets) produced. In totalREok produces 12848 clusters covering 48978
genes; in contrast, Graemlin produces 4306 clusters cay@0903 genes. The difference is starker for
clusters with genes from more than two species. When comsgdelusters that have genes from all five
species, IsoRankN produces 2056 clusters 12715 genes wiaitar®n produces 58 clusters with 1467
genes.

We also measure the consistency of the functional orthotedigtions. HereConsistencyf the re-
sults refers to whether the functional orthologs predicetiave the same function across various species.

To quantify this notion, we introduce a way to measure thetional coherence of orthology predictions:

d
H(S) = H(p1,p2,...) = — > _pilogp;

=1

(5.7)

Here, H(S) measures the entropy in the distribution of GO terms for génehe setS. Intuitively,
lower H(S) implies that more genes in the set share the same GO termshasd,the consistency is
higher. As shown in Tab. 5.2, IsoRank and IsoRankN achievefigigntly better consistency than other

multi-species network alignment algorithms.
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5.6 Conclusion

In this section, we focus on the global network alignmenbjem, and describe an intuitive yet powerful
algorithm for computing the global alignment of two PPI netiss; in contrast, much of the previous
work has been focused on the local alignment problem. Owridthgn, ISORANK, simultaneously uses
network and sequence information and is tolerant of noiskannputs; furthermore, it is easy to control
the relative weights of the network and sequence informaitiothe alignment. We usesbRANK to
compute a global alignment of tt& cerevisia@ndD. melanogastePPI networks. The results provide
valuable insights about the conserved functional comptsriatween the two species. They also allow us
to predict functional orthologs between the fly and yeastghality of our predictions compare favorably
with previous work.

Our algorithm is similar— in spirit— to Google’s PageRankalthm, which ranks web-pages in
the order of their “authoritativeness”. The intuition bedhithe two algorithms has a similar flavor: in
PageRank, a page has a high score if many pages with high dotde it. The intuitions are also
formalized similarly— by constructing an eigenvalue pewb! Our actual algorithm is quite distinct from
PageRank: in our case the input is a pair of undirected, weigbtaphs and the output is an alignment;
PageRank’s input is a directed, unweighted graph (wheredtdesindicate web-pages and directed edges,

hypertext links), and it outputs node rankings.
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Chapter 6

Influence Flow: Integration of PPl and RNAI

Data

Signaling networks are some of the most interesting, chgifgy, and medically-relevant parts of the
larger cellular system. A signaling network is a cellulabsystem that captures the pattern and sequence
of interactions through which the cell receives an extilatal signal (typically, a small molecule) at its
membrane, recognizes it, and initiates a sequence of prioteractions inside the cell, the final impact of
these being to modulate the activity and expression of & Isetjof genes and proteins. These changes are
manifested as a cell-level response to the received si§6abB]. From a medical perspective, signaling
networks play a disproportionately important role in marngedses. Because of their role as cellular
“switches”, malfunctions in these lead to significant anbesain cell behavior. Such malfunctions have
been directly linked to many of the cancgrdiabetes, and many genetic diseases [74, 29, 44]. Various
signaling networks have been studied and their core conmierfand sequence of interactions) seem to
be conserved across eukaryotes. Examples of such sigmaingrks include: the MAP Kinase network
[17], the Wnt network [22] , the JAK-STAT network [72] etc. Thesponses brought about by the signaling
mechanism are of varied types: cell growth, proliferatioe. (cell division), differentiation (e.g. from a
stem cell to a muscle cell), and even apoptosis (cell de&tl@arly, understanding signaling networks is

of crucial biological and medical importance.

Structurally, a signaling network can be represented asextdd network: each node corresponds

to a protein/gene and each interaction is indicated by atideedge. The edge’s direction indicates

10ften, the cancerous cell fails to respond to extracelkitgmals asking it to stop proliferating
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the direction of signal-flow. Furthermore, many of the edgey be annotated to indicate whether the
interaction results in activation or repression of the dstngam node. The interactions within a signaling
network may be of various types: phosphorylation, dephosgétion, transient interaction, complex
formation, and possibly, protein-DNA interactions. Theusture of signaling networks enables a great
amount of flexibility when transmitting the signal: they camplify the received signal, attenuate it,
distribute it to multiple recipients, integrate multipligsals etc. [73]

In this chapter, we propose a computational technique whaterates hypotheses about a specific
signaling network’s structure. We combine PPI network$iiRiNAI data specific to a particular signaling
subsystem to produce hypotheses about the structure afithaystem. The RNAI data is generated from
a functional genomic screen of a specific signaling pathwidyese screens work as follows: a known
end-effector gene of the pathway is chosen as the repomer (@eg. Erk in the MAPK pathway). Every
other gene in the genome is systematically knocked-dowmguRNAI and the effect on the reporter is
measured. The experiment produces a list of genés) (hat significantly influence the reporter and, for
each hit, a score indicating the relative strength of itsugrfice [35]. The second input to our method is
genome-wide PPI data (protein-DNA interactions can alsm&eded).

Our algorithm is based on the Occam’s Razor principle. Gieninputs, we search for the simplest
arrangement of nodes in a directed graph, such that (1) tthesnmorrespond to proteins, (2) the directed
edges correspond to hypothesized interactions, and (gydpé’s topology is consistent with the input PPI
and RNAI data and with the known biology of the chosen sigiggedinbsystem. We do this by borrowing
ideas from the multicommodity flow literature to construdingar program whose solution corresponds
to our desired graph. This graph can then be interpreted aflexction of high-confidence hypotheses
about the topology of the signaling subsystem.

Our work is motivated by the urgent need for computationathimggues to supplement experimental
methods of discovering signaling topology. This need stieoma an appreciation that signaling networks
are significantly more complex than previously thought, tirad a very large set of hypotheses regarding
their structure still need to be tested [71, 36]. The cladsinderstanding of signaling networks was that a
typical network is essentially a linear pathway with lessti0 component, and with very few connections
between different signaling subsystems. More recentlyever, experiments like synthetic lethality,
genetic interactions and RNA interference (RNAI) have dertrated that the number of genes/proteins
that influence a signaling subsystem is much larger. Furtbe, they suggest that the most common

topology of such subsystems is a general network and notearlipathway. Also, there seems to be
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significant cross-talk between the various signaling néta/¢25]. Clearly, much of the topology of
signaling networks remain to be discovered. Unfortunatehjle these experimental techniques provide
somenformation about the signaling networks’ structure, acléeep understanding of this structure can
only be achieved by validating specific interactions by mgsin-vivo andin-vitro experiments, which
can be time-consuming. Hence, there is a need for compn#tinethods to identify high-likelihood
hypotheses which can be tested first.

Despite its importance, the computation discovery andiptied of signaling networks has remained
a challenging problem. One key reason for its difficulty is ldck of appropriate high-quality data. Yeang
et al. attempted to predict signaling networks starting from fmshciples, by combining PPI, protein-
DNA and gene knockout data [95, 96]. Their method is very &igated and demonstrated significant
promise; however, quality and coverage issues with thelgmaiid its biological usefulness. In another
approach, Sachet al. used high-quality single-cell data specifically generdtedheir analysis [78]. In
their experiment, a limited set (at most 12) of proteins wagged and their phosphorylation levels were
measured under different conditions, at a single-celllutism. Using a Bayesian approach, Saehsil.
were able to construct a signaling network of the selecteteprs; their predicted network had striking
agreements with the biologically-determined structurewklver, the experiment they relied is difficult to
extend to simultaneously measure more than a dozen or sanspthis limits their method'’s effectiveness
in discovering realistic networks, which are much larger.

The method we propose deviates significantly from previgge@aches. One of our contributions
is the reformulation of the problem by invoking the Occam’s&aprinciple: our goal is the simplest
explanation of the experimental data that is also condistgh the known biology of the signaling system.
Surprisingly, this parsimony-based approach producestsabat are quite plausible. We believe that this
observation — that the Occam’s Razor principle is useful idewstanding signaling networks — is itself
of significant importance. Another of our contributionshsg explicit use of the current knowledge of the
signaling network’s structure to guide our search; in aastirmuch of previous work has followed ah
initio approach. We observe that using the currently availabtenmétion to guide the search significantly
improves the quality of the results. Also, our method worlss dignaling networks of arbitrary sizes.
It is also the first approach to combine RNAI data with PPI datadiscovering signaling networks.
From a computational perspective, one of our contributisran information-flow based interpretation
of signaling networks that allows us to make use of netwonk #dgorithms from the theoretical graph

analysis literature.
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6.1 Problem Formulation

The input to the problem consists of:

1. The currently known topology of the chosen signaling getesn, i.e., a directed grapt, consist-
ing of nodes corresponding to known components of the sigmalubsystem and directed edges
corresponding to the known interactions. The most dowastreode inN, should correspond to

the end-effector gen€ of the subsystem. We refer g, as thecore cascade

2. A PPI networkG. If confidence scores are available for the interaction®@RPI data, the edges

may be weighted, i.e(, < w(e) < 1 wheree is an edge irG.

To address the issues of poor coverage and quality in clyravdilable PPI data, we combine PPI
data from multiple species to construct our network. Thislemation is done using the mappings
determined by $0RANK (§5), our algorithm for PPl network alignment. Furthermores use

computational methods to predict PPIs from functional geicalata like gene co-expression, and

by using a structure-based approach (Struct2§Bat,

3. Asetof RNAI hitsR = {r;} and the corresponding scorgs= {s;}. The reporter gene of the RNAI

experiment should be the same as the end-effector fjariehe chosen signaling subsystem.

Given these inputs, our goal is to produce a directed grdphsuch that each node corresponds to
a predicted (or known) component of the signaling networét each directed edge corresponds to an
interaction. We requiréV* to be consistent with the input data; in particular, we regtihe following

constraints to be satisfied:
Al All the nodes inN* are present as RNAI hits (i.e. iR)

A2 Each edge inV* is directed. Also, each directed arc— b in N* is either inN, or corresponds to

an (undirected) edge— b in G
A3 Every node inV* has a directed path to the target ganel’ is thus the most downstream node in
N*

A4 Nodes closer td” should have higher RNAI scores. In particularNif has an ara — b wherea
andb are not part ofN,, thens, < s,. To allow for noise in RNAI scores, this inequality may be

relaxed somewhat.
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In the set of possible graphs that satisfy the above consdraur desired outpuY™ is optimal under

a weighted combination of the following objectives:
1. Maximize the number of nodes i¥*, i.e., try to explain as much of the data as possible.

2. Minimize the number of edges iW*. Essentially, this is the parsimony requirement— the trani

here is that a sparse graph is a simpler explanation thanssdgraph.

3. Maximize the agreement with known biological facts altet signaling subsystem. One of the
key strengths of our proposed approach is its ability to fdime such biological knowledge as
constraints on the structure df*. For example, the method can require that the structuré& gfive
higher importance to RNAI hits that re-occur across vari@ldioes; encourage that for most genes
X, its influence on the end-effect@rbe transmitted via a core-cascade of known components; and

require that the topology a¥* be consistent with known epistasis data etc.

6.2 Brief Description of the Algorithm

Our algorithm works in two stages. In the first stage, we aocsia directed graph which is consistent
with the core cascad®, the input RNAi and PPI data and h&s(the end-effector gene) as its most
downstream node. In the second stage, we prune redundaes &agn this graph, the goal being to

find the sparsest graph — ideally, a directed tree — that expthe data and is also consistent with the
available biological knowledge about the signaling syst&de do this by constructing an integer linear

program, relaxing it to a linear program and solving it.

Stage 1:We start by extracting the subgraph of PPI network composgdad RNAI hits. If a RNAI hit

is not present in the PPI network, our method will not inclitde the final outputV*. We also add in the
nodes and edges from the core cascagleWe then impose directionality on the edges of this graph

If a nodeX is a RNAI hit, we say that it influences the end-effectoWe argue that the output graph
should be such that influence flows along its edges, i.e.,dge direction should be in accordance with
the pattern of influence flogv.ln particular, we impose directionality ai; as follows. For each edge

—bin Gy.

2Because our base network is a PPI network, our assumptidiesrtpat influence will be transmitted by protein interac-
tions. However, other kinds of influence mechanisms can deded by adding in an appropriate set of edges, if the rateva
data is available.
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e if a andb are both not in the core cascadg, then if|s, — s,| > € then the edge direction is from
btoa. If |s, — sp| < ethen the edge is bi-directed (i.e., its direction can notdbalbly inferred in
the first stage). Ideally, should be 0; however, to allow for noise in the RNAI scores, @ate $0 a

small positive value.
e if aisinthe core cascad¥, but notb, the edge direction is fromto a.

e if o andb are both in the core cascadg, the edge direction is the same as that specified in the core

cascadéV.

The above heuristics encode the following assumptionsbétyween nodes not in the core cascade, the
influence flows from nodes with lower influence (i.e. RNAIi sQadi@ those with higher influence; (2)
influence flow within the core cascadg exactly matches the currently accepted understandingeof th
core cascade’s structure; and (3) influence does notdlavef the core cascade. We believe that these
assumptions represent a good trade-off, i.e, they aregsnaugh to constrain the possible search space
yet flexible enough to allow most of the biologically plausiscenarios.

Given this directed grapfy,, we remove all its nodes (and incident edges) from whichectid path
to 7" does not exist. Since our algorithm can not find for such nedeath of influence flow td@’, it does

not include them in the final graph™.

Stage 2:After Stage 1, we have a grajly that explains as much of the RNAi and PPI data as possible,
under certain assumptions. We now search for the most pamgans explanation by pruning redundant
edges fronG,. Our goal is a directed spanning tréé of Gi,. Intuitively, such a tree is the sparsest graph
that still explains all the data théf, explains. However, there are many possible spanning tfe@s and
we want the one which (1) gives primary importance to the caseade, and (2) is the most consistent with
other available biological information. Using ideas fromltitommodity flow literature, we formulate an
integer linear program (ILP) whose feasible space is thefsait possible directed spanning trees(of.
We then tailor the objective function so that the optimaugioh will correspond to the optimal tree under
the above-mentioned goals. We relax this ILP to a linear ianog(LP) and solve it. Because of the
relaxation and the presence of some bi-directed edgés iour output graphV* is not always a tree;
however, it is almost always very similar to a tree.

We briefly describe some parts of the ILP we construct to fifid We start by creating an ILP whose

feasible space consists of the spanning tre€s,0fThis is done by constructing the following variant of a
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classical multi-commodity flow problem (based on Magnant &olsey [64]):

MC1 For each nod& (# T'), require that there be one unit of flow of typdrom X to 7.

MC2 Each edge has a capacity of one unit for each type of floweiifit types of flow can go together
along the edge, as long as each is below one unit (this difiemsa classical multi-commodity flow
setup). For a uni-directional edge, the flow can only be atbiegedge’s direction. For a bi-directed

edge, the flow can be along either direction.

MC3 Denote an edge as “on” if there is a non-zero flow of any typageither direction of the edge.

Require that exactly — 1 edges be “on”, where is the number of nodes ifi.

Condition MC1 ensures that the feasible space consists ohgnapere each nod& has a directed
path to7T". Conditions MC2 and MC3 restrict this to the set of graphs withctly n — 1 edges. Together,
they imply that the feasible space will consist of trees (@eazted graph with nodes and — 1 edges is

always a tree). Formally, we write these constraints asqdam ILP:

SNt — Y ff=1forallke Vg, k£T (6.1)
ecd—(T) e€d+(T)

S>ooff — N fEF=o0forallve Vg, v#T,v#k andallk (6.2)
e€éd—(v) e€dT (v)

SNoff = Y ff=-1forallk#T (6.3)
ecéd— (k) ecdt (k)

L <y foreveryardi,j) andallk # T (6.4)

> ye = n—1 (6.5)

eEEG2
f =0 (6.6)
ye € {0,1} forallarcse € Eg, (6.7)

Here,V, and E, are the set of nodes and set of edges&/@frespectivelyn = |Vg,|; d~(z) is the
set of edges coming into nodeandd™ (z) is the set of edges going out of

One biological conjecture that has received significanpetipis that the components of the core
cascade are the main signal integrators in the signalingystdm, i.e., the core cascade is the central
trunk where signal from the peripheral nodes is integra@8j B5]. This conjecture is supported by

the observation that, across various conditions, the caseatle components consistently turn out to be
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among the strongest influencers of the end-efféftde encode this intuition by requiring the following
structure in the output: given a nodewith two paths tdl’ such that one passes through the core cascade
and the other does not, we prefer a tree that contains theeforfhis requirement can be elegantly

incorporated into our flow-based formulation:

maximize d.,

subject to these additional constraints:

wo= oy, > I (6.8)

kEVey kAT e€d(z)

z* = Y z forallr € Vi, suchthalr,T) € Eg, (6.9)
2=z, > d, forallx € Vg,,x 5 Vy, (6.10)
(6.11)

whereVy, is the set of nodes in the core cascade. Here, we first comipait®tal flowz, coming into
a noder. By our previous construction, this is exactly the numberathp that go through. We then
computez*, the total number of paths 6 via any of the core cascade nodes, and maximize the differenc
between it and the flow, through any non-core node.

Similarly, we can add more constraints and terms to the titagefuinction to encode more biological
information. For example, if epistatis data is availabld ardicates that a nodeis upstream of a nodg
we could encode a preference for solutions where the path.frto 7" goes viay. Many other biological

constraints can also be expressed.

6.3 Results: Exploring the MAPK Cascade

We describe here a simple test case for the algorithm. Thsti@ants imposed on the structure &f
are quite simple and biologically intuitive; yet, the infed influence flow network contains surprisingly
plausible hypotheses.

As a first test, we supplied only a part of the known MAPK casc@u fly) to the method and tested

what its predictions were about the remaining core cascadesa The core MAPK cascadelsk —
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Sos— Ras85D— Raf— Dsorl — Erk. For test purposes, we specified to our method only a trudcate
cascade consisting &af, DsorlandErk (see Fig 6-1). Our method was able to retrieve all the remgini
core nodeslrk, Sos, Ras85Pp FurthermoreRas85DandSoswere two of the three nodes with the most
flow in our Linear Program'’s solution (in our method, this gty is a proxy for the node’s importance in
the solution). Fig 6-2 shows the output when the entire ¢assespecified.

Next, we supplied the entire core cascade as part of thegoblput and looked at nodes that were
shown to have high flow going through them. One of thede i8_3(. This protein has been documented
to help differentially regulate the MAPK pathway [41]. Aher node highlighted by our analysisigyb.

It has been postulated to be involved in pathways that régokll size and cell cycle progression [13].

6.4 Future Work

We have described a parsimony-based method for producipgtingses about a specific signaling net-
work’s topology by combining PPI and RNAI data and making gumlis use of available biological data.
We construct a linear program whose solution correspondsdparse directed graph that is consistent
with the available data as well as the current understanmafitige signaling network’s structure.

One of the key contributions of our method is a flow-based agatwnal formulation that mirrors
the biological intuition of information flow in a signalingetwork. It captures, in a very natural way,
much of biological knowledge and conjectures regardingrieehanism of influence transmission within
such networks. Also, we have obtained some success in ag@yparsimony-based approach to network

discovery. This suggests that other parsimony-based appes may also be attempted.
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Figure 6-1:Part of the output graph when a truncated cascade is suppliedWe show here a part of the
output graphV* when a truncated MAPK cascade is specified to the algorithine actual MAPK core
cascade in fly iDrk — Sos— Ras— Phl — Dsorl — Erk (Rl andErk refer to the same gene). When
specified only a part of this cascade (blue nodes), the &tgonrvas able to retrieve the remaining nodes,
along with the correct set of connections. Furthermoredtr& green color of these nodes indicates that
they have highe, values (Eqn 6.8), i.e., a lot of paths Evk go through them. This suggests that our
algorithm assigned higher importance to them.
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Figure 6-2: Output graph generated for positive regulators of the MAPK signaling network: We
show here the output grapki* corresponding to positive regulators (as identified by RNégieziments
[35]) of the MAPK signaling subsystem. The blue nodes aretmeponents of the known MAPK cascade;
the bottom-most node Rl (i.e., Erk), the end-effector of the subsystem. For other nodes, dadters
indicate higher:, values (Egn 6.8) and imply that a lot of pathsBrk are routed through that node; we
interpreted this as a proxy of the node’s importance in theok.
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Chapter 7

Conclusion

In this thesis, we have discussed various algorithms foattadysis of PPI data. While these algorithms
have been presented separately in the preceding chapieysyere designed to inter-operate with each
other as part of an overall system. In this chapter, we dsshosv they fit together and what future work

is needed to produce a coherent system of PPl data acquiaittbanalysis.

7.1 Towards a System of PPl Data Acquisition and Analysis

Like most biological datasets, the “lifecycle” of PPl datansists of three parts: data collection, data
cleanup and data analysis (Fig 7-1). Computational teclesigan be a part of any of these stages.

Computational techniques for PPI data acquisition can bé tesenable an experimental protocol or
increase its efficacy; for example, Bandegtaal. have described computational approachegsitonovo
peptide sequencing by mass-spectrometry when perforngrignmunoprecipitation assays [5]. Alter-
natively, computational approaches can be used to predietl iPPls. In Chap. |3 we describe such an
approach, where we predict PPIs using structure-baseghissalong with other functional genomic data.
The predictions of purely computational methods can be e#éér to direct biological assays or com-
bined with experimental PPI data to increase coverage. dh#imation process may involve an error
model to express our relative confidence in the various Pirtss.

Given PPIs from various sources, a computational error incale be very useful in combining the
datasets and distinguishing between PPIs with varyingdesebiological plausibility. Sometimes the

data acquisition and error-modeling steps may be combiRed.example, with some biological assays
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Data Error

Acquisition Modeling | > | Analysis

PPI Prediction Y2H Error Model PPI Network Alignment
ColP Mass-spec ColP Error Model* Functional Ortholog Prediction
Analysis* Graph-theoretic Error Signaling Network Inference
Model*

Figure 7-1:A System for Analyzing PPI Data: We describe the three main stages in PPl data analysis
where computational techniques may be involved. Below eagesre listed key computational analyses
relevant to that stage. Most of these analyses have beenlsbimn the preceding chapters of this thesis;
the ones marked with an asterisk are candidates for futurke.wo

for discovering PPIs, one can get information about howroftegiven PPI appeared in repeated trials,
providing a direct quantitative measure [48]. Our work in @hé describes another approach to identify-
ing errors in experimental data, by creating a Bayesian enaatel for data from Yeast 2-Hybrid assays.

A similar model can be designed for co-immunoprecipitatiata. Finally, one can combine these piece-
wise error models into a more comprehensive model. For elartife STRING database [84] combines

experimental and computational PPI data into a single dgtasing machine learning approaches. A key
challenge in this sub-domain is the need for a good “goldésed” set of positive and negative examples

of PPIs, which can be used to train such models.

Once a well-cleaned PPI dataset is available, one can usputational analysis of PPl data to gain
biological insights. Such analyses may span a wide vari€here are analyses that look only the PPI
data and, by graph-theoretic analysis of the PPI netwoik,igaights into the cellular system [52]. More
commonly, PPI data is combined with other biological dataf® integrative analysis. In this thesis, we
have described two such analyses. In Chap. 5 we describedanittain that combines PPl and sequence
data for comparative genomics of PPI networks. As a resuttefnalysis, we are able to infer functional
orthologs, which better capture gene correspondencessaspecies. In Chap. 6, we describe an analysis
where we combine PPI data with RNA-interference data to bettderstand signaling networks. Various
other analyses have also been described: predicting eumasing PPI networks and GO terms [68],

integrating PPI and expression data [42] and so on.

In Fig 7-1, we depict the data-lifecycle of PPI data and soraemples of computational methods that

might be involved in each stage. Many of the listed exampbegespond to algorithms described in this
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thesis. We have marked the remaining methods with astettsése would be good candidates for future
work. Together, these methods can be part of a PPl-analysisrs that can be used by a researcher for

data acquisition, error-modeling, and, finally, analytics
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