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Abstract

Language comprehension in humans is significantly constrained by memory, yet
rapid, highly incremental, and capable of utilizing a wide range of contextual
information to resolve ambiguity and form expectations about future input. In
contrast, most of the leading psycholinguistic models and fielded algorithms for
natural language parsing are non-incremental, have run time superlinear in input
length, and/or enforce structural locality constraints onprobabilistic dependencies
between events. We present a new limited-memory model of sentence comprehen-
sion which involves an adaptation of the particle filter, a sequential Monte Carlo
method, to the problem of incremental parsing. We show that this model can
reproduce classic results in online sentence comprehension, and that it naturally
provides the first rational account of an outstanding problem in psycholinguistics,
in which the preferred alternative in a syntactic ambiguityseems to grow more
attractive over time even in the absence of strong disambiguating information.

1 Introduction

Nearly every sentence occurring in natural language can, given appropriate contexts, be interpreted
in more than one way. The challenge of comprehending a sentence is identifying the intended
intepretation from among these possibilities. More formally, each interpretation of a sentencew can
be associated with a structural descriptionT , and to comprehend a sentence is to inferT from w –
parsing the sentence to reveal its underlying structure. From a probabilistic perspective, this requires
computing the posterior distributionP (T |w) or some property thereof, such as the descriptionT
with highest posterior probability. This probabilistic perspective has proven extremely valuable in
developing both effective methods by which computers can process natural language [1, 2] and
models of human language processing [3].

In real life, however, people receive nearly all linguisticinput incrementally: sentences are spoken,
and written sentences are by and large read, from beginning to end. There is considerable evidence
that people also comprehend incrementally, making use of linguistic input moment by moment to re-
solve structural ambiguity and form expectations about future inputs [4, 5]. The incremental parsing
problem can, roughly, be stated as the problem of computing the posterior distributionP (T |w1 ...i)
for a partial inputw1 ...i . To be somewhat more precise, incremental parsing involvesconstructing a
distribution over partial structural descriptions ofw1 ...i which implies the posteriorP (T |w1 ...i). A
variety of “rational” models of online sentence processing[6, 7, 8, 9] take exactly this perspective,
using the properties ofP (T |w1 ...i) or quantities derived from it to explain why people find some
sentences more difficult to comprehend than others.

Despite their success in capturing a variety of psycholinguistic phenomena, existing rational mod-
els of online sentence processing leave open a number of questions, both theoretical and empirical.
On the theoretical side, these models assume that humans are“ideal comprehenders” capable of
computingP (T |w1 ...i) despite its significant computational cost. This kind of idealization is com-
mon in rational models of cognition, but raises questions about how resource constraints might
affect language processing. For structured probabilisticformalisms in widespread use in compu-



tational linguistics, such as probabilistic context-freegrammars (PCFGs), incremental processing
algorithms exist that allow the exact computation of the posterior (implicitly represented) in poly-
nomial time [10, 11, 12], from whichk-best structures [13] or samples from the posterior [14] can
be efficiently obtained. However, these algorithms are psychologically implausible for two reasons:
(1) their run time (both worst-case and practical) is superlinear in sentence length, whereas human
processing time is essentially linear in sentence length; and (2) the probabilistic formalisms utilized
in these algorithms impose strict locality conditions on the probabilistic dependence between events
at different levels of structure, whereas humans seem to be able to make use of arbitrary features of
(extra-)linguistic context in forming incremental posterior expectations [4, 5].
Theoretical questions about the mechanisms underlying online sentence processing are comple-
mented by empirical data that are hard to explain purely in probabilistic terms. For example, one of
the most compelling phenomena in psycholinguistics is thatof garden-path sentences, such as:

(1) The woman brought the sandwich from the kitchen tripped.

Comprehending such sentences presents a significant challenge, and many readers fail completely
on their first attempt. However, the sophisticated dynamic programming algorithms typically used
for incremental parsing implicitly represent all possiblecontinuations of a sentence, and are thus
able to recover the correct interpretation in a single pass.Another phenomenon that is hard to
explain simply in terms of the probabilities of interpretations of a sentence is the “digging in” effect,
in which the preferred alternative in a syntactic ambiguityseems to grow more attractive over time
even in the absence of strong disambiguating information [15].

In this paper, we explore the hypothesis that these phenomena can be explained as the consequence
of constraints on the resources available for incremental parsing. Previous work has addressed the
issues of feature locality and resource constraints by adopting a pruning approach, in which hard
locality constraints on probabilistic dependence are abandoned and only high-probability candidate
structures are maintained after each step of incremental parsing [6, 16, 17, 18]. These approaches
can be thought of as focusing on holding on to the highest posterior-probability parse as often as
possible. Here, we look to the machine learning literature to explore an alternative approach focused
on approximating the posterior distributionP (T |w1 ...i). We use particle filters [19], a sequential
Monte Carlo method commonly used for approximate probabilistic inference in an online setting, to
explore how the computational resources available influence the comprehension of sentences. This
approach builds on the strengths of rational models of online sentence processing, allowing us to
examine how performance degrades as the resources of the ideal comprehender decrease.

The plan of the paper is as follows. Section 2 introduces the key ideas behind particle filters, while
Section 3 outlines how these ideas can be applied in the context of incremental parsing. Section 4
illustrates the approach for the kind of garden-path sentence given above, and Section 5 presents an
experiment with human participants testing the predictions that the resulting model makes about the
digging-in effect. Section 6 concludes the paper.

2 Particle filters

Particle filters are a sequential Monte Carlo method typically used for probabilistic inference in
contexts where the amount of data available increases over time [19]. The canonical setting in which
a particle filter would be used involves a sequence of latent variablesz1 , . . . , zn and a sequence of
observed variablesx1 , . . . , xn , with the goal of estimatingP (zn |x1 ...n). The particle filter solves
this problem recursively, relying on the fact that the chainrule gives

P (zn |x1 ...n) ∝ P (xn |zn)
∑

zn−1
P (zn |zn−1 )P (zn−1 |x1 ...n−1 ) (1)

where we assumexn andzn are independent of all other variables givenzn andzn−1 respectively.

Assume we knowP (zn−1 |x1 ...n−1 ). Then we can use this distribution to construct an impor-
tance sampler forP (zn |x1 ...n). We generate several values ofzn−1 from P (zn−1 |x1 ...n−1 ).
Then, we drawzn from P (zn |zn−1 ) for each instance ofzn−1 , to give us a set of values
from P (zn |x1 ...n−1 ). Finally, we assign each value ofzn a weight proportional toP (xn |zn),
to give us an approximation toP (zn |x1 ...n). The particle filter is simply the recursive version
of this algorithm, in which a similar approximation was usedto construct toP (zn−1 |x1 ...n−1 )
from P (zn−2 |x1 ...n−2 ) and so forth. The algorithm thus approximatesP (zn−1 |x1 ...n−1 ) with
a weighted set of “particles” – discrete values ofzi – which are updated usingP (zn |zn−1 ) and



P (xn |zn) to provide an approximation toP (zn |x1 ...n). The particle filter thus has run-time linear
in the number of observations, and provides a way to explore the influence of memory capacity (re-
flected in the number of particles) on probabilistic inference (cf. [20, 21]). In this paper, we focus
on the conditions under which the particle filter fails as a source of information about the challenges
of limited memory capacity for online sentence processing.

3 Incremental parsing with particle filters

In this section we develop an algorithm for top-down, incremental particle-filter parsing. We first
lay out the algorithm, then consider options for representations and grammars.

3.1 The basic algorithm

We assume that the structural descriptions of a sentence arecontext-free trees, as might be produced
by a PCFG. Without loss of generality, we also assume that preterminal expansions are always
unary rewrites. A tree is generated incrementally in a sequence ofderivation operations π1 ...m ,
such that no word can be generated unless all the words preceding it in the sentence have already
been generated. The words of the sentence can thus be considered observations, and the hidden state
is a partial derivation(D,S), whereD is an incremental tree structure andS is a stack of items of
the form〈N, Op〉, whereN is a target node inD andOp is a derivation operation type. Later in this
section, we outline three possible derivationorders.

The problem of inferring a distribution over partial derivations from observed words can be approx-
imated using particle filters as outlined in Section 2. Assume a model that specifies a probability
distributionP (π|(D,S), w1 ...i) over the next derivation operationπ given the current partial deriva-

tion and words already seen. By(D,S)
π1...j

⇒ (D′, S′) we denote that the sequence of derivation
operationsπ1 ...j takes the partial derivation(D,S) to a new partial derivation(D′, S′). Now con-
sider a partial derivation(Di|, Si|) in which the most recent derivation operation has generatedthe

ith word in the input. Through the
π
⇒ relation, our model implies a probability distribution over new

partial derivations in which the next operation would be thegeneration of thei + 1th word; call this
distributionP ((D|i+1 , S|i+1 )|(Di|, Si|)). In the nomenclature of particle filters introduced above,
partial derivations(D|i , S|i) thus correspond to latent variableszi , wordswi to observationsxi ,
and our importance sampler involves drawing fromP ((D|i , S|i)|(Di−1 |, Si−1 |)) and reweighting
by P (wi |(D|i , S|i)). This differs from the standard particle filter only in thatzi is not necessarily
independent ofx1 ...i−1 givenzi−1 .

3.2 Representations and grammars

We now describe three possible derivation orders that can beused with our approach. For each order,
a derivation operationπOp of a given typeOp specifies a sequence of symbolsY 1 . . . Y k (possibly

the empty sequenceǫ), and can be applied to a partial derivation:(D, [〈N, Op〉]⊕S)
πOp

⇒ (D′, A⊕S),
with ⊕ being list concatenation. That is, a derivation operation involves popping the top item off the
stack, choosing a derivation operation of the appropriate type, applying it to add some symbols toD
yieldingD′, and pushing a list of new itemsA back on the stack. Derivation operations differ in the
relationship betweenD andD′, and derivation orders differ in the contents ofA.

Order 1: Expansion (Exp) only. D′ consists ofD with node N expanded to have daughters
Y 1 . . . Y k ; andA = [〈Y 1 , Exp〉, . . . , 〈Y k , Exp〉].

Order 2: Expansion and Right-Sister (Sis). The sequence of symbols specified by anyπOp is of
maximum length 1. Expansion operations affectD as above. For a right-sister operation
πSis, D′ consists ofD with Y 1 added as the right sister ofN (if πSis specifiesǫ, then
D = D′). A = [〈Y 1 , Exp〉, 〈Y 1 , Sis〉, . . . , 〈Y k , Exp〉, 〈Y k , Sis〉].

Order 3: Expansion, Right-Sister, and Adjunction (Adj). The sequence of symbols specified
by any πOp is of maximum length 1. Expansion operations affectD as above. Ex-
pansion and right-sister operations are as above. For a right-sister operationπAdj, D′

consists ofD with Y 1 spliced in at the nodeN – that is,Y 1 replacesN in the tree,
and N becomes the lone daughter ofY 1 (if πAdj specifiesǫ, then D = D′). A =
[〈Y 1 , Exp〉, 〈Y 1 , Sis〉, 〈Y 1 , Adj〉, . . . , 〈Y k , Exp〉, 〈Y k , Sis〉, 〈Y k , Adj〉].
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Figure 1: Three possible derivation orders for the sentence“Pat walked yesterday and Sally slept”.
In each case, the partial derivation(D|i , S|i) is shown fori = 2 – up to just before the generation of
the word “walked”. The symbols ADVP, CC, and S3 in (a) will be generated later in the derivations
of (b) and (c) as right-sister operations; the symbol S1 will be generated in (c) as an adjunction
operation. During the incremental parsing of “walked” these partial derivations would be reweighted
by P Exp(walked |(D|i , S|i)).

In all cases, the initial state of a derivation is a root symbol targeted for expansion:
(ROOT, [〈ROOT,Exp〉]), and a derivation is complete when the stack is empty. Figure1 illustrates
the partial derivation state for each order just after the generation of a word in mid-sentence.

For each derivation operation typeOp, it is necessary to define an underlying grammar and estimate
the parameters of a distributionP Op(π|(D,S)) over next derivation operations given the current state
of the derivation. For a sentence whose tree structure is known, the sequence of derivation operations
for derivation orders 1 and 2 is unambiguous and thus supervised training can be used for such a
model. For derivation order 3, a known tree structure still underspecifies the order of derivation
operations, so the underlying sequence of derivation operations could either be canonicalized or
treated as a latent variable in training. Finally, we note that a known PCFG could be encoded in a
model using any of these derivation orders; for PCFGs, the partial derivation representations used
in order 3 may be thought of as marginalizing over the unary chains on the right frontier of the
representations in order 2, which in turn may be thought of asmarginalizing over the extra childless
nonterminals in the incremental representations of order 1. In the context of the particle filter,
the representations with more operation types could thus beexpected to function as having larger
effective sample sizes for a fixed number of particles [22]. For the experiments reported in this paper,
we use derivation order 2 with a PCFG trained using unsmoothed relative-frequency estimation on
the parsed Brown corpus.

This approach has several attractive features for the modeling of online human sentence comprehen-
sion. The number of particles can be considered a rough estimate of the quantity of working memory
resources devoted to the sentence comprehension task; as wewill show in Section 5, sentences dif-
ficult to parse can become easier when more particles are used. After each word, the incremental
posterior over partial structuresT can be read off the particle structures and weights. Finally, the
approximatesurprisal of each word – a quantity argued to be correlated with many types of process-
ing difficulty in sentence comprehension [8, 9, 23] – is essentially a by-product of the incremental
parsing process: it is the negative log of the mean (unnormalized) weightP (wi |(D|i , S|i)).

4 The garden-path sentence

To provide some intuitions about our approach, we illustrate its ability to model online disambigua-
tion in sentence comprehension using the garden-path sentence given in Example 1. In this sentence,
a local structural ambiguity is introduced at the wordbrought due to the fact that this word could
be either (i) a past-tense verb, in which case it is the main verb of the sentence andThe woman is
its complete subject; or (ii) a participial verb, in which case it introduces a reduced relative clause,
The woman is its recipient, and the subject of the main clause has not yet been completed. This
ambiguity is resolved in favor of (ii) by the wordtripped, the main verb of the sentence. It is well
documented (e.g., [24]) that locally ambiguous sentences such as Example 1 are read more slowly
at the disambiguating region when compared with unambiguous counterparts (c.f.The woman who
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Figure 2: Incremental parsing of a garden-path sentence. Trees indicate the canonical structures for
main-verb (above) and reduced-relative (below) interpretations. Numbers above the trees indicate
the posterior probabilites of main-verb and reduced-relative interpretations, marginalizing over pre-
cise details of parse structure, as estimated by a parser using 1000 particles. Since the grammar is
quite noisy, the main-verb interpretation still has some posterior probability after disambiguation at
tripped. Numbers in the second-to-last line indicate the proportion of particle filters with 20 parti-
cles that produce a viable parse tree including the given word. The final line indicates the variance
(×10−3 ) of particle weights after parsing each word.

was brought the sandwich from the kitchen tripped), and in cases where the local bias strongly favors
(i), many readers may fail to recover the correct reading altogether.

Figure 2 illustrates the behavior of the particle filter on the garden-path sentence in Example 1.
The wordbrought shifts the posterior strongly toward the main-verb interpretation. The rest of
the reduced relative clause has little effect on the posterior, but the disambiguatortripped shifts
the posterior in favor of the correct reduced-relative interpretation. In low-memory situations, as
represented by a particle filter with a small number of particles (e.g., 20), the parser is usually
able to construct an interpretation for the sentence up through the wordkitchen, but fails at the
disambiguator, and when it succeeds the variance in particle weights is high.

5 Exploring the “digging in” phenomenon

An important feature distinguishing “rational” models of online sentence comprehension [6, 7, 8, 9]
from what are sometimes called “dynamical systems” models [25, 15] is that the latter have an
internal feedback mechanism: in the absence of any biasing input, the activation of the leading
candidate interpretation tends to grow with the passage of time. A body of evidence exists in the
psycholinguistic literature that seems to support an internal feedback mechanism: increasing the
duration of a local syntactic ambiguity increases the difficulty of recovery at disambiguation to the
disfavored interpretation. It has been found, for example,that 2a and 3a, in which the second NP (the
gossip. . . /the deer. . . ) initially seems to be the object of the preceding verb, are harder to recover
from than 2b and 3b [26, 27, 15].

(2) “NP/S” ambiguous sentences

a. Long (A-L): Tom heard the gossip about the neighbors wasn’t true.

b. Short (A-S): Tom heard the gossip wasn’t true.

(3) “NP/Z” ambiguous sentences

a. Long (A-L): While the man hunted the deer that was brown and graceful ran into the woods.

b. Short (A-S): While the man hunted the deer ran into the woods.



From the perspective of exact rational inference – or even for rational pruning models such as [6]
– this “digging in” effect is puzzling.1 The result finds an intuitive explanation, however, in our
limited-memory particle-filter model. The probability of parse failure at the disambiguating word
wi is a function of (among other things) the immediately preceding estimated posterior probability
of the disfavored interpretation. If this posterior probability is low, then the resampling of particles
performed after processing each word provides another point at which particles representing the
disfavored interpretation could be deleted. Consequently, total parse failure at the disambiguator
will become more likely the greater the length of the preceding ambiguous region.
We quantify these predictions by assuming that the more often no particle is able to integrate a given
word wi in context – that is,P (wi |(D|i , S|i)) – the more difficult, on average, people should find
wi to read. In the sentences of Examples 2-3, by far the most likely position for the incremental
parser to fail is at the disambiguating verb. We can also compare processing of these sentences with
syntactically similar but unambiguous controls.

(4) “NP/S” unambiguous controls
a. Long (U-L): Tom heard that the gossip about the neighbors wasn’ttrue.
b. Short (U-S): Tom heard that the gossip wasn’t true.

(5) “NP/Z” unambiguous controls
a. Long (U-L): While the man hunted, the deer that was brown and graceful ran into the woods.
b. Short (U-S): While the man hunted, the deer ran into the woods.

Figure 3a shows, for each sentence of each type, the proportion of runs in which the parser suc-
cessfully integrated (assigned non-zero probability to) the disambiguating verb (was in Example 2a
andran in Example 3a), among those runs in which the sentence was successfully parsed up to the
preceding word. Consistent with our intuitive explanation, both the presence of local ambiguity and
length of the preceding region make parse failure at the disambiguator more likely.

In the remainder of this section we test this explanation with an offline sentence acceptability study
of digging-in effects. The experiment provides a way to makemore detailed comparisons between
the model’s predictions and sentence acceptability. Consistent with the predictions of the model,
ratings show differences in the magnitude of digging-in effects associated with different types of
structural ambiguities. As the working-memory resources (i.e. number of particles) devoted to com-
prehension of the sentence increase, the probability of successful comprehension goes up, but local
ambiguity and length of the second NP remain associated withgreater comprehension difficulty.

5.1 Method

Thirty-two native English speakers from the university subject pool completed a questionnaire cor-
responding to the complexity-rating task. Forty experimental items were tested with four condi-
tions per item, counterbalanced across questionnaires, plus 84 fillers, with sentence order pseudo-
randomized. Twenty experimental items were NP/S sentencesand twenty were NP/Z sentences. We
used a2 × 2 design with ambiguity and length of the ambiguous noun phrase as factors. In NP/S
sentences, structural ambiguity was manipulated by the presence/absence of the complementizer
that, while in NP/Z sentences, structural ambiguity was manipulated by the absence/presence of a
comma after the first verb. Participants were asked to rate how difficult to understand sentences are
on a scale from 0 to 10, 0 indicating “Very easy” and 10 “Very difficult”.

5.2 Results and Discussion

Figure 3b shows the mean complexity rating for each type of sentences. For both NP/S and NP/Z
sentences, the ambiguous long-subject (A-L) was rated the hardest to understand, and the unam-
biguous short-subject (U-S) condition was rated the easiest; these results are consistent with model
predictions. Within sentence type, the ratings were subjected to an analysis of variance (ANOVA)
with two factors: ambiguity and length. In the case of NP/S sentences there was a main effect of
ambiguity,F1(1, 31) = 12.8, p < .001, F2(1, 19) = 47.8, p < .0001 and length,F1(1, 31) = 4.9,

1For these examples, noun phrase length is a weakly misleading cue – objects tend to be longer than sub-
jects – and that these “digging in” examples might also be analyzable as cases of exact rational inference [9].
However, the effects of length in some of the relevant experiments are quite strong. The explanation we offer
here would magnify the effects of weakly misleading cues, and also extend to where cues are neutral or even
favor the ultimately correct interpretation.
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Figure 3: Frequency of irrevocable garden path in particle-filter parser as a function of number of
particles, and mean empirical difficulty rating, for NP/S and NP/Z sentences.

p = .039, F2(1, 19) = 32.9, p < .0001, and the interaction between factors was significant,
F1(1, 31) = 8.28, p = .007, F2(1, 19) = 5.56, p = .029. In the case of NP/Z sentences there
was a main effect of ambiguity,F1(1, 31) = 63.6, p < .0001, F2(1, 19) = 150.9, p < .0001 and
length,F1(1, 31) = 127.2, p < .0001, F2(1, 19) = 124.7, p < .0001 and the interaction between
factors was significant by subjects only,F1(1, 31) = 4.6, p = .04, F2(1, 19) = 1.6, p = .2. The
experiment thus bore out most of the model’s predictions, with ambiguity and length combining to
make sentence processing more difficult. One reason that ourmodel may underestimate the effect
of subject length on ease of understanding, at least in the NP/Z case, is the tendency of subject NPs
to be short in English, which was not captured in the grammar used by the model.

6 Conclusion and Future Work

In this paper we have presented a new incremental parsing algorithm based on the particle filter
and shown that it provides a useful foundation for modeling the effect of memory limitations in
human sentence comprehension, including a novel solution to the problem posed by “digging-in”
effects [15] for rational models. In closing, we point out two issues – both involving the problem
of resampling prominent in particle filter research – in which we believe future research may help
deepen our understanding of language processing.

The first issue involves the question ofwhen to resample. In this paper, we have take the approach of
generating values ofzn−1 from which to drawP (zn |zn−1 , x1 ...n−1 ) by sampling with replacement
(i.e., resampling) after every word from the multinomial overP (zn−1 |x1 ...n−1 ) represented by the
weighted particles. This approach has the problem that particle diversity can be lost rapidly, as it
decreases monotonically with the number of observations. Another option is to resample only when
the variance in particle weights exceeds a predefined threshold, sampling without replacement when
this variance is low [22]. As Figure 2 shows, a word that resolves a garden-path generally creates
high weight variance. Our preliminary investigations indicate that associating variance-sensitive
resampling with processing difficulty leads to qualitatively similar predictions to the total parse
failure approach taken in Section 5, but further investigation is required.

The other issue involveshow to resample. Since particle diversity can never increase, when parts
of the space of possibleT are missed by chance early on, they can never be recovered. Asa conse-
quence, applications of the particle filter in machine learning and statistics tend to supplement the
basic algorithm with additional steps such as running Markov chain Monte Carlo on the particles
in order to re-introduce diversity (e.g., [28]). Further work would be required, however, to spec-
ify an MCMC algorithm over trees given an input prefix. Both ofthese issues may help achieve
a deeper understanding of the details of reanalysis in garden-path recovery [29]. For example, the
initial reaction of many readers to the sentenceThe horse raced past the barn fell is to wonder what
a “barn fell” is. With variance-sensitive resampling, thisobservation could be handled by smoothing
the probabilistic grammar; with diversity-introducing MCMC, it might be handled by tree-changing
operations chosen during reanalysis.
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