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Abstract

This thesis takes up the problem of syntactic comprehension, or parsing—how an

agent (human or machine) with knowledge of a specific language goes about inferring

the hierarchical structural relationships underlying a surface string in the language.

I take the position that probabilistic models of combining evidential information are

cognitively plausible and practically useful for syntactic comprehension. In particular,

the thesis applies probablistic methods in investigating the relationship between word

order and psycholinguistic models of comprehension; and in the practical problems

of accuracy and efficiency in parsing sentences with syntactic discontinuity.

On the psychological side, the thesis proposes a theory of expectation-based pro-

cessing difficulty as a consequence of probabilistic syntactic disambiguation: the ease

of processing a word during comprehension is determined primarily by the degree to

which that word is expected. I identify a class of syntactic phenomena, associated

primarily with verb-final clause order, where the predictions of expectation-based

processing diverge most sharply from more established locality-based theories of pro-

cessing difficulty. Using existing probabilistic parsing algorithms and syntactically

annotated data sources, I show that the expectation-based theory matches a range

of established experimental psycholinguistic results better than locality-based the-

ories. The comparison of probabilistic- and locality-driven processing theories is a

crucial area of psycholinguistic research due to its implications for the relationship

between linguistic production and comprehension, and more generally for theories of

modularity in cognitive science.

The thesis also takes up the problem of probabilistic models for discontinuous

constituency, when phrases do not consist of continuous substrings of a sentence.
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Discontinuity poses a computational challenge in parsing, because it expands the

set of possible substructures in a sentence beyond the bound, quadratic in sentence

length, on the set of possible continuous constituents. For discontinuous constituency,

I investigate the problem of accuracy employing discriminative classifiers organized

on principles of syntactic theory and used to introduce discontinuous relationships

into otherwise strictly context-free phrase structure trees; and the problem of effi-

ciency in joint inference over both continuous and discontinuous structures, using

probabilistic instantiations of mildly context-sensitive grammatical formalisms and

factorizing grammatical generalizations into probabilistic components of dominance

and linear order.
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Chapter 1

Introduction

1.1 Rational models of syntactic comprehension

This thesis takes up the problem of syntactic comprehension—how an agent (human

or machine) with knowledge of a specific language goes about inferring the hierarchical

structural relationships underlying a surface string in the language. This problem has

been of major concern from two different perspectives. First, the psychological: what

are the major limitations constraining how the human parser goes about constructing

a representation for spoken or read input, and how do these limitations shape our

behavioral responses to different types of linguistic stimuli? Second, a more applied

perspective: how can we devise algorithms and models enabling a computer to effi-

ciently construct and disambiguate among the possible syntactic representations for

a given linguistic input?

To understand the similarities and differences between the two perspectives, con-

sider what a model of syntactic comprehension has to account for in the processing

of the following sentence:

(1) These are the children that the witch wanted to eat.

This sentence is ambiguous in meaning, because the witch may be concerned about

1



CHAPTER 1. INTRODUCTION 2

the children getting hungry, or she may be hungry herself. From both the psycholog-

ical and applied perspectives, we are interested in the kinds of representations that

can distinguish between these meanings, and how the appropriate (well-formed) rep-

resentations can be automatically constructed from the input. We are also interested

in knowing the factors involved in choosing the preferred representation in a given

context. In the applied perspective, we need to know how to estimate the parameters

of a model that encodes these factors explicitly and can make the disambiguation

decision efficiently and accurately.

From the psychological perspective, we might not require ourselves to construct an

explicit model that can make specific disambiguation decisions, so long as we have an

understanding of the factors that native speakers themselves use in disambiguating.

But we have additional concerns. One of these is incrementality. Spoken and written

language is serial, and in general, people process it from beginning to end. There is

extensive evidence that we start processing each sliver of input as soon as we can,

and start making inferences about its relationship to earlier input and about what

may come later in the sentence. Whatever partial representation a native speaker of

English has after reading the word that in Example (1), it must not have foreclosed

on the option of the children being either eater or eaten. A theory of human sentence

processing must account for incremental comprehension.

There is also extensive evidence that some parts of some sentences are generally

more difficult to process than some parts of other sentences. If we contrast Exam-

ple (1) with the following sentence:

(2) These are the children that wanted to eat the witch.

we might well find that native English speakers tend to read the word wanted more

quickly in (2) than in (1). So another requirement for a theory of human sentence

processing is to account for differential processing difficulty.

This thesis concerns itself with incrementality, differential difficulty, and disam-

biguation in rational models of syntactic processing, where a “rational” model is

informally taken to be something that tries to do as well as it can, as often as it
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can. Since language use is variable—some structures occur more often than others—

it immediately follows that a rational syntactic processor should have distributional

knowledge of patterns of language use. Distributional knowledge of this form can

be transformed into a rational comprehension model using probability theory; the

result is a probabilistic model of natural language syntax. Such models are already

in widespread use in computational linguistics, precisely because they are good at

disambiguation.

The consequences of rational syntactic processing for incrementality and differen-

tial difficulty are taken up in Chapter 2, where I argue that a rational, probabilistic

disambiguation strategy leads directly to an expectation-based theory of incremental

processing, where the differential difficulty of different words in different contexts is

ascribed to the difference in how likely those words are to occur in those contexts. To

determine the predictions of an expectation-based theory for specific psycholinguistic

experiments, I use a probabilistic context-free grammar—the simplest probabilistic

syntactic model that incorporates hierarchical structure—to estimate the conditional

probability of a word in its context. But though probabilistic context-free grammars

are adequate in this case as a means of testing a psychological theory, they are not

a complete model of natural language syntax. In their simplest incarnation, they do

not encode nonlocal or discontinuous syntactic dependencies, such as the relationship

between the verb eat and its syntactically distant subject (or perhaps object), the rel-

ative pronoun that, in Example (1). The probabilistic syntactic models in widespread

use in computational linguistics do not answer all the questions we need answered.

The remainder of this thesis concerns itself with probabilistic models that incorpo-

rate discontinuous dependency, focusing on the problems of how to structure these

models, how to estimate parameters for them, and how to disambiguate accurately

and efficiently with them.

Section 1.2 of this introductory chapter is a brief reference defining probabilistic

context-free grammars and a few of their crucial properties. Section 1.3 provides

background information and argumentation for syntactic discontinuity from a theo-

retical linguistic perspective. Section 1.4 outlines the possible approaches to parsing

discontinuous structures. Finally, Section 1.5 provides a more detailed overview of
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the remainder of the thesis.

1.2 Probabilistic Context-Free Grammars

By far the probabilistic grammatical model with widest currency is the probabilistic

context-free grammar (PCFG). Since CFGs and PCFGs serve as the touchstone to

work in every part of this thesis, I give a short definition of PCFGs here, along with

several of their crucial properties.

A probabilistic context-free grammar consists of a tuple (N, V, S, R, P ) such that:

� N is a finite set of non-terminal symbols;

� V is a finite set of terminal symbols;

� S is the start symbol;

� R is a finite set of rules of the form X → α where X ∈ N and α is a sequence

of symbols drawn from N ∪ V ;

� P is a mapping from R into probabilities, such that for each X ∈ N ,

∑

[X→α]∈R

P (X → α) = 1

A PCFG derivation is the recursive expansion of non-terminal symbols in a string

by rules in R, starting with S, and a derivation tree T is the history of those rule

applications. The probability P (T ) of a derivation tree is simply the product of the

probabilities of each rule application.

PCFGs enjoy important properties with respect to estimation and parsing. Chi

and Geman (1998) showed that maximum-likelihood estimation of a PCFG, both

supervised and unsupervised, is guaranteed to produce a proper probability distri-

bution.1 This property is important in Chapter 4. Established bottom-up (Kasami,

1A proper probability distribution is one that does not “lose” probability mass; more formally, if
T is the set of possible (finite) trees for a PCFG, then

∑

T P (T ) = 1.
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1965; Younger, 1967) and top-down (Earley, 1970) algorithms for CFG recognition can

easily be extended to probabilistic parsing of PCFGs, permitting optimal (highest-

probability) parse selection in time cubic and space quadratic in the length of the

string. Furthermore, algorithms have been developed that allow us to efficiently cal-

culate the probability of strings and prefixes with respect to a PCFG (Jelinek and

Lafferty, 1991; Stolcke, 1995).2 The computation of prefix probabilities with these

algorithms plays a crucial role in Chapter 2.

1.3 Syntactic discontinuity from a categorical per-

spective

This section provides a motivation from the perspective of theoretical syntax for the

investigation of discontinuous-constituency in parsing taken up in Chapters 3 and 4

of this thesis. Although exceedingly few constructions have been shown to exceed the

capability of context-free grammars to provide weak structural descriptions (Culy,

1985; Shieber, 1985), resorting to discontinuous constituency can simplify the strong

structural description of a much wider range of natural language syntax. Section 1.3.1

argues this case from the perspective of constituency and semantic composition. Sec-

tion 1.3.2 ties together constituency- and dependency-based perspectives on discon-

tinuity and nonlocality.

1.3.1 Discontinuous constituency

The discussion of discontinuity in the syntactic literature generally seems to take ba-

sic context-free grammatical description as a standard of comparison. The movement

phenomena first analyzed by Chomsky as evidence for the trans-CF nature of natural

language (Chomsky, 1956) come out as discontinuity phenomena of one type or an-

other in the typology of discontinuity I introduce here. The pretheoretical diagnostic

2The probability of a string is the sum of the probabilities of all the trees that can dominate that
string; the probability of a prefix is the sum of the probabilities of all the trees that dominate strings
beginning with that prefix.
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of discontinuity is based on the notion of the phrase; a phrase is discontinuous if it

does not consist of a continuous string fragment. Somewhat more formally, we can

situate the notion of discontinuity against the move in generative syntax to iden-

tify phrases with nodes of a context-free tree. This move has a semantic motivation

as well: a large number of compositional semantic relationships in natural language

can elegantly be characterized as head-sister relationships between nodes in a headed

context-free tree. Discontinuity can then be defined as deviation from this standard:

any compositional relationship between nodes in a context-free tree that are not in a

head-sister relationship. There are two major means of formally accounting for dis-

continuity. First, an explicit connection can be made between a non-head/sister node

pair that encodes their relationship. The slash-passing approaches of GPSG (Gazdar

et al., 1985) and the functional annotations of LFG (Kaplan and Bresnan, 1982) are

instances of this approach. The less widely adopted approach is to characterize the

apparent discontinuity as a head-sister tree relation, but to relax the assumption that

tree nodes dominate continuous string fragments. In the remainder of this section, I

hope to show that this latter approach yields fruitful results.

To motivate this approach, I briefly discuss extraposition from NP, an example

familiar from English of what can be viewed as syntactic discontinuity. Consider the

(semantically equivalent readings of the) following pair:

(3) a. I met a woman who was wearing a hat yesterday.

b. I met a woman yesterday who was wearing a hat.

From a strict semantic point of view, elements belonging to the NP object and the

VP have been shuffled together: yesterday is clearly semantically associated with met,

and who was wearing a hat with a man. This can happen with NP subjects, too; note

the contrast with the depictive construction, where there is a semantic connection of

cotemporality between the verb and the depictive:

(4) a. A woman is coming who was once a track star.

b. A woman is coming alone. [cannot mean that she was alone in the past

but not now]
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Furthermore, the semantic contribution of the extraposed RC is clearly below the

determiner, whereas with the depictive it is not. In (5) below, the extraposed relative

clauses are intersective semantic modifications of the restrictor of the determiner

((5) and (5a)), whereas the depictive cannot modify inside the scope of the definite

determiner ((5c)).3

(5) a. No Democrat will be elected president in 2004 who is not strong on

defense (Senator Joseph Lieberman, May 2003, quoted in The New York

Times)

b. The Democrat has the best chance of being elected president in 2004

who is strongest on defense.

c. The Democrat has the best chance of being elected president in 2004

strong on defense.

Prepositional phrases and appositives are also extraposable:

(6) . . .no mechanism exists for finding a middle ground. (WSJ)

(7) Imports of the types of watches that will now be eligible for duty-free treatment

totaled about
�
37 million in 1998, a relatively small share of the

�
1.5

billion in U.S. watch imports that year. (WSJ)

A syntactically discontinuous representation of these extraposed NP-internal ele-

ments is attractive in that the semantics becomes simple and entirely compositional.

The relative clause has the exact same semantic import in (3a) as in (3b), so if the

underlying syntax (termed the tectogrammatical structure by Curry 1961) is the same,

the analysis is simpler.

The simplicity of this approach is doubly attractive because this kind of semantic

3Example (5) is provided as a naturally-occurring example to motivate the plausibility of (5b).
The depictive with negative universal determiner:

No Democrat will be elected president in 2004 weak on defense

does not offer a similarly clear contrast to the extraposed relative clause case, due to the interaction
between negative quantification and the stage-level meaning of the depictive.
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relationship often has other reflexes at the syntax-semantics interface. The result

of this is that an analysis of discontinuity phenomena that maintains the string-

continuity requirement of phrase-structure constituents can easily become highly

baroque and unintuitive when refined against a detailed body of data. I illustrate

this point drawing on a recent, detailed analysis of German relative clause extrapo-

sition by Kiss (2005). Kiss, in contrast with other recent accounts of German word

order (Reape, 1994; Kathol and Pollard, 1995; Müller, 1999; Kathol, 2000), treats

German extraposed relative clauses in HPSG using an exclusively context-free syn-

tactic backbone, with the semantic relation between the extraposed element and the

NP treated as a specialized form of anaphora. As an example of extraposition, Kiss

gives the following syntactic structure:

(8) a. . . . weil
. . . because

jeder
every

Mann
man

schläft,
sleeps

der
who

schnarcht
snores

b. S

S

NP

jeder Mann1

VP

schläft

RC

der1 schnarcht

Kiss’s main argument against a discontinuous treatment of RC extraction is based

on asymmetries in binding possibilities among dependents of a single verb. Following

Büring and Hartmann (1996); Haider (1996, 1997), Kiss notes that a quantified argu-

ment in a VP may only bind a pronoun inside a relative clause of another argument

of the same VP if the quantified argument linearly precedes the argument hosting the

relative clause:

(9) a. Wir
we

haben
have

niemandemi

no-one.dat
die
the

Frage
question

gestellt,
put

auf
on

die
which

eri

he
sich
refl

vorbereitet
prepared

hatte.
had

We asked no onei the question that theyi had prepared for.



CHAPTER 1. INTRODUCTION 9

b. *Wir
we

haben
have

die
the

Frage
question

niemandemi

no-one.dat
gestellt,
put

auf
on

die
which

eri

he
sich
refl

vorbereitet
prepared

hatte.
had

Kiss argues that this difference can be captured by assuming that verbal arguments

combine with a final verb in binary branching trees, and that extraposed relative

clauses right-adjoin to the verbal projection at arbitrary positions relative to the

order of argument combination. In (9a), the syntactic tree looks as follows:

(10) VP

NPdat

niemandemi

V′

V′

NPacc

die Fragej

V

gestellt

RCj

auf die eri sich vorbereitet hatte

Kiss also stipulates that the anaphoric properties of extraposed RCs are such that

they must configurationally command their nominal antecedents. He further assumes

that ordinary quantifier-pronoun binding possibilities are also determined configu-

rationally via c-command; the bindings in (10) are therefore licensed by the fact

that niemandem c-commands the postposed relative clause, and the relative clause

c-commands its antecedent NP. For (9b), in contrast, it is impossible for the RC in

to be positioned such that it both commands its antecedent and is commanded by

niemandem, explaining the grammaticality contrast in (9). If on the other hand, Kiss

argues, German word order is purely a property of surface positions of strings, (as he

takes discontinuity-based theories to require), it is impossible to explain the contrast

in (9).

Kiss’s analysis has both theoretical and empirical liabilities stemming from his

string-continuous treatment of extraposition. Theoretically, by using totally different

syntactic rules to license in situ and extraposed RCs, he complicates their semantic

description. The anaphoric conditions required by Kiss for the RC’s modificational
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force find no parallel in any other type of anaphora or construction. Trying to ex-

tend the behavior of conventional anaphora to that of extraposed elements leads to

empirical problems, as we will see momentarily. Second, interleaving adjunction with

complementation at different levels of a single syntactic projection, as Kiss is forced

to do, is quite unorthodox.

Empirical shortcomings involve anaphora and postposed free relative clauses. If

right-extraposed elements are associated with their NPs via anaphora, then they

should follow the pattern of general anaphora of being able to bind an NP in a

nominal or verbal conjunct, as holds for English:

(11) a. Regarding Johni, I don’t like himi or Clyde.

b. Regarding Johni, I distrust himi and loathe Clyde.

But this is not possible with extraposed relative clauses in German, even if gender

marking eliminates any possible ambiguity in antecedence:

(12) a. *Er
He

hat
has

mir
me.dat

einen
a.acc.masc

Manni

mani.acc.masc
und
and

eine
a.acc.fem

Frau
woman.fem

vorgestellt,
introduced,

deri

who.masc
bei
by

IBM
IBM

arbeitet.
works

(He introduced me to a man who works for IBM and to a woman.)

b. *Er
He

hat
has

einen
a.acc.masc

Manni

mani.acc.masc
kritisiert
criticized

und
and

eine
a.acc.fem

Frau
woman.acc.fem

gelobt,
praised,

deri

who.masc
bei
by

IBM
IBM

arbeitet.
works

(He criticized a man who works for IBM and praised a woman.)

More critically, it is possible to postpose free relative clause arguments in German,

in which case no associated overt element remains to the left of the nonfinite verb:

(13) Er
He

möchte
wants

nie
never

essen,
to eat,

was
what

ich
I

ihm
him.dat

koche.
cook

‘He never wants to eat what I cook for him.’

Under Kiss’s analysis of ordinary extraposed RCs, there are three potential ways
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to account for extraposed free RCs (EFRCs): free RCs could be taken to have the

distribution of NP arguments; they could have the distribution of ordinary RCs;

or they could have their own unique distribution. Under the first alternative, the

grammaticality of EFRCs should correlate with the grammaticality of postposed NP

arguments. But judgements on postposing of full NP arguments range from highly

unnatural to outright bad:

(14) */?? Er
He

möchte
wants

nie
never

essen,
to eat,

das
the

alte,
old,

faule
rotten

Gemüse
vegetables

das
that

ich
I

ihm
him.dat

koche.4

cook.
(He never wants to eat the old, rotten vegetables that I cook for him.)

The second alternative, generating EFRCs via the adjunction rule generating ex-

traposed RCs in general, would require the EFRC to be identified with an NP ar-

gument via anaphora. This runs into the problem that Kiss’s analysis requires the

presence of an antecedent NP constituent with which to (anaphorically) associate

extraposed RCs. Note that the antecedent cannot be taken to be some lexical feature

of the verb; it must crucially be a constituent sister to a verbal projection in order for

Kiss to get the quantifier binding facts right in (9). The only ways out for Kiss are to

introduce into an analysis otherwise free of empty categories a null category heading

an in-situ nominal argument projection, just for purposes of generating free relatives;

or, as laid out previously, to create entirely new rule for free relative anaphora.

In a formalism allowing the explicit expression of discontinuous constituents, on

the other hand, capturing the contrast presented by (9) is in fact quite simple as long

as semantic constraints are allowed to be sensitive to some linear ordering effects. In

particular, there is no difference in meaning, including quantificational possibilities,

between two sentences differing only in whether an RC is in situ or extraposed:

4The speaker who rated (14) as highly awkward rather than outright bad noted the postposed
NP’s heaviness as being its only saving grace. Any rule permitting postposition of heavy NPs would
therefore be different from that licensing EFRCs, since examples such as (13) clearly do not rely on
heaviness for their acceptability. It is also worth noting that German does not seem to allow right
extraposition of full NP arguments without leaving behind some kind of preverbal marker, such as
an expletive pronoun.
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(15) (c.f. (9))

a. Wir
we

haben
have

niemandemi

no-one.dat
die
the

Frage,
question

auf
on

die
which

eri

he
sich
refl

vorbereitet
prepared

hatte,
had

gestellt.
put

We asked no onei the question that theyi had prepared for.

b. *Wir
we

haben
have

die
the

Frage,
question

auf
on

die
which

eri

he
sich
refl

vorbereitet
prepared

hatte,
had,

niemandemi

no-one.dat
gestellt.
put

The quantifier binding constraint can be simply expressed as a precedence relation (on

either the tectogrammatical or phenogrammatical level) of the type made available

in frameworks such as those proposed by Goetz and Penn (1997) or Kathol (2000).

The data here underdetermine the exact nature of precedence required; it would be

satisfactory to state that an argument A of a verb can bind material in another

argument B of the verb if and only if:

(16) a. every terminal dominated by A linearly precedes every terminal domi-

nated by B; or

b. every terminal dominated by the head daughter of A dominates every

terminal dominated by the head daughter of B; or

c. the (recursively determined) head terminal of A linearly precedes the

head of B; or

d. A commands B in the tectogrammatical structure, if arguments combine

binarily with their governing verb.

Following typical linearization-based analyses, the position of the extraposed relative

clause is accounted for by (i) positing that the VP is a single linearization domain;

and (ii) that an NP → NP RC rewrite can allow either isolation (also called com-

paction) of the mother, requiring string continuity of material the mother dominates,

or liberation of the RC from the NP, allowing the RC to resolve its domain-final posi-

tioning requirement at the level of the VP rather than its NP mother (see also Zwicky

1986). The former choice corresponds to an in situ relative clause; the latter to an
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extraposed RC. The following gives the rules required in the framework of Goetz and

Penn (1997) to generate the proper word-order plus binding facts for Kiss’s data.5

(17) 1.ys
0 → ynp

1 yvp
2

2.yvp
0 → yvfin

1 yvp
2 ∧ →

2 y1

3.yvp
0 → yvnfin

1 ynp
2 ynp

3 ∧ ((∃ys’ ∈ y0∧ ←
2 y1)∧ ←

1)

4.ynp
0 → ydet

1 yn’
2 ∧ < y2 >: x∧ < y0 >: x ∧ y1 < y2

5.yn’
0 → (yn’

1 )ys’
2∧ ←

1 y2 ∧ (< y0 > ∨ < y0 >: y2)

6.sis(y0, y1) ∧ ∃y ∈ y1.binds(y0, y)⇒ y0 < y1

The crucial work done in this set of rules is that by rule 5, an S′ daughter of NP

must be final in its domain, but it may escape the isolation of the N′’s linearization

domain; if it does, it likewise escapes the NP’s domain (rule 4) and enters the lin-

earization domain of VP and S; by rule 3, a non-finite verb must ordinarily be final

in its domain but it can be second-to-last if an S′ is also present in the domain.6

Rule 6 simply expresses the linear precedence relation required when a node binds

a pronoun inside its sister; this single statement successfully captures the quantifier

binding generalizations of both (9) and (15). The tectogrammatical structure of N′

modification by relative clauses is identical in the in situ and extraposed cases, so no

special anaphoric rule is required to connect extraposed RCs to the NPs they modify.

Finally, extraposed free relative clauses are generated simply via the optionality of

the N′ daughter in Rule 5; in the case of a N′ →S′ rewrite, the S′ daughter may stay

5The rules given here differ somewhat from those given by Goetz and Penn for German extraposed
RCs; I find the rules given here more intuitive. Symbols are to be interpreted as follows: yX is a
variable y with syntactic category X; →n y (←n y) requires that y is the nth child from the right
(resp. left) in its domain; < y > (: x) states that y is an isolation domain – that is, material outside
of y may not appear between elements of y at the level of surface order (and optionally that x escapes
from the isolation domain of y); x < y requires that x exhaustively precedes y; that is, all elements
of x linearly precede all elements of y; the parenthesis around yn’

1 in rule 4 are shorthand for optional
expression of y1 in the rewrite rule; and sis and binds are the familiar relations of sisterhood and
binding.

6This aspect of the analysis follows Goetz and Penn closely; it could be made even more elegant
by the incorporation of Optimality Theory-style violable, ranked edge constraints, under which
both the non-finite verb and the S′ would be constrained to be final in their domain, only the S′’s
constraint would be higher-ranked.
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S
[Er,möchte,essen,〈das,〈[Gemüse〉]〉,[〈das,ich,ihm,koche〉]]

NP
[〈Er〉]

Er

VP
[möchte,essen,〈das,〈[Gemüse〉]〉,[〈das,ich,ihm,koche〉]]

V

möchte

VP
[essen,〈das,〈[Gemüse〉]〉,[〈das,ich,ihm,koche〉]]

V
[essen]

essen

NP
[〈das,〈[Gemüse〉]〉]:[〈das,ich,ihm,koche〉]

Det
[das]

das

N̄
[〈Gemüse〉]:[〈das,ich,ihm,koche〉]

N̄
[〈Gemüse〉]

Gemüse

S̄
[〈das,ich,ihm,koche〉]

das ich ihm koche

Figure 1.1: An extraposed free relative clause in a simple LSL grammar

inside the mother’s linearization domain to yield an in situ free relative, or it may

escape into the VP/S domain, getting postposed and leaving an empty N′ domain

behind.

Note that this means that the surface positioning of verbal arguments is both a

syntactic and semantic phenomenon; the surface position of the relative clause, on

the other hand, is purely a syntactic phenomenon as it apparently has no semantic

consequences. This simple distinction captures Kiss’s data much more clearly than

does his own analysis.

Finally, direct representations of discontinuous constituency also hold prospects

for improved modeling of speech, because discontinuity seems to be more widespread

in spoken language than in written language. I give three brief pieces of informal

evidence to support this claim. The first piece of evidence involves the token frequency

of relative clause extrapositions in the (spoken) Switchboard versus (written) Wall

Street Journal sections of the Penn Treebank. A simple tree search turns up 535

extraposed relative and complement clauses from Switchboard and only 299 from

Wall Street Journal, despite the fact that there are similar numbers of relative and

complement clauses in the two sources (30,675 in the Switchboard and 29,129 in
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the WSJ). Although a stronger conclusion would require more detailed investigation,

initial indications suggest that extraposition is more common in speech.

The second piece of evidence involves the types of relative clause extraposition

found. Relative clause extraposition in English can occur from within possessors, but

it only seems to occur in speech. A tentative search of the British National Corpus

for such examples, using the template “〈possessive marker〉 〈noun〉 who”, turned up

only three examples of RC extraposition from possessors, all from the spoken part of

the corpus:

(18) a. . . . I remember when projects used to come into the group from on high,

they used to filter through the organization, until they landed on some-

body’s desk who was actually supposed to carry out the work.

b. I went over there and I stepped into this guy’s shoes who had really

a difficult fourth year class.

c. . . . has, er, a process that we’ve got 〈unclear〉 has allayed people’s fears

who’ve been used for those residential home agreements.

The BNC consists of only 10% spoken data, so it is quite unlikely that these extra-

positions would all be from speech if they occurred equally often in writing.

The third piece of evidence comes from observations in the Switchboard parsed

corpus. There are many cases of apparent rightward conjunct extraposition, which

would be a violation of the Coordinate Structure Constraint’s proscription on conjunct

movement (Ross, 1967):

(19) a. so, you know, well a lot of the stuff you hear coming from South Africa

now, and from West Africa, that’s considered world music. . . (SWBD)

b. being an engineer in facilities I do read a lot of. . . building magazines,

and, and, and plant engineering magazines, and read up on differ-

ent ways to do things, and energy management type of magazines

(SWBD)

c. or it feels cool compared to yesterday, but very pleasant (SWBD)
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A woman arrived who was wearing a hat

Figure 1.2: Syntactic discontinuity as crossing dependency

It may be that these cases are best analyzed as instances of ellipsis. Regardless,

they seem only to occur in speech, never in writing; and from a computational and

processing perspective it may be more useful in some cases to treat these simply as

syntactic discontinuities, if a well-developed machinery for syntactic discontinuity is

already in place.

1.3.2 Crossing dependencies and the constituency → depen-

dency homomorphism

Another useful way of thinking about discontinuity and nonlocality is in terms of

dependency. If we represent the syntactic structure of a sentence very simply with a

word-word dependency tree, then nonlocality/discontinuity turns up slightly differ-

ently: as a crossing between dependency arrows. Figure 1.2 illustrates the crossing

dependency induced by a relative clause extraposition. Although the criteria of dis-

continuous constituency and crossing dependency may at first glance seem to be

rather different, we can actually translate rather freely between them due to a strong

mapping between headed context-free trees and dependency trees. In formal terms,

the local head-sister relation induces a surjection, or an onto function, from headed

CF trees to word-word dependency trees without crossing dependencies. That is,

every headed CF tree determines exactly one dependency tree (and the resulting de-

pendency tree has no crossing dependencies), and for every dependency tree without

crossing dependencies, there is a headed CF tree that maps to it. This result follows

from the work of Miller (2000), but I provide a more direct proof in Appendix A.

This mapping allows us to translate between talking about discontinuity, nonlocal

dependency, and crossing dependency rather freely. If we identify a sentence as having

no discontinuous constituents by providing a headed CF tree analysis for it (meaning

that all the dependencies are local), then we can be sure that the sentence has no

crossing dependencies. Likewise, if we show that a sentence has a crossing dependency,
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S

NP

Det

a

N

woman

VP

V

arrived

RC

WHNP

who

S

NP

Pron

I

VP

V

knew

Figure 1.3: Post-hoc nonlocal dependency recovery on context-free trees

we can be sure that there is no headed CF tree analysis for it in which all the relevant

node-node dependency relations are between local heads and sisters.7

1.4 Three approaches to discontinuous constituency

and parsing

The latter part of this thesis concerns itself with the problem of identifying nonlo-

cal dependencies in syntactic parse trees. We can usefully distinguish three different

approaches to this problem. The first involves two distinct, serial components of de-

pendency recovery—the first local, the second non-local—and the latter two involve

a single unified process of recovering both local and nonlocal dependencies. In the

former approach, the parsing task is first treated as approximately context-free: a

CFG description of the language is used as the grammar for parsing, and only local

7What we cannot do is to reason that if we have a headed discontinuous-constituency tree analysis
for a sentence, then it must have crossing dependencies. For example, a discontinuous-VP analysis
could be proposed for OSV word order in German embedded clauses:

S′

Comp S

NP VP

NP V Adv

daß die Gemüse sie ißt nicht

but, assuming that V is head of VP and VP is head of S, there is no crossing in the induced
dependency tree.
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S

NP/RC

NP

Det

a

N

woman

VP

V

arrived

RC

WHNP

who

S/NP

NP

Pron

I

VP/NP

V

knew

Figure 1.4: Category-structure enhancement of context-free trees

syntactic relationships are considered. Once inferences about the optimality of possi-

ble parses are made in the first, context-free phase, a second dependency correction

phase is introduced, where the input is a context-free parse tree and the output is

an augmentation of that context-free tree that includes annotation of its nonlocal

dependencies. The outcome of such a two-phase process is illustrated in Figure 1.3.

Note that nothing about the category structure of the tree itself illustrates that the

extraposed relative clause is a modifier of the subject NP, or that the relative pronoun

is the underlying object of knew. Rather, these facts are overlaid on top of the CF

tree with special annotations (illustrated crudely with the dashed and dotted lines).

This two-phase approach has the advantage of being able to directly leverage prior

work, because the bulk of the last decade of broad-coverage Treebank parsing (most

notably, Magerman 1994; Collins 1999; Charniak 1997, 2000) has concerned itself

precisely with the first phase defined here. The potential disadvantage is that the

context-free approximation in this first phase may encourage errors that cascade into

the total process of dependency recovery. I take up construction of the second phase

of this process in Chapter 3, and investigate the extent to which the context-free

approximation is a safe move, and the difficulty of subsequent nonlocal dependency

recovery.

The latter two approaches require the representation of discontinuous constituency

within a parser; there are two major strategies for this. On the one hand, it is pos-

sible to track discontinuous relations in the category structure of the parse chart.

This entails some variant of GPSG-style slashed categories to track the relationship
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a woman arrived who I knew

Figure 1.5: Discontinuous-constituency parse for extraposed relative clause

of a node inside a category X with some other node outside X. The probability of

edge construction can then be estimated using a variety of techniques taking into

account a variety of factors such as the major category, the slashed category, and

a variety of potentially trackable lexical heads. The effect on computational com-

plexity is well-understood: the number of categories C and right-hand rule sides R

can inflate dramatically, but the exponent with respect to string length remains the

same (although additional indexations, such as tracking the lexical head governing a

slashed category, can further increase the polynomial order of complexity). Collins

(1999) investigated a very limited subset of slashed-category grammars to recover

relativization information in English Penn Treebank parse trees. Hockenmaier (2003)

and Dienes and Dubey (2003a) also used this strategy, with mixed success. Because

the category-enhancement approach to parsing with nonlocal dependency is fairly

well-understood and has been previously investigated in a probabilistic setting, I will

not pursue it further in this thesis.

The other major strategy is to track discontinuous relations in the edge structure

of the parse chart. This approach has been much less extensively investigated. As I

discussed above, context-free edges are indexed only by their left and right bounds;

lexicalization effectively indexes one more internal position. A discontinuous category,

such as an NP with an extraposed relative clause, can be directly represented with a

more complicated edge structure. This situation is in fact not all that different from

that of lexicalized grammars. The Head Grammars of Pollard (1984), for example,

where a node in a derivation tree covers a pair of continuous substrings, can be parsed
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X

i j k l

Figure 1.6: Chart entry combination in a Head Grammar parse

in O(n6) time and O(n4) space. This is because a category in a Head Grammar chart

must have the structure in Figure 1.6. Four indices in the string track the complete

structure of a Head Grammar edge; all possible edge combinations can therefore be

expressed with six total indices. We can therefore retain tractability while allowing

limited forms of discontinuous constituency directly into our grammar. Virtually no

work has been done on probabilistic parsing with such grammars, however; Plaehn

(2000), working in the Discontinuous Phrase Structure Grammar framework (Bunt,

1996), is a rare exception. In Chapter 4, I investigate generalizations of the Head

Grammar approach to limited discontinuous constituency in a probabilistic parsing

setting.

1.5 Thesis Overview

In Chapter 2 of this thesis, I present a case for an expectation-based theory of online

syntactic processing. A realistic model of online syntactic processing must account

for our abilies to perform rapid, incremental processing, and to disambiguate lin-

guistic input robustly and accurately; it must also account for differential processing

difficulty—some parts of some sentences are harder to comprehend than other parts

of other sentences. The dominant theoretical paradigm of human sentence process-

ing (Miller and Chomsky, 1963; Clifton and Frazier, 1989; Gibson, 1998) has taken a

resource-limitation view of differential processing difficulty: different syntactic struc-

tures require different amounts of a given resource X (typically some form of working

memory), and X is in short supply in the human parser. While these models have

been successful in explaining a range of established processing results for English

and syntactically similar languages, they have more recently been found to be more

problematic for verb-final structures (Konieczny, 2000; Konieczny and Döring, 2003):
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they predict increased reading time at the final verb for longer clauses, but in fact

reading time seems to decrease as the number of preverbal dependents increases. I

explore expectation-based syntactic processing as an alternative, resource-allocation

view of differential processing difficulty, consistent with an alternative lineage of psy-

cholinguistic research (Marslen-Wilson, 1975; Tanenhaus et al., 1995; Jurafsky, 1996)

in which the human parser simultaneously explores a number of possible structural

interpretations in parallel, allocating different amounts of resources to alternative in-

terpretations in proportion to their plausibility at a given moment. Specifically, the

allocated resource is probability mass, and I show that if we assume processing diffi-

culty to arise from the redistribution of probability mass among alternative sentence

interpretations upon encountering new evidence, the predicted difficulty of a given

word in a sentence can be shown to be determined by the word’s probability given

what has come before it, a result equivalent to a previous proposal by Hale (2001).

Under such a theory, all that is required to make predictions about incremental pro-

cessing difficulty is a language model—that is, a probability distribution over strings.

I use language models derived from probabilistic context-free grammars of German to

show that this expectation-based model accurately predicts the results of Konieczny

(2000); Konieczny and Döring (2003) for final-verb reading times in German, and also

account quite well for results near the beginning of the German clause that had pre-

viously been argued to undermine frequency-based processing accounts (Schlesewsky

et al., 2000).

In Chapters 3 and 4 I turn to the problem of incorporating non-local dependency

into probabilistic grammatical models. Chapter 3 treats the identification of syntactic

dependencies as a two-phase, serial process, an approach comparable to traditional

LFG parsing (Kaplan and Maxwell, 1993), and more recently, the work of Johnson

(2002) for Penn Treebank parsing. In the first phase, an input string is parsed with a

probabilistic context-free grammar; in the second phase, the context-free parse serves

as an input to a discriminative classification model that determines the non-local de-

pendency relationships on the context-free tree. In each phase, the optimal structure

is greedily selected; this corresponds to a modularity assumption between the stages

of identifying context-free and trans-context-free structure. Among other things, the
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results of this serial algorithm can serve as a baseline to which any integrated al-

gorithm of nonlocal dependency recovery—such as the discontinuous-constituency

parsing algorithm of Chapter 4—can be compared. I find that when coupled with

a state-of-the art lexicalized PCFG parser for English (Charniak, 2000), the serial

approach does not lead to serious degradation of the ultimate recovered dependency

trees. For German, however, where PCFG parsing is much less developed, nonlocal

dependency recovery suffers from far more degradation.

Chapter 4 takes up the problem of probabilistic discontinuous-constituency parsing—

that is, parsing with probabilistic grammars whose derivation tree nodes can corre-

spond to discontinuous portions of the input string. In addition to a grammatical

formalism with this capability, this undertaking requires a parameter estimation pro-

cedure and a parsing algorithm. I show that the Linear Context-Free Rewrite Sys-

tem (LCFRS) formalism (Vijay-Shanker et al., 1987) is well-suited to the task for

two reasons. First, although it can generate mildly context-sensitive languages, the

derivations in an LCFRS grammar are context-free, a property which makes the

parameter estimation procedure for a probabilistic LCFRS particularly easy. Sec-

ond, unlike some forms of discontinuous-constituency grammars, the complexity of

LCFRS recognition is always polynomial, and the polynomial order of a particular

LCFRS can be bounded based on its most complex rule. I take up the problem of

estimating probabilistic LCFRSs (more succinctly, probabilistic wrapping grammars

or PWGs) from corpora of discontinuous-constituency trees (such as NEGRA and

the Penn Treebank) and parsing efficiently with the resulting grammars. I argue

that a major bottleneck for efficient parsing with the resulting grammars is the in-

corporation of distance sensitivity into derivation tree probabilities: some kinds of

discontinuous constituents in natural language tend strongly to favor small discon-

tinuities, but this fact is not reflected in the grammars resulting from the simplest

estimation procedures. I show that distance-sensitive PWGs can in fact be coherently

formulated using a factorization of the grammar into Immediate Dominance (ID) and

Linear Precedence (LP) components, a long-standing idea perhaps most prominent

in Generalized Phrase Structure Grammar (Gazdar et al., 1985) but not previously

given a probabilistic interpretation.
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Chapter 5, the conclusion, summarizes the major results of the thesis, and points

to future research directions opened up by this work, both in computational linguistics

and psycholinguistics.



Chapter 2

Surprisal-based syntactic

processing

In this chapter I investigate the application of probabilistic grammars in the formu-

lation of expectation-based models of online syntactic processing. I provide a new

information-theoretic derivation of a parallel, expectation-based model proposed by

Hale (2001), and apply it to the results of four recent online processing experiments

involving German word order. In every case, I show that the expectation-based model

matches experimental results at least as well as, and in most cases considerably better

than, competing memory-based models of online syntactic processing. Finally, I dis-

cuss several distinctive properties of the Hale (2001) model in comparison with other

expectation-based models, and consider future propects for its further development.

2.1 Introduction

The advent of generative grammar in the late 1950s and early 1960s defined many

of the central problems that still face the field of human sentence processing today.

Perhaps two related problems remain foremost: ambiguity resolution and differential

difficulty. The study of ambiguity resolution is perhaps most heavily motivated by

the fact that local syntactic ambiguities can sometimes cause a comprehender to

pursue the wrong analysis of a sentence, and may never be able to recover the correct

24
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analysis, as in (1) below.

(1) The horse raced past the barn fell.

Differential difficulty is the fact that not all sentences in the sets naturally defined

by generative natural language grammars are equally easy to comprehend. Center-

embedding is probably the best-known such case: syntactic analysis seems to point in-

evitably to the grammaticality of arbitrarily deep center embedding of relative clauses,

such as in (2) below, but (2c) is generally considered incomprehensible, despite the

fact that the sentence is at no point structurally ambiguous.

(2) a. The salmon fell off the grill.

b. The salmon that the man smoked fell off the grill.

c. The salmon that the man that the dog chased smoked fell off the grill.

Chomsky’s competence/performance distinction immediately suggests an explana-

tion: in competence terms, (2c) is perfectly grammatical, but performance limitations

render it difficult to understand. This is in contrast to (3) below, which in competence

terms is ungrammatical but nevertheless relatively easy to understand.

(3) *The salmon off the grill fell.

The original proposal by Miller and Chomsky (1963, pp. 470-472) was that the bad-

ness of nested-dependency constructions such as in (2c) arose from working memory

limitations : at the deepest part of a multiply-embedded relative clause, the compre-

hender has to remember all the previous levels of embedding, and retrieve them as

each relative clause is closed off. This idea synergized well with the wider understand-

ing of working memory limitations in cognitive psychology (see, for example, Miller

1956), and has led to the dominant paradigm of online syntactic processing theories,

which I will call resource-requirement or resource-limitation theories. In a nutshell,

these propose that:

� some syntactic structures require more of a given resource than do others; and
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� that resource is in short supply in the human parser; and

� this gives rise to greater processing difficulty for some structures than for others.

Typically this limited resource is some form of memory. The resource-limitation po-

sition has also come to inform a persistent view of ambiguity resolution: the resource-

limited parser can only pursue one alternative at a time (i.e., the parser is serial), and

in the face of local ambiguity, the processor chooses the alternative that minimizes

the resources consumed. This viewpoint has inspired a variety of ambiguity resolu-

tion theories, including Late Closure (Frazier and Fodor, 1978), Minimal Attachment

(Frazier, 1979), and the Active Filler Hypothesis (AFH; Clifton and Frazier 1989).

Both the notion of differential processing difficulty and the accompanying pro-

cessing theories have evolved in the past forty years. More refined experimental

techniques, notably self-paced reading and eye-tracking, have allowed researchers to

identify loci of processing difficulty at specific points within individual sentences.

Correspondingly, as measurements have improved, theories have become more re-

fined. Perhaps the most salient modern incarnations of memory-centered resource-

requirement theories are, for ambiguity resolution, the AFH; and, for locally unam-

biguous sentences, Gibson’s Dependency Locality Theory (DLT; Gibson 1998, 2000).

At the same time, an alternative line of research has focused on the role of expec-

tations in syntactic processing. This idea has historically been associated most closely

with so-called constraint-based processing models such as that of MacDonald (1993);

MacDonald et al. (1994); Tanenhaus et al. (1995); McRae et al. (1998), and can be

traced back to early work by Marslen-Wilson (1975).1 This line of work typically

takes a strong integrationist and parallelist perspective: the comprehender draws on

a variety of information sources (structural, lexical, pragmatic, discourse) to evaluate

in parallel a number of possible alternatives for the input seen thus far. For the most

part, the primary concern of constraint-based work has been ambiguity resolution, the

argument being that possible structural analyses are ranked according to their plau-

sibility on a number of dimensions, rather than according to the amount of resources

1See Jurafsky (2003) for a more comprehensive account of the history of expectation-based ap-
proaches in human sentence processing, including syntactic processing.
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they consume. Empirically observed processing difficulty after local ambiguity resolu-

tion is informally ascribed to either a reranking of the favored analysis, or competition

between closely-ranked analyses. In combination with a committment to parallelism,

the constraint-based position can be thought of as a resource-allocation approach to

syntactic processing: the parser allocates different amounts of resources to different

interpretations of the partial input, and difficulty arises when those resources turn

out to be inefficiently allocated.

As argued by Jurafsky (2003), probability theory fits naturally as an underlying

infrastructure for constraint-based approaches to express the combination of multiple

information sources. The use of probability theory for psycholinguistic modeling has

in fact become more prevelant over the past decade, beginning with Jurafsky (1996)

and continuing in Narayanan and Jurafsky (1998, 2002); Crocker and Brants (2000).

Nevertheless, because ambiguity resolution has been the primary concern, none of

this work has formulated a precise linking theory between ambiguity-resolution mod-

els and observable measures that would account for differential processing difficulty.

The work of Hale (2001, 2003a) has begun to redress this state of affairs, by proposing

models of processing difficulty based on incremental parsing with probabilistic gram-

mars; I discuss this work in greater detail in Section 2.2. In this chapter I present

a linking theory for constraint-based ambiguity resolution, by deriving a resource-

allocation theory of processing difficulty: the possible structural analyses of a partial

input are preferentially ranked in parallel, and the difficulty of a new word corre-

sponds to the amount of reallocation necessary to reflect the word’s effect on the

preference ranking. In Section 2.2, I give the derivation of this theory, which allows

us to make highly precise predictions about the difficulty of a given word in a given

sentence while remaining agnostic as to exactly what the possible structural analyses

of the sentence are, and show that it is equivalent to the surprisal theory stipulated

by Hale (2001). In the remainder of the chapter I proceed to investigate the condi-

tions under which resource-allocation and resource-requirement theories maximally

diverge in their difficulty predictions, and argue that the surprisal theory explains a

considerable portion of the variation in processing difficulty experimentally observed

in online comprehension.
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2.2 Deriving a resource-allocation theory of pro-

cessing difficulty

In this section I present a new derivation of a theory of resource-allocation processing

difficulty, based on a highly general conception of sentence comprehension, and ac-

counting for principles that are necessary for any realistic model of human sentence

processing.

A language contains a (normally infinite) set of complete structures such that a

fully disambiguated utterance corresponds to exactly one structure. Each structure

contains the complete string of the utterance, plus presumably at least some other

information, since some well-formed strings are ambiguous. As an example, we might

consider a complete structure to be the string plus its syntactic/semantic analysis, so

that the sentence the girl saw the boy with a telescope might be compatible with two

possible complete structures, one where with a telescope modifies saw and one where

it modifies boy. However, we will remain agnostic as to precisely what these complete

structures contain, so long as they contain the complete string.

We can reasonably define what it means to comprehend a sentence S as choosing

the “best” or “most highly preferred” structure complete structure T (mnemonic for

a (syntactic/semantic) tree, but not necessarily a structure with tree-like topology)

that is consistent with S; more generally, sentence comprehension can be said to

involve the (implicit or explicit) construction of a preference ranking over all the the

possible structures T in the language, given S. We will use the language of probability

theory to express preferences and rankings, so comprehension of S involves placing a

probability distribution over all the possible T in the language once we have seen S.

There is ample evidence, however, that sentence comprehension is incremental :

we do not wait until we have heard an entire sentence to start disambiguating and

comprehending. Perhaps the most explicit demonstration of this fact comes from

work in cross-modal eye-tracking (Altmann and Kamide, 1999), where listeners were

demonstrated to start looking at the plausible objects in a picture for the main verb of

a sentence as soon as they heard the verb. Comprehenders are able to make inferences

about later parts of the sentence based on what they have heard earlier in the sentence.



CHAPTER 2. SURPRISAL-BASED SYNTACTIC PROCESSING 29

To capture this fact, we define the comprehension of a partial input sequence w1···i (the

first i words of the sentence) to be placing a preference (i.e., probability) distribution

D over the possible structures T based on w1···i, plus context external to the sentence

itself. For listeners to be capable of incremental inference, they must be constantly

updating D; for simplicity in the present context, we assume that they update D

after every input word.

The probability distribution D consists of an allocation of resources among the

possible interpretations of the sentence, and for the resource-allocation theory of pro-

cessing difficulty our single stipulation will be that difficulty is incurred by updating

D, and that difficulty is quantified by the degree that D has to be updated. To quan-

tify the update of D we will use the relative entropy of the updated distribution with

respect to the old distribution. The relative entropy of a probability distribution

q with respect to another distribution p (also known as the Kullback-Leibler (KL)

divergence of q from p) is defined as

D(q||p) =
∑

T∈T

q(T ) log
q(T )

p(T )
(2.1)

Intuitively speaking, the relative entropy of q with respect to p can be thought of

as the penalty incurred from encoding the distribution q with p. When q = p,

D(q||p) = 0, and the greater the difference between the distributions, the greater the

relative entropy.

Remarkably, it turns out that under this formulation of resource-allocation pro-

cessing difficulty, regardless of the form of complete structures T or the preference

distribution D, the predicted difficulty of the ith word, wi, is precisely equal to the

surprisal of wi, which is defined as the negative log-probability of wi in its sentential

context (which we denote by the already-seen input sequence w1···i−1) and extra-

sentential context (which we denote simply by CONTEXT):

difficulty ∝ log P (wi|w1···i−1, CONTEXT) (2.2)
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Precisely this measure of difficulty was in fact proposed as a stipulation by Hale

(2001), albeit specifically for the case of a probabilistic context-free grammar Earley

parser with no extra-sentential context. Surprisal is minimized (goes to zero) when a

word must appear in a given context (i.e., when P (wi|w1···i−1, CONTEXT) = 1), and

approaches infinity as a word becomes less and less likely. I give the simple proof of

this result in Section 2.2.1, and discuss its implications in Section 2.2.2.

2.2.1 Proof of equivalence to surprisal

Consider any stochastic generative process that generates complete structures that

consist at least partly of surface strings to be identified with serial linguistic input.

Examples of such processes include but are not limited to n-gram models, Hidden

Markov Models (HMMs), and probabilistic context-free grammars. Call T the set

of complete structures generated by this process, and P the probability distribution

that the process induces over T , conditioned on some (possibly null) external context.

Furthermore, for any particular input prefix w1···i define the probability distribution

Pi as the conditional distribution over T induced by P , given the prefix w1···i:

Pi(T ) ≡ P (T |w1···i), ∀T ∈ T (2.3)

and define the set Ti as the set of complete structures with prefix w1···i (note that Ti is

also the subset of T that has non-zero probability according to Pi). We will also give

P and Pi a secondary meaning as signifying joint and conditional (respectively) prob-

ability distributions over words: P (w1···i) ≡
∑

T∈Ti
P (T ), and Pi(w) ≡ P (w|w1···i).

I will now show that

D(Pk+1||Pk) = − log Pk(wk+1) (2.4)

i.e., the relative entropy of the distribution over hidden structures after having seen

wk+1 from the distribution before having seen wk+1 is simply equal to the surprisal of

wk+1.

Proof. The proof requires only a simple application of the chain rule. First, note that
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for any integer j and any T ∈ Tj ,

Pj(T ) ≡ P (T |w1···j) (2.5)

=
P (T, w1···j)

P (w1···j)
(2.6)

And by virtue of the fact that T is in Tj ,

Pj(T ) =
P (T, w1···j)

P (w1···j)
(2.7)

=
P (T )

P (w1···j)
(2.8)

Therefore, for all T ∈ Tk+1,

Pk+1(T )

Pk(T )
=

P (T )
P (w1···k+1)

P (T )
P (w1···k)

(2.9)

=
P (w1···k)

P (w1···k+1)
(2.10)

≡
1

Pk(wk+1)
(2.11)

independent of T .

Therefore, the KL divergence from Pk+1 to Pk is

D(Pk+1||Pk) =
∑

T∈Tk+1

Pk+1(T ) log
Pk+1(T )

Pk(T )
(2.12)

= log
1

Pk(wk+1)

∑

T∈Tk+1

Pk+1(T ) (2.13)

= − log Pk(wk+1) (2.14)
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Intuitively, this proof results from the fact that the ratio of the probability of any

complete structure T before versus after seeing a word wk+1 is constant, because the

original process generating T is the same. This constant ratio has to be the amount

of probability mass pruned away from Pk by the requirement of compatibility with

wk+1—in other words, the conditional probability of wk+1, as seen in Equation 2.11.

This is the probability ratio term in the KL divergence, as seen in Equation 2.13, and

because it is constant, the probability over structures T can be independently summed

out. Finally, note that this proof of equivalence only holds if the extrasentential

context does not change at the same time as wk+1 is processed; if the extrasentential

context is changed, it may change the structure of P , which may break the constancy

of the probability ratio derived in 2.11.

2.2.2 Implications of relative-entropy derivation of surprisal

This equivalence has important implications for how we conceptualize the incremental

parsing process. In a fully parallel, incremental probabilistic parser capable of online

inference (that is, inference before input is complete), storing the complete set of

ranked partial parses consistent with already-seen input is also equivalent to assigning

a probability distribution over the complete structures to which the already-seen input

may possibly extend. Upon termination of the input, this set of ranked partial parses

determines a most-likely interpretation. On the way, after every new input token,

such a parser must update its collection of ranked partial parses—and therefore its

distribution over completed parses—to reflect the new information. Intuitively, the

KL divergence from a distribution p to another distribution q measures the penalty

incurred by encoding, or approximating, q with p. The surprisal can therefore be

interpreted as the difficulty incurred in replacing the old distribution with the new.

In most cases, a partial input w1···i will be compatible with an infinite number of

complete structures T—we can see this simply from the fact that the beginnings of

most sentences can be completed in an infinite number of ways. Therefore, it is neither

psychologically nor practically possible for the distribution D to be implemented as
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an enumeration over complete structures. Rather, D would be implicitly determined

by some tractable incremental processing algorithm, such as a chart parser (Kay,

1980). The cognitive plausibility of such an architecture is demonstrated by the

implementation and experiments I discuss in the subsequent sections of this chapter,

using only a modest quantity of computational resources.2

Remarkably, however, we have found in Section 2.2.1 that in order to determine

relative-entropy incremental update costs for a stochastic generative grammar G we

do not necessarily even need to implement an incremental parsing architecture for

it. Because the incremental update cost of a word wi is simply its contextualized

surprisal—log P (wi|w1···i−1, Context)—as long as we can calculate the probabilistic

word model that G determines, we can determine the word-by-word difficulty that

G predicts. Deriving surprisal from this information-theoretic characterization of

incremental update in the human parser provides an interpretation of the surprisal

model of expectation that connects robust processing, disambiguation, inference, and

processing difficulty. In addition, this derivation leads to several desirable properties

of the surprisal-based processing model, which I now proceed to outline.

First, deriving rather than stipulating surprisal eliminates a potential conceptual

vulnerability of expectation-based approaches: calculating expectations about up-

coming structures in a sentence can be computationally expensive, so why would the

human parser waste resources on constantly calculating and updating the likelihood

of upcoming words and/or structures in a sentence? We now have a clear answer

to this challenge: surprisal as the predicted difficulty of word wi falls out of the in-

cremental update process itself. Expectations about upcoming words in a sentence

need not be explicitly calculated; rather, they are implicit in the partial parse of an

incomplete input.

Second, the proof in Section 2.2.1 shows that a processing difficulty metric de-

fined with respect to probability distributions over arbitrary linguistic structures can

2All of the models I describe in this chapter could be calculated using an untuned Java implemen-
tation of Stolcke (1995)’s incremental chart parsing algorithm using only a few hundred megabytes.
The large majority of processing time required was devoted to logarithmic and exponential opera-
tions, nearly all of which could be done away with if desired, at the price of a small loss in arithmetic
precision.
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be re-expressed in terms of probability distributions over strings. This means that we

have expressed a representation agnosticism for our theory of processing difficulty:

in order to make predictions about word-by-word processing difficulties, we do not

need to make a strong committment to a particular grammatical formalism and ac-

companying probability distribution. All we need to do is to estimate a probabilistic

string model that captures the distributional linguistic regularities that we are in-

terested in. The predictions made by such a model will apply for any probabilistic

grammar that determines the same probability distributions over strings. In another

manner of speaking, we have separated the problem of estimation from the problem

of representation.

For example, McDonald and Shillcock (2003) show that a word’s bigram prob-

ability is a significant predictor of reading times for a corpus of British newspaper

articles. A bigram word model is a conditional probability model over strings. Given

the representation agnosticism we have derived for surprisal-based processing, we do

not need to conclude from McDonald and Shillcock’s work that the human parser

tracks bigrams (although the authors themselves conclude something close to this).

We can instead conclude more agnostically that the probabilistic grammatical mod-

els the human parser uses for incremental processing and disambiguation determine

probabilistic languages that, at a minimum, sensitize the probability of a word wi

to the word wi−1 that immediately precedes it. This encompasses a wide range of

probabilistic structures, including not only n-grams but also, for example, lexicalized

PCFGs (Charniak, 2001). The representation agnosticism is relevant to the modeling

in this chapter, both in Section 2.4.1 for the treatment of German relative clauses,

and in Section 2.6 in the treatment of German main-clause word-order variation.

A third point, closely related to representation agnosticism, has to do with bias in

estimating word-by-word comprehension difficulty. Many stochastic string-generating

processes (including HMMs and PCFGs) generate unobserved hidden structure “be-

hind” the string—parts of speech in HMMs, syntactic trees in PCFGs—whose gran-

ularity is not known a priori. In order to determine a specific probabilistic model,

a granularity level must be chosen and the relevant event probabilities must be esti-

mated with respect to that granularity. Because a word’s surprisal is totally dependent
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on the resulting probabilistic string language, however, a refinement in granularity

level will not result in a change in surprisal predictions of a maximum-likelihood esti-

mated model unless there are empirical differences in the relevant event probabilities

at the finer granularity. As an example, in PCFG modeling we might wonder whether

to grammatically distinguish animacy at the level of the noun phrase. Adding a bi-

nary animacy distinction to the grammar, for example, would split the following three

rules into six:

(4) a. S → NP VP ;

S → NP[+anim] VP

S → NP[−anim] VP

b. NP → Det N[sg] ;

NP[+anim] → Det N[sg]

NP[−anim] → Det N[sg]

c. NP → N[pl] ;

NP[+anim] → N[pl]

NP[−anim] → N[pl]

Now suppose that animate and inanimate NPs turn out to have exactly the same

relative frequency of realization as singular (as in (4b)) versus plural (as in (4c)). Un-

der these circumstances, the resulting animacy-distinguished PCFG still determines

exactly the same probabilistic string model, and so its surprisal predictions will be

unchanged. (If animate and inanimate NPs were realized as singular/plural with

different empirical differences, the resulting probablistic string model and surprisal

values would of course reflect this, as would be desired.) This lack of granularity-

induced bias contrasts sharply with other probabilistic syntactic processing models,

as I proceed to describe in Section 2.2.3.

2.2.3 Comparison with other probabilistic syntactic process-

ing models

As I note in Section 4.1, the constraint-based paradigm of ambiguity resolution gen-

erally ascribes empirically observed processing difficulty to the reranking of candidate

analyses, or to competition between multiple high-probability analyses. We can also



CHAPTER 2. SURPRISAL-BASED SYNTACTIC PROCESSING 36

usefully distinguish pruning approaches (Jurafsky, 1996), which conceive of incre-

mental parsing as a limited-parallel ranking process, and ascribe difficulty to the

pruning away of temporarily low-probability candidates that turn out to be needed;

and attention-shifting approaches (Narayanan and Jurafsky, 1998, 2002), a special

form of reranking difficulty in which changes in the identity of the highest-ranked

candidate cause difficulty. The surprisal theory can also be thought of as a special

form of reranking, in which the cost of reranking is determined by the relative entropy

between the old and new rankings.

All of these approaches (including reranking in its most general form), however,

differ crucially from the surprisal theory in that they are neither representation-

agnostic nor immune to granularity bias. To assess the degree of competition be-

tween analyses, it is necessary to make a prior committment as to what counts as

“one” analysis. To determine whether a given analysis will be pruned away, it is

necessary to specify that analysis precisely, either to determine the exact probability

mass it determines, or to count how many analyses are ranked above it. Likewise, the

attention-shifting approach requires a determination of the highest-ranked analysis,

which again requires a precise specification. It might be thought that representation-

dependence is a positive feature of a probabilistic processing theory, which might be

of interest to theoretical linguists as a means of choosing between alternative syn-

tactic analyses. I submit, however, that representation-dependence is, all else being

equal, a negative feature of a probabilistic processing theory. The susceptibility of

representation-dependent theories’ predictions to shift as the structure and granular-

ity of the model change makes the specific predictions of the theory (given a set of

empirical syntactic distributional regularities) more flexible and more difficult to pin

down, and therefore more difficult to falsify. Although the predictions of the sur-

prisal theory are still dependent on the structure, empirical basis of estimation, and

independence assumptions of the probabilistic model used, the route to determining

empirical predictions is nevertheless clearer.

The issue of representation dependence also emerges in another recently-proposed

syntactic processing theory, the Entropy Reduction Hyphothesis (ERH) of Hale (2003b,a,

2004). In this theory, the difficulty of a word w is the difference between the entropies
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of the probability distribution over compete structures T before and after seeing w.3

Although the idea seems attractive and its implementation is technically interesting,

the ERH is beset with several conceptual difficulties. First, entropy is a summary

measure of an individual probability distribution, and taking the difference of the

entropies of two different probability distributions in no way compares any important

properties of the two distributions with each other (entropy can even increase after

seeing a given word). The relative-entropy measure I have argued for is defined as a

point-by-point comparison of two probability distributions in a conceptually meaning-

ful way. Second, the ERH is highly susceptible to granularity bias; more fine-grained

distributions have higher entropy.4 Third, the ERH fails to capture certain important

intuitions that we expect of an expectation-based processing theory. For example, al-

though it predicts that processing an open-class word incurs more difficulty than a

closed-class word (because the distribution of words in an open class is higher en-

tropy), it does not predict that high-frequency words in an open class are generally

easier to process than low-frequency words in an open class, because the entropy re-

duction is the same (in both cases the entropy associated with the unknown word goes

to zero); the ERH therefore cannot smoothly incorporate well-known findings that

word frequency and contextual plausibility are negatively correlated with measures

of processing difficulty (see Rayner 1998, pp. 387–388 for discussion and references),

as the surprisal model can.5

In summary, the surprisal model can be seen as an elegant instantiation of a

reranking theory with especially elegant mathematical properties, capturing the core

3The entropy H of a probability distribution p is defined as

H(p) ≡
∑

T∈T

p(T ) log p(T )

Note the close relationship between the form of the entropy of a distribution p and the relative
entropy of p from another distribution q, given in 2.1.

4One way of remedying granularity bias would be to use complete-sentence entropy rather than
complete-structure entropy as the measure of interest.

5One area where entropy rate (in contrast to entropy reduction) might plausibly play a useful role
would be as a generalization of the competition model of processing difficulty, because “competing”
candidate sets can be thought of as high-entropy. Keller (2004) has in fact conducted a preliminary
investigation of entropy rate as a predictor of processing difficulty, although he used per-word rather
than complete-sentence entropy.
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intuitions underlying the idea that expectations play a role in determining processing

difficulty. The intuitions behind pruning, competition, and attention-shift models of

syntactic processing difficulty are, of course, valid and merit theoretical and exper-

imental investigation; but the representation-independence and immunity to granu-

larity bias make the surprisal model perhaps particularly robust and easy to use in a

concrete analytical setting.

2.3 Divergence in predictions of expectation and

locality theories

The surprisal-based theory of expectation-based processing outlined in the previous

section provides a framework for predicting the degree of difficulty associated with

comprehending each word in a sentence. It is therefore of interest for us to consider

the general types of predictions this theory makes, and how they diverge from the

predictions of locality-based theories of difficulty. I take locality-based processing

theories to include two hallmark proposals as to the primary sources of difficulty

in syntactic comprehension. The first is that difficulty is incurred when a syntactic

relationship between distant entities needs to be constructed, and that the greater

the distance, the greater the difficulty. Gibson’s Dependency Locality Theory (DLT;

Gibson 1998, 2000) is perhaps the best-known instance of this type of proposal. The

second proposal is that preference for more local syntactic relationships directly guides

disambiguation, and when maximally local structures turn out to be wrong, difficulty

is incurred because the parser has been misled. This proposal has had a wider variety

of incarnations, including perhaps most prominently Minimal Attachment/Late Clo-

sure (Frazier and Fodor, 1978; Frazier, 1987) and the Active Filler Hypothesis (AFH;

Clifton and Frazier 1989).6

At a general level, how do the predictions of locality- and surprisal-based the-

ories differ? Since locality-based theories only make predictions involving syntactic

dependencies, we can conveniently divide our scope of discussion into the three major

6Gibson (1998) also gives suggestions as to how the DLT could guide attachment preference, but
disambiguation has not been a major theme in DLT-guided research.
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types of dependencies observed in natural language: head-initial, head-final, and long-

distance dependencies.7 Head-initial dependencies, under some circumstances, create

an interesting but familiar contrast between late-closure and expectation-based pro-

cessing theories. When a modifier attaches leftward into a recursive, right-branching

phrase, it creates an attachment level ambiguity. In the phrase the chauffeur of the

actor who lost his wallet, for example, the relative clause can modify either of the

nouns to its left. Under the most common circumstances in English, the attachment

preference is to the lower NP. Late Closure demands that the most recently processed

node be the preferred site of attachment, and thus predicts this preference, since the

lower NP is constructed more recently than the higher NP. However, Cuetos and

Mitchell (1988) found that in Spanish, the higher attachment is preferred, calling

into question Late Closure as a universal principle. It also turns out that the low

attachment is more frequent than the high attachment in English, but in Spanish the

reverse is the case. This led to the Tuning Hypothesis proposed by Mitchell and Cue-

tos (1991): parsing preferences are sensitive to construction frequencies. Language-

and frequency-sensitive attachment preferences have been the subject of consider-

able research since then (Mitchell and Cuetos, 1991; Mitchell, 1994; Mitchell et al.,

1995; Gibson et al., 1996a,b; Carreiras et al., 1996; Mitchell and Brysbaert, 1998;

Gibson and Schütze, 1999; Desmet et al., 2002; Desmet and Gibson, 2003), which for

reasons of space I will not go into. At present, however, all attachment-level prefer-

ences reflected in experimentally observed online reading time differentials seem to

be consistent with fine-grained corpus frequencies.8

In the case of these head-initial dependencies, the surprisal theory simply reiterates

Cuetos & Mitchell’s Tuning Hypothesis. If a partially-completed right modifier is

compatible with multiple leftward attachments, the rational comprehender will have

7A long-distance dependency may alternatively be considered a dependency between an extra-
posed element and its “origin” site, or a direct dependency with its governor. In practice, this
distinction is usually irrelevant, as the primary point of interest is the (pretheoretical) ambiguity
induced by a leftward-extraposed long-distance dependent.

8The two recent challenges to frequency-based accounts were Mitchell and Brysbaert (1998),
who found a frequency/preference mismatch in Dutch; and Gibson and Schütze (1999), who found a
frequency/preference mismatch for three-level complex NPs in English. Both findings have since been
found to be consistent with finer-grained analysis of corpus frequency and follow-up experiments,
by Desmet et al. (2002, 2005) and Desmet and Gibson (2003) respectively.
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allocated more probability mass to the more frequent attachment. A continuing

word consistent only with the less frequent attachment will be more surprising than

one consistent only with the more frequent attachment. The surprisal model makes

predictions potentially divergent from some locality-based models, but in exactly the

same way as the Tuning Hypothesis.

Head-final dependencies, in contrast, turn out to be a rich source of divergence

between the predictions of DLT-type and surprisal theories. There are a variety

of syntactic circumstances in which a comprehender knows that a final governing

category has to appear, but does not know exactly when it will appear, or what

it will be. This happens when nouns in English are premodified: the big fuzzy. . .

is the start of a noun phrase, and the next word might be the main noun, but it

might be another adjective, and in any event we don’t know which word the main

noun eventually will be. The situation is more extreme in the typologically common

configuration of obligatorally verb-final clauses, such as in German, Japanese, or

Hindi, where the preverbal content of the clause is often quite long. As Konieczny

(2000) points out for verb-final German clauses, the DLT predicts in these cases

that a larger number of left dependents will cause greater processing difficulty at

the final governor, because all the left dependents must be integrated with it at the

same time (c.f. head-initial dependency, where each dependent is integrated as it

is seen, one at a time). But the surprisal theory makes the opposite prediction in

this case. The more dependents we have seen, the more information we have about

their governor, and in general the more information we have, the more accurately we

should be able to predict that governor’s location and identity.9 Experiments relevant

to this divergence in prediction have been carried out by Konieczny (2000); Konieczny

and Döring (2003); Vasishth (2002), and annotated data are available to construct

surprisal models for German. In Sections 2.4 and 2.5 I construct models of surprisal

in German verb-final clauses, showing that predictions of the surprisal theory closely

9Konieczny informally makes a similar point: extra dependents can help us narrow down the class
of events that a final verb might denote, and therefore aid in lexical access. The surprisal theory
encompasses this position, which involves prediction of the identity of the item ending the clause, but
is more general, as it includes predictions about the position of the end of the clause. See discussion
of Jäger et al. (2005) in Section 3.8 for evidence that humans make accurate, syntactically-driven
positional predictions consistent with the surprisal model.
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match qualitative reading-time patterns.

DLT-style and AFH-style theories make similar predictions regarding long-distance

dependencies that violate minimal locality. The classic case of such a long-distance

dependency is a leftward extraction that could potentially originate in one of a num-

ber of extraction sites, and turns out not to originate in the leftmost site, such as an

object relativization or an embedded wh- relativization:

(5) a. The reporter who * the senator attacked admitted the error. (Gibson,

1998)

b. Who did the senator hope * the reporter would recognize?

In each of the examples, a local ambiguity arises from the fact that the italicized

extract could originate from the starred location, which is the leftmost extraction site

possible, but turns out not to. In the DLT and AFH, this causes greater difficulty

(as compared to an extraction from the starred location) in between the leftmost

possible and the true extraction sites—in the AFH due to the cost of backtracking, in

the DLT due to the memory cost of maintaining the extracted element longer plus the

final cost of a longer-distance integration. These predicted asymmetries have been

confirmed (Gibson et al., 2005a).

In the case above, surprisal-based processing predicts the same general asymmetric

difficulty, but for a different reason: in the above examples, extractions from the

leftmost site are more common than more distant extractions.10 Using a PCFG

with empirically-estimated rule frequencies, Hale (2001) showed that the surprisal

of object-extracted relative clauses such as (5a) exceeds that of subject-extracted

relative clauses. The difference in surprisal follows directly from the fact that the

10Proponents of locality-based complexity in comprehension have argued that these frequency
asymmetries should be viewed as derivative of, rather than causing, asymmetries in comprehension
difficulty (see Gibson 1998, p. 59, Gibson and Pearlmutter 1994 as examples), implicitly contingent on
the presupposition of altruistic speakers. Although this position may seeem attractive in the present
context, carried out logically it also leads to problematic conclusions such as that the typologically
common head-final word order should be rare. On a frequency-sensitive view of comprehension,
locality preferences in grammars can still be reasonably ascribed to production pressures. Finally,
the surprisal theory of comprehension does have non-trivial implications regarding comprehension-
optimal grammars; I take up this issue in Section 2.8.3.
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PCFG rule probability for the subject extraction (6a) below is much higher than that

for the object extraction (6a).11

(6) a. S/NP → VP

b. S/NP → NP VP/NP

A rigorous test of diverging predictions between locality and surprisal processing the-

ories in the case of long-distance dependencies would be possible in a situation where

the the most common origin site of a leftward-extracted element is not the leftmost

site possible. In this situation, the divergence would emerge that in (appropriately

controlled) contrasts between leftmost-site and most-common site extractions, lo-

cality predicts greater difficulty for most-common site extractions whereas surprisal

predicts greater difficulty for leftmost-site extraction. Unfortunately, I am not aware

of a clear-cut case where this mismatch between the locality and frequency of ex-

traction site holds. Nevertheless, more fine-grained patterns within the canonical

cases of long-distance extraction have been studied, varying the syntactic and se-

mantic properties of extracted elements, their governors, and intervening material.

One such study, that by Schlesewsky et al. (2000), proposes a syntactic treatment

of ambiguity resolution in German finite-clause word order as involving non-local

dependency, together with an AFH theory of processing patterns. In Section 2.6, I

present a detailed analysis of experiments that Schlesewsky et al. argue undermine

serial frequency-based processing accounts, and show that surprisal actually models

these experiments more precisely than the AFH itself. This analysis highlights some

of the differences between predictions in cases of ambiguity resolution of the parallel

surprisal theory and serial theories based on both locality and frequency. In addition,

a number of recent studies (Gordon et al., 2004; Grodner and Gibson, 2005; Jäger

et al., 2005) present detailed experimental results on English relative clause reading

times that are highly relevant to locality/surprisal contrasts. I discuss these results

and their implications for locality and surprisal in Section 3.8.

11The “/NP” part of the rule is a Generalized Phrase Structure Grammar (Gazdar et al., 1985)
style notation indicating the presence of a long-distance extracted element, in this case the relative
pronoun. Although the form of the rules here is slightly different than that presented by Hale 2001,
the generalization is exactly the same.



CHAPTER 2. SURPRISAL-BASED SYNTACTIC PROCESSING 43

2.4 Konieczny’s verb-final clause results

In German, nonfinite verbs (as well as finite verbs in embedded clauses) are clause-

final. Unlike in English, therefore, when a verb is encountered, the number and

distance of previous dependents can vary widely. Konieczny (2000) investigated the

effect of this variation on processing difficulty in a self-paced reading time study,

measuring reading time at clause-final verb in transitive German embedded clauses

where the amount and type of material between the direct object and the final verb

varied (7),(8).12

(7) a. Er
he

hat
has

die
the

Rose
rose

hingelegt,
laid down,

und
and

. . .

. . .

b. Er
he

hat
has

die
the

Rose
rose

auf den Tisch
on the table

gelegt,
laid,

und
and

. . .

. . .

c. Er
he

hat
has

die
the

Rose
rose

auf den kleinen runden Tisch
on the small round table

gelegt,
laid,

und
and

. . .

. . .

(8) a. Er
he

hat
has

die
the

Rose,
rose,

die
that

wunderschön
wonderful

war,
was,

hingelegt,
laid down,

und
and

. . .

. . .

b. Er
he

hat
has

die
the

Rose,
rose,

die
that

wunderschön
wonderful

war,
was,

auf den Tisch
on the table

gelegt,
laid,

und
and

. . .

. . .

c. Er
he

hat
has

die
the

Rose,
rose,

die
that

wunderschön
wonderful

war,
was,

auf den kleinen runden Tisch
on the small round table

gelegt,
laid,

und
and

. . .

. . .

In (7a) the verb directly follows the direct object; in (7b)-(7c) a prepositional

phrase goal of varying size intervenes between the direct object and the verb; in (8a)

the direct object is postmodified by an in-situ relative clause, after which the verb

immediately appears; and in (8b)-(8c) both a relative clause and a varying-length

12Konieczny also varied the length of the relative clause, but the effect of this variation on reading
time was not statistically sigificant and is irrelevant to the modeling in this section, so I ignore it
for the moment.



CHAPTER 2. SURPRISAL-BASED SYNTACTIC PROCESSING 44

PP intervene before the final verb. From a locality-based perspective the predictions

are clear: the verb should be easiest to process in (7a), because it has the fewest

and nearest dependents; and hardest to process in (8c), because it has the most and

farthest dependents.

But Konieczny found the opposite pattern: the verb was processed the fastest in

(8c) and slowest in (7a) (see Figure 2.1). From the perspective of locality-based pro-

cessing theories where memory limitations are the main source of processing difficulty,

this result is very surprising. The result is consistent, however, with the perspective

of expectation-based processing. The more dependents we have seen, the more in-

formation we have about their governor, and in general the more information we

have, the more accurately we should be able to predict that governor’s location and

identity. In order to quantify this effect in terms of surprisal we need only provide

an appropriately formulated probabilistic language model. I now proceed to provide

such a model and analyze its predictions with respect to Konieczny’s experimental

data.

2.4.1 An expectation-based analysis

In order to determine the predictions of surprisal-based sentence processing on Ko-

nieczny’s data, it is necessary to choose a probabilistic language pi(w). The choice of

model should be driven by our linking hyphothesis between incremental comprehen-

sion and difficulty: the model chosen as optimal for purposes of incremental processing

and disambiguation should accurately predict per-word reading times. The principle

of likelihood maximization seems appropriate here: models that give high likelihood

to data are generally good for making inferences about that data. The state of the art

in language models that give high likelihood to naturally-distributed data is, however,

generally achieved through n-grams (although Charniak 2001 gives intriguing results

for high-likelihood language models using a lexicalized PCFG parser). In our case,

our data—the experimental stimuli used in reading-time experiments—do not follow

natural distributions, but rather involve a single sharp contrast in one dimension of



CHAPTER 2. SURPRISAL-BASED SYNTACTIC PROCESSING 45

syntactic variation, while minimizing other lexical and structural variation. In partic-

ular, it will become clear that sensitivity to the constituent history of the sentence is

crucial in determining expectations, so a grammar-sensitive conditional word model

makes sense.

For this reason, I use a probabilistic context-free grammar (PCFG) of German

to construct a language model. Given a PCFG, existing algorithms by Jelinek and

Lafferty (1991) and Stolcke (1995) show us how to calculate the prefix probability of

a string: the total probability of all trees (or strings) consistent with that prefix.

As pointed out by Hale (2001), the conditional probability of wi is then simply the

ratio of the prefix probabilities of w1···i−1 and w1···i. I take advantage of the hand-

parsed NEGRA corpus (Skut et al., 1997a), and use essentially the grammar read

straight off the parsed corpus to construct a language model, making only minimal

changes to the corpus necessary to reflect the crucial, coarse-grained dimensions of

variation relevant in each experiment. In all cases I use relative-frequency (maximum-

likelihood) estimation of rule probabilities.

Prepositional Phrases

Konieczny’s prepositional-phrase results turn out quite nicely in the surprisal-based

model. In addition to a small number of modifications of the NEGRA corpus,13

we distinguish between large and small PP categories so that the difference in Ko-

nieczny’s experimental stimuli are directly reflected in the PCFG. Calculating the

final-verb surprisals of one of Konieczny’s stimulus sets depicted in (9) below and

comparing it to reported mean reading times, we get the graph in Figure 2.1.

(9)

a. Er
He

hat
has

den
the

Abgeordneten
delegate

begleitet,
escorted,

und
and

. . .

. . .
“He escorted the delegate, and . . . ”

13In order to sharpen the PCFG’s distributional knowledge of V2 versus verb-final contexts, I
introduced syntactic distinctions in the VP and CVP (coordinated VP) NEGRA syntactic categories
based on whether the clause was matrix or subordinate. Subordinate-clause VPs were defined as
those under an S category and sister to a PRELS tag, which is the NEGRA syntactic category for
relative pronouns.



CHAPTER 2. SURPRISAL-BASED SYNTACTIC PROCESSING 46

M
ea

n 
fin

al
−

ve
rb

 r
ea

di
ng

 ti
m

e

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

no PP short PP long PP

Mean reading times
surprisal

15
.1

15
.3

15
.5

15
.7

15
.9

16
.1

fin
al

−
ve

rb
 s

ur
pr

is
al

Figure 2.1: Empirical reading time versus log-probabilities at clause-final verb

b. Er
He

hat
has

den
the

Abgeordneten
delegate

ans
to the

Rednerpult
lectern

begleitet,
escorted,

und
and

. . .

. . .
“He escorted the delegate to the lectern, and . . . ”

c. Er
He

hat
has

den
the

Abgeordneten
delegate

an
to

das
the

große
big

Rednerpunt
lectern

begleitet,
escorted,

und
and

. . .

. . .
“He escorted the delegate to the large lectern, and . . . ”

The log-probability pattern matches the reading-time probability quite closely. The

DLT, in contrast, predicts the wrong monotonicity of reading difficulty.14

14Konieczny used a variety of experimental stimuli, of course, and the final-verb surprisal values
differ for each stimulus. Although for every stimulus the monotonicity of surprisal is correct in the
contrast between presence and absence of PPs, the small/large PP contrast does not always have
the correct monotonicity. As can be seen in Figure 2.1, of course, the largest quantitative contrast
is between presence and absence of PPs.
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The reason the PCFG-derived surprisal values match the empirical results so well

is that incremental parsing with a PCFG naturally captures the effect of a sentence’s

constituent history on the expectations regarding yet-to-be-seen input. As soon as

the comprehender knows that the input is part of a verb-final clause, the incremental

probabilistic parsing process implicitly determines set of expectations as to the next

constituent. Each subsequent constituent affects these expectations. To a first ap-

proximation, seeing a constituent of a given type (a subject, a direct object, the final

verb, a goal, a location, and so on) sharply decreases the expectation of seeing an-

other constituent of the same type in the same clause, because multiple constituents

of a single type rarely co-occur in a single clause; this is part of the comprehender’s

knowledge of linguistic argument structure, captured in the PCFG model by the

structure of rewrite rules. When a PP goal is actually seen in the input, as in 2, the

expectation allocated to seeing a PP goal is pruned away, and because expectation is

actually a probability distribution that must sum to 1 at all times, it is reallocated

among all the other types of constituents that have not yet been seen. The final verb,

being one of those constituents, therefore has its expectation increased after every

other constituent. In another manner of speaking, the comprehender’s expectation

as to the location of the final verb sharpens as the clause lengthens. The way this

incremental expectation-narrowing process plays out in a PCFG-derived probabilistic

string model is illustrated in Figure 2.2: as each constituent of a given category is

seen and integrated into the incremental parse, it eliminates most of the expectation

for seeing another constituent of the same type next, and as a result increases the

expectation for seeing a constituent of one of the remaining types.15

What this model does not capture is the incremental sharpening of the compre-

hender’s expectations as to the identity of the final verb. As Konieczny himself points

out, seeing a goal PP restricts the syntactic/semantic classes from which the final verb

15Technically, the PCFG used to model this experiment does not distinguish goal PPs from other
types of PPs, because the NEGRA corpus unfortunately does not make this distinction. The PP
category in Figure 2.2 is therefore not subdivided. Nevertheless, the same intuitive argument holds
for this cruder grammatical model, because PPs in general are in complementary distribution with
each other in verb-final contexts.
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S

NP

Er

Vfin

hat

VP

NP

den Abgeordneten

�
�H
HNP

PP
Vpart
AVP

S

NP

Er

Vfin

hat

VP

NP

den Abgeordneten

PP

ans Rednerpult

�
�H
HNP

�
�H
HPP

Vpart
AVP

S

NP

Er

Vfin

hat

VP

NP

den Abgeordneten

PP

ans Rednerpult

Vinf

begleitet

�
�H
HNP

�
�H
HPP

Vpart

AVP

Figure 2.2: Incremental parse of (9), showing incremental narrowing of next-
constituent syntactic expectations

can plausibly originate. The PCFG model I use here does not capture that informa-

tion, because it is not lexicalized ; the dependents of the verb and the constituency

of its syntactic projection are not probabilistically conditioned on the verb’s actual

identity. This is not a limitation of the general surprisal approach, nor of PCFG

grammars; it is well-understood in the computational linguistics literature how to

conditionalize dependency and consituency on lexical govenors (see Collins 1999 for

an influential treatment). However, the relatively small size of the NEGRA corpus

and the morphological complexity of the language have put reliable lexicalization of

German PCFG grammars out of reach for the moment (Dubey and Keller, 2003).

In addition, the analysis here shows that expectations about verb identity are not

strictly necessary to explain the observed pattern of final-verb reading time results;

expectations about verb location are sufficient. Section 2.7.2 revisits the question of

final-verb identity versus location in the context of English subject-modifying relative

clauses.
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RC present RC absent
Independence between NP and VP expansions 13.23 12.95
Presence of RC in NP affects VP expansion 13.18 14.32
mean empirical Reading Time (ms) 526 476

Table 2.1: Surprisal values at final verb when immediately preverbal dependent is NP
object, with and without in-situ object-modifying relative clause.

Relative Clauses

Intuitively, a similar type of reasoning should apply to the effect of relative clauses

as to prepositional phrases. Immediately after seeing an object noun, the human

parser has a set of expectations about whether the object NP is complete or not, and

correspondingly of whether the next word is part of the object NP or part of the VP.

After seeing an in-situ RC, in contrast, the human parser should lower its expectation

of seeing more object NP material, because empirically in-situ RCs almost always end

their NP.16 Since the expectation of seeing VP material is higher after seeing the RC,

then the expectation of seeing a clause-final verb should in turn be higher, all else

being equal.

The crucial question is whether, in fact, all else is equal. As it turns out, whether

or not a probabilistic independence assumption is made between VP and NP rewrites

turns out to affect incremental expectations because of relative clause extraposition

in German. The first line of Table 2.1 shows final-verb suprisal values if such an

independence assumption is made; the results are monotonically consistent with the

empirical results, as predicted by the reasoning of the preceding paragraph. However,

it is fairly well-known (Hawkins, 1994; Uszkoreit et al., 1998) that relative clause

extraposition is sensitive to constituent size and position, with extraposition being

more likely when the distance to the end of the clause is smaller. In particular, a

German relative clauses nearly always extraposes if the NP it modifies is immediately

preverbal. As a result, in all three corpora of German, having seen a relative clause

modifying an object NP drastically decreases the conditional likelihood of seeing a

verb next, as can be seen in the left half of Table 2.2. (As seen in the right half

16There will be some expectation that the RC itself is not ended and may be continued with, for
example, an S coordination, but this expectation should be relatively small.
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after sequence NP RC after sequence NP RC PP

with RC without RC with RC without RC
N % N % N % N %

NEGRA 39 2.6 3759 60.7 10 70.0 649 77.2
TIGER 89 0.0 8837 60.8 23 78.3 1493 78.6
TüBa-D/Z 60 1.7 14208 39.2 15 60.0 3059 62.6

Table 2.2: Frequency in German corpora of clause-final verb immediately after (post-
finite verb) constituent sequences of (i) NP RC; and (ii) NP RC PP. The PP in
context (ii) is required to be a verbal modifier. N is the number of existing contexts;
% is the proportion of contexts immediately followed by the clause-final verb.

of Table 2.2, however, the effect disappears when a verbal PP follows the RC.) As a

result, if comprehenders include weight effects in their judgements of syntactic felicity,

as seems plausible, it has the effect of causing greater surprisal at the final verb after

the sequence NP RC than after the sequence NP, and little to no effect on surprisal

from in-situ RC presence if a verbal PP separates the object from the final verb.17 The

second line of Table 2.1 shows final-verb surprisal values when clausal constituency

is made probabilistically dependent on the presence or absence of a relative clause

modifiying an NP dependent. This time, the predictions of surprisal contravene the

empirical reading-time results.18

These modeling results leave us in a somewhat uncertain position as to how to

interpret the empirical finding that insertion of an in-situ relative clause modifying

an immediately preverbal object decreases final-verb reading time. On the one hand,

this finding unequivocally contravenes the DLT, which predicts that the discourse

entities inside the RC will increase the integration cost of the preceding verbal depen-

dents with the final verb. One way of interpreting the mixed predictions of surprisal

is that the empirical RC result provides evidence that the human parser relies on

coarse-grained rather than fine-grained statistics (Mitchell et al., 1995), and hence

17The technical means of incorporating the relevant weight effect simply involves distinguishing
NPs with RC modifiers from those without modifiers in the underlying context-free grammar of
German.

18The fact that the surprisal difference in the second line of Table 2.1 is more moderate than
the frequency difference seen in Table 2.2 is likely due to the fact that the presence of the relative
clause still signals the likely end of the NP, information that the comprehender does not have in the
stimulus where the relative clause is absent.
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incorporates a probabilistic independence assumption between the immediate con-

stituent structure of the VP and the internal structure of its NP daughter. With

such a coarse-grained probabilistic grammar, the final verb’s surprisal value would be

reduced by the object-modifying RC.

This interpretation is conceptually problematic, however. The felicity judgements

of native speakers makes it clear that they are highly sensitive to weight effects in

comprehension; the strong preference to interpret a right-extraposed element as mod-

ifying the rightmost NP eligible to be the extraposed element’s origin also indicates

that weight effects are involved in disambiguation. If weight effects are involved in

probabilistic disambiguation, then they must also impact the surprisal values, which

we originally derived in Section 2.2 as the result of incremental structural disambigua-

tion.19 Weight-sensitive surprisal predicts the same result as the DLT: RC insertion

should hinder the reading of an immediately following verb. The empirical evidence

therefore contravenes both theories.

This puzzling result creates a degree of uncertainty as to how to interpret the

experimental results of Konieczny (2000). One possibility is that some or all of the

final-verb results are confounded by sentence length, and that the only real result is

that verbs preceded by more words are being read more quickly.20 This interpreta-

tion would call into question the pretheoretical analysis underpinning the surprisal

explanation of verb-final clause difficulty. Fortunately, Konieczny and Döring (2003)

carried out another experiment free of potential sentence length confounds replicating

the final-verb speedup effect in clauses with more dependents, which I analyze in the

next section. Similar results have also been obtained for Hindi by Vasishth and Lewis

(2003) and for Japanese by Gibson et al. (2005b). In contrast, no attempts have

been made to replicate the post-relative clause speedup effect; since it contravenes

the predictions of both locality- and expectation-based processing theories, it would

certainly be worthwhile to attempt such a replication in future experimental research.

19See Chapter 4 for a more extensive investigation of how weight effects for extraposition can be
embedded directly into stochastic generative grammatical formalisms.

20As Konieczny points out, he also recorded reading times of relative pronouns in extraposed
relative clauses, which turn out to be read significantly more slowly than those of in-situ RCs, so
not all reading time results in this experiment are entirely driven by string position.
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2.5 Final verbs: effect of preverbal NP type

Konieczny and Döring (2003) report a variant of Konieczny (2000)’s original ex-

periment, where the syntactic position of a preverbal NP, rather than the pres-

ence/absence of a preverbal PP, is varied:

(10) a. Die
the

Einsicht,
insight,

daß [NPnom

that
der
the

Freund]
friend

[NPdat dem
the

Kunden]
client

[NPacc das
the

Auto
car

aus
from

Plastik]
plastic

verkaufte,
bought,

. . .

. . .
“The insight that the friend bought the client the plastic car . . . ”

b. Die
the

Einsicht,
insight,

daß [NPnom

that
der
the

Freund
friend

[NPgen des
the

Kunden]]
client

[NPacc das
the

Auto
car

aus
from

Plastik]
plastic

verkaufte,
bought,

. . .

. . .
“The insight that the friend of the client bought the plastic car . . . ”

Konieczny and Döring found that reading time at the final verb verkaufte was sig-

nificantly shorter for the dative condition, where dem Kunden is dependent on the

final verb, than for the genitive condition, where des Kundes is dependent on the

preceding noun Freund.21 This study is a nice methodological confirmation of the

original pattern observed in Konieczny (2000). The stimuli in (10) differ in only a

single letter, thus controlling quite precisely for orthographic length, number of to-

kens, and also, as it turns out, word freqency (dem and des are quite close in overall

word frequency, with des perhaps slightly more frequent in some contexts).

Intuitively, surprisal applies just as readily to this experiment as to Konieczny’s

original experiment. Just before seeing the final verb in (10a), the comprehender

knows that nominative, accusative, and dative NP arguments have all appeared as

preverbal dependents; in (10b), only nominative and accusative preverbal dependents

have appeared. The comprehender’s expectations are therefore more narrowly focused

21They also varied whether the immediately preverbal PP was a nominal dependent, as in aus
Plastik in (10), or a verbal dependent such as aus Freude. Although they found slightly shorter
average reading time for the nominal-dependent case, this difference was not statistically significant.
If subsequent studies were to achieve a stastically significant result favoring faster reading times for
the nominal-dependent condition, then it could be problematic for the expectation-based account
presented here.
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S

NP.nom

NP.nom

ART.nom

der

NN.nom

Freund

NP.gen

ART.gen

des

NN.gen

Kunden

VP

NP.acc

NP.acc

ART.acc

das

NN.acc

Auto

PP.acc

APPR.acc

aus

NN.acc

Plastik

verkaufte

Figure 2.3: Case-percolated context-free grammar

in (10a), and so the surprisal at the final verb should be lower. In order to precisely

model this effect of constituent history, we can use a PCFG grammar to determine a

conditional word model as we did in Section 2.4. For this new experiment, however,

we need to connect the grammatical function of each NP with its morphological form

to obtain a better understanding of the effect of constituent history on expectations.

In the PCFG grammars we used in Section 2.4, NP case/grammatical function was

not incorporated into the syntactic component of the grammar; rewrites such as S

→NP Vfin VP did not distinguish between accusative and nominative, or object and

subject, NPs.

For a PCFG to induce a probabilistic language that reflects ordering tendencies for

different grammatical functions or cases, however, we must include such information

in the PCFG’s grammatical backbone. The order of NP arguments is also connected

with number marking, of course, since subject-verb agreement can constrain possible

syntactic configurations. We can do this by deriving our grammar from the por-

tion of NEGRA (about 100,000 words) that is morphologically annotated for case,

and using a simple grammatical rule, similar to constraints used in unification-based

formalisms such as Functional Unification Grammar, Head-Driven Phrase Structure

Grammar, and Lexical-Functional Grammar, to distribute case marking. We recur-

sively percolate case marking onto NPs and PPs from their head daughters (the case

of a preposition is considered to be the case it governs). Doing this incorporates

knowledge of the overall distribution of argument realization frames into the PCFG,

capturing major distributional facts such as the rareness of multiple dative NPs in a
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Reading time (ms) Pi−1(wi) DLT prediction
verbal dependent (dative) 555 8.38× 10−8 slower
nominal dependent (genitive) 793 6.35× 10−8 faster

Table 2.3: Reading time, conditional probability, and DLT predictions at final verb
for (10)

single clause. An example tree resulting from case-percolation is shown in Figure 2.3.

We then use these case-enriched symbols as atomic categories, and learn a PCFG via

relative-frequency estimation from the enriched corpus.22

Table 2.3 shows empirical reading times, conditional word probabilities, and DLT-

predicted reading times for the dative and genitive conditions of (10). Although

the conditional probability of the final verb is quite low in both conditions, it is

roughly 30% higher in the verbal-dependent condition than in the nominal-dependent

condition, correctly predicting reading time monotonicity. DLT, on the other hand,

predicts faster reading time for the nominal-dependent condition, since there are fewer

preverbal dependents for the verb to integrate with.

Konieczny and Döring do in fact present a constraint-based computational model

in the form of a simple recurrent network (SRN; Elman 1990) that captures proba-

bilistic dependencies between specific verbs and their host of dependents. Their SRN,

trained on an artificially generated corpus consisting of both transitive and ditransi-

tive verbs, is able to model their experimental results by virtue of the fact that the

presence of a preverbal dative argument excludes simple transitive final verbs from

the space of possible final verbs, hence boosting the expectation for each individual

ditransitive verb. That is, their model matches the empirical data by virtue of its

knowledge of probabilistic lexical selection preferences. It must be emphasized that the

22Although the choice to percolate case marking onto phrasal categories might at first glance
seem ad hoc, it is well motivated due to the fact that we have derived the surprisal theory as a
consequence of incremental probabilistic disambiguation. If, for example, the probability of syntactic
trees for OVS versus SVO word order in simple German matrix clauses (which we will see in Section
2.6) were not sensitive to the case-marking of the NPs, it would be impossible for comprehenders
to globally preferentially disambiguate sentences with case-syncretized NPs of equal animacy as
SVO. But native German speakers do exactly this. Within the PCFG framework, capturing this
disambiguation preference requires percolating case marking onto NP categories.



CHAPTER 2. SURPRISAL-BASED SYNTACTIC PROCESSING 55

model I present here encompasses but is more general than such an account: in princi-

ple, knowledge of probabilistic lexical selection preferences will affect the expectation

for individual verbs, and this can be captured with a probabilistic parser. In practice,

however, the reliable estimation of lexical selection preferences is in its own right a

challenging and salient problem in natural language processing research (Roland and

Jurafsky, 2002). I have not attempted to incorporate such information into the model

here, because individual verbforms are simply too sparse and the resulting distribu-

tuional patterns of monolexical dependency (between words and categories) would be

unreliable. I have, however, shown that lexical selection preferences—determining

expectations about which verbs may appear—are not critical to modeling the results

of Konieczny (2000) and Konieczny and Döring (2003); the results can be captured

using solely expectations about where the final verb is likely to appear. Konieczny’s

lexical expectation model and the more general surprisal model do differ in the scope

of their empirical predictions; I revisit this difference in Section 2.7.2, where I show

that predictions made only by the surprisal theory are in fact borne out.

2.6 The subject preference

A second set of experimental results involving German word order and relevant to the

contrast between locality- and surprisal- based theories is reported by Schlesewsky

et al. (2000) involving the subject preference in German. German main-clause NPs

can be freely reordered, and while case marking usually disambiguates their gram-

matical function, some NPs are completely syncretized between multiple cases. When

the clause-initial NP is syncretized between nominative and accusative case, there is

a temporary ambiguity between subject and object interpretations of that initial NP,

as in (11). Hemforth (1993) demonstrated that the default interpretation of such

an NP is as the subject. When case marking on the NP immediately following the

finite verb disambiguates the clause, as in (11) below, the marking pattern consistent

with a subject interpretation for the sentence-initial NP ((11a)) will be easier to read

than the pattern consistent with an object interpretation for the sentence-initial NP

((11b)).
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(11) a. die
the

Henne
hennom/acc

sieht
sees

den
theacc

Bussard
buzzard

“The hen sees the vulture.”

b. die
the

Henne
hennom/acc

sieht
sees

der
thenom

Bussard
buzzard

“The vulture sees the hen.”

In investigating the nature of this subject preference, Schlesewsky et al. point

out that the unmarked word order for German is widely recognized to be sentence-

initial, which leads to at least two straightforward theoretical accounts of the subject

preference. On the one hand, in a movement-based syntactic account, the underlying

syntactic structure of the German clause can be posited to be SOV, and declarative

clause order may be derived by movement of the finite verb and an argument NP to

the head and specifier positions of CP, respectively. Assume further the Active Filler

Hypothesis (Clifton and Frazier, 1989), which states that once the human parser has

identified a filler (such as an initial argument NP in German declarative clauses), it

prefers to posit a gap and insert the filler as soon as possible. In (11), as soon as the

parser has seen the finite verb sieht, it can posit an immediately following gap in the

subject position and resolve it with the sentence-initial filler, as in Figure 2.4. Under

this preferred parse, however, the next NP cannot be nominatively marked, so (11b)

will cause processing difficulty.

Schlesewsky et al. also consider a serial construction-frequency account along

the lines of the Tuning Hypothesis (Mitchell and Cuetos, 1991). They point out

that most declarative clauses are subject-initial—consistent with the notion that the

unmarked word order in German is subject-inital—even when the initial element is

case-syncretized. If the parser immediately committed to the most frequent inter-

pretation of the initial NP, then (11b) would require reanalysis (and therefore extra

processing time) at the postverbal NP.

Schlesewsky et al. present two experiments which, however, they suggest under-

mine a serial Tuning Hypothesis account of subject preference, involving inanimate,

case-syncretized NPs. They report that of 480 sentence-initial was ‘what’ items ran-

domly selected from the Freiburg Corpus, about 55% were accusative, suggesting
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CP

NP

die Henne

C′

sieht S

NP

t

VP

NP

den Bussard

V

t

Figure 2.4: Schlesewsky et al. (2000)’s Subject Preference in German declarative
clauses (Example (11a)), as derived by the AFH and a movement-based analysis of
German clause order. For Example (11b), Bussard has the nominative article der,
and the greedy assignment of sieht to the V gap creates a case marking conflict.

that frequency-based considerations should not favor a default subject interpretation

for inanimate case-syncretized initial NPs. The AFH, in contrast, predicts the same

default subject preference regardless of construction frequency. Both experiments in-

volve singular neuter (and hence nom/acc syncretised) sentence-initial WH-NP’s. In

one experiment, disambiguation occurs via case marking on the postverbal NP (12);

in the other, disambiguation involves agreement marking on the main verb (13).

(12) a. was
what

‖ erfordete
required

‖ den Einbruch
the.accbreakin

‖ in
into

die
the

Nationalbank
national bank

‖ ?
?

“What required the break-in into the national bank?”

b. was
what

‖ erfordete
required

‖ der
the.nombreakin

Einbruch ‖
into

in
the

die
national bank

Nationalbank ‖
?

?

“What did the break-in into the national bank require?”

(13) a. welches
which

System
system

‖ unterstützt
supports

‖ die
the

Programme
programs

‖ auf
on

den
the

Computer
computer

‖ ?
?

“Which system supports the programs on the computer?”
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b. welches
which

System
system

‖ unterstützen
support

‖ die
the

Programme
programs

‖ auf
on

den
the

Computer
computer

‖ ?
?

“Which system do the programs on the computer support?”

In the first experiment’s stimuli, shown in (12), verbal agreement is singular, meaning

that the verb is compatible with either a subject or object reading for sentence-initial

was. The case marking on the immediate postverbal NP is unambiguous, however, and

disambiguates the grammatical function of was. In a serial parsing model, a default

preference for subject interpretation of the sentence-initial NP would predict greater

processing difficulty at the postverbal NP in the der condition. In the experiment,

Schlesewsky et al. (2000) indeed found significantly higher reading time for the der

condition, but at the postverbal NP it was small and statistically insignificant; it

reached significance (as well as its largest numerical difference) at the postmodifying

PP.

In the second experiment, shown in (13), verbal agreement in the plural un-

terstützen condition disambiguates the grammatical function of the sentence-initial

singular neuter NP welches System; in the singular unterstützt condition, disambigua-

tion occurs at the (nom/acc syncretized) postverbal NP, which being plural cannot

be the subject of a singular verb. In a serial parsing model, a default subkect in-

tepretation preference for the initial NP predicts greater processing difficulty at the

main verb in the unterstützen condition. Schlesewsky et al. (2000) did find higher

reading time for at the main verb for this condition, and increased reading time in

this condition persisted throughout the rest of the sentence.

The case of Schlesewsky et al. (2000) against a serial construction-frequency ac-

count rests on their claim that inanimate case-syncretized initial NPs are not more

frequently subjects than objects, the result they obtained from counts in the Freiburg

corpus. Now that syntactically hand-annotated German corpora are readily avail-

able, we can try to corroborate this claim. Table 2.4 shows these frequency counts

for NEGRA, TIGER, and TüBa-D/Z. Three immediate points stand out. First,

the statistics for was do not unilaterally support the reported Freiburg counts. For
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was welches + N
Subj Obj Other Subj Obj Other

NEGRA 43 18 19 0 0 0
TIGER 84 47 23 0 1 0
TüBa-D/Z (Nom/Acc) 40 37 18 1 0 0

Table 2.4: Empirical frequencies of subject and object interpretations of sentence-
initial was and welches

NEGRA and TIGER, which are corpora from the same newspaper, there is a clear

trend toward greater frequency of subject for sentence-initial was. Second, corpus

type seems to have a strong effect on these statistics. For TüBa-D/Z, which is a dif-

ferent (and more colloquially-written) newspaper than NEGRA and TIGER, subject

and object are evenly split. Third, statistics for welches are extremely scarce: in 1.3

million words of text, we have only two instances of sentence-initial welches + N,

so we are not in a position to confirm or disconfirm the generality of claims about

behavior of sentence-initial was to welches.

The statistics for was suggest that Schlesewsky et al. (2000)’s case against serial

construction-frequency accounts for this case of ambiguity resolution is not so cut

and dried. We might also ask what the predictions of the surprisal theory are in this

case. In the next two sections I proceed to demonstrate that for these experiments on

German finite-clause word order, the surprisal account maintains the core ambiguity-

resolution intuition of construction-frequency accounts that more probable structural

analyses are favored, but the word-by-word difficulty predictions of surprisal are much

more clear-cut. As it turns out, the same parallel, expectation-based approach that

accounts so well for final verb reading times predicts a better fit to Schlesewsky

et al. (2000)’s subject-preference data than either Active Filler or serial tuning-based

accounts.
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S-sg

PWS-acc-sg

Was

VVFIN-sg

begründete

NP-nom-sg

ART-nom-sg

der

NN-nom-sg

Einbruch

PP-acc

APPR-acc

in

ART-acc-sg

die

NN-acc-sg

Nationalbank

Figure 2.5: Case- and number-percolated CFG for (12)

2.6.1 was questions with disambiguating case marking

The order of NP arguments is clearly connected with case; it is also connected with

number marking, since subject-verb agreement can constrain possible syntactic con-

figurations. In order to apply a PCFG-derived by-word surprisal models to subject-

preference data, we use case percolation as described in Section 2.5 for the morpho-

logically annotated portion of NEGRA. We also percolate number marking onto NPs

and Ss from their head daughters (the finite verb directly heads S in NEGRA), and

assign plural number marking to all coordinate NPs. Figure 2.5 gives an example

of such a percolated tree. As before, we use direct relative-frequency estimation to

determine all rule probabilities.

Figure 2.6 plots the differences in the subject-was and object-was conditions

for (a) surprisal, based on the case- and number-percolated PCFG read off the

morphologically-annotated portion of NEGRA; and (b) actual mean reading time

in (12).23 The surprisal differential reaches its maximum at the onset of the PP,

which is the only region that shows a significant difference in mean reading times.24

The reason why the surprisal-based account predicts processing difficulty at the

PP, where it occurs, turns out to be straightforward. Within the case-marked PCFG

23In the simulation I have substituted begründete ‘caused’ for erforderte ‘required’, and Bank for
Nationalbank, because the latter word of each pair does not appear in the morphologically annotated
portion of NEGRA. Because phrase structure rewrite probabilities are not conditioned on lexical
information, these substitutions have no effect on predictions at the regions of interest.

24The reason for the small surprisal differential at the onset of the postverbal NP despite the strong
differential frequency of initial-NP grammatical function reported in Table 2.4 appears to be that
in object-initial transitive clauses, there is a much stronger tendency for the subject to immediately
follow the finite verb than for the object to immediately follow the finite verb in subject-initial
clauses.
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Figure 2.6: Predicted vs. actual reading time differentials for (12)

model, the only difference in the grammatical rules implicitly determining the expec-

tation for the preposition in in the postverbal object versus subject case is the PP

adjunction rule:

(14) NPnom → NPnom PP

versus

(15) NPacc → NPacc PP

In German, object NPs are more likely than subject NPs to be postmodified by

prepositional phrases. As we can see in Table 2.5, this is true not only of subject

versus object NPs overall, but also specifically of subject versus object NPs in the
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All Postverbal
Subj Obj Subj Obj
N % N % N % N %

NEGRA 15220 15.3 7952 22.4 2393 12.2 1156 20.3
TIGER 30187 15.2 17490 23.7 4231 12.2 2461 24.4
TüBa-D/Z 20527 6.4 10212 11.3 9054 4.4 4505 9.4

Table 2.5: Frequency of PP modification for subject versus object NPs

immediate postverbal position. This means that the probability of the rule (14) is

higher than the probability of (15). In the online comprehension of (12), immediately

after hearing Einbruch the comprehender therefore has a greater expectation of seeing

a PP (and hence a preposition) next in the den condition than in the der condition.

Hence the surprisal at in is greater in the der condition.25 Unlike the AFH, surprisal

predicts processing difficulty in this experiment precisely where it occurs.

2.6.2 welches questions with disambiguating agreement

In the stimuli in 13, the contrasting word of interest is an open-class item whose

surface forms, unterstützt and unterstützen, are sparse. In addition, the head noun

of the the sentence-initial NP is an open-class word whose relative frequency of oc-

currence in nominative and accusative forms has a strong effect on the predictions

of surprisal predicted by a PCFG. These words are sparse and hence the NEGRA

PCFG surprisal estimates are unlikely to be reliable. Nevertheless, we can resort to

alternative means of estimating the surprisal at the finite verb.

25In principle, the surprisal account should also predict the greater processing difficulty at die
for the der condition. This is because, after seeing in, although the comprehender knows she is in
the middle of a PP, she does not know whether the PP is verb-modifying or noun-modifying. But
because PP modifiers are less likely for postverbal subject NPs than for postverbal object NPs, the
comprehender has a greater expectation in the der case than in the den case that the PP is verb-
modifying. The semantics of an accusative in PP are, however, compatible only with NP modification
in this example, so upon perception of die the PP is disambiguated and the comprehender is more
surprised in the der condition. This explanation, however, relies on much more refined cooccurrence
statistics than are actually represented in the PCFG grammar (and there is too little data in NEGRA
to achieve this level of fine granularity), so the close match at die in 2.6 must be considered a happy
coincidence resulting from data sparsity. In addition, the negative surprisal differential at Bank is
an artifact of data sparsity.
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Most straightforwardly, because the region of interest is so close to the begin-

ning of the sentence, we can use the n-gram frequency of the first three words of the

sentence to estimate the surprisal at the finite verb directly, given a large corpus of

German. A useful estimate of this sort turned out to require using the World Wide

Web itself. An exact-match search using Google returned 15 valid matches of the

trigram welches System unterstützt, many of which were sentence-initial; no instances

of the trigram welches System unterstützen were found.26 The direct counting es-

timate of surprisal at the finite verb therefore predicts the reading-time difference

experimentally observed by Schlesewsky et al. (2000).

The Web, however, may not be the most reliable source of n-gram estimates,

ended a rate of the direct estimation approach gives us little insight into the reason

why the comprehender would have a stronger expectation for a singular finite verb

than for a plural finite verb after Welches System. We can achieve a bit more in-

sight by decomposing the plausible sources of expectation for the relevant finite verb

forms, using grammatical theory and knowledge of frequentistic morphosyntactic dis-

tributions. The informal account is as follows. Because our model is fully parallel,

after seeing the initial NP welches System it places a set of expectations on both

the grammatical function of the initial NP and the number marking on the finite

verb.27 That is, continuations (a-c) in (16) below all receive some non-zero expec-

tation. (Continuation (16d) receives no expectation, since it violates subject-verb

agreement.)

(16) a. [Welches System]subj singular verb . . .

b. [Welches System]obj singular verb . . .

26June 28, 2005, 12:07pm. I discarded one instance of the former trigram that appeared in a web
page referencing Schlesewsky et al. (2000).

27For simplicity of exposition, we ignore two further recipients of allocated expectation: first, the
possibility that the initial NP is not yet complete; second, the possibility that the finite verb is
not third-person. Since we are empirically concerned only with contrastive reading times between
third-person singular and plural finite verbs, the former recipient does not matter. The latter
recipient could turn out to matter, in principle; but as I proceed to show in the rigorous probabilistic
decomposition of this section, in practice it does not.



CHAPTER 2. SURPRISAL-BASED SYNTACTIC PROCESSING 64

c. [Welches System]obj plural verb . . .

d. *[Welches System]subj plural verb . . .

In our model, processing difficulty at a given word is associated with the word’s over-

all predictability, not with its predictability for a specific partial parse. Crucially,

then, the singular-verb unterstützt continuation of (13) receives the entire expecta-

tion the subject ((16a)) interpretation of the initial NP, and part of the expectation

of the object((16b)) interpretations. The plural-verb unterstützen continuation, in

contrast, receives only part of the expectation of the object interpretation. The par-

allel surprisal model thus correctly predicts the empirical reading time differences for

(13), so long as the combined expectation of (16a) and (16b) together outweighs the

expectation of (16c). In the remainder of this section I demonstrate this result with

a more rigorous probabilistic decomposition of the relevant expectations.

Probabilistic decomposition of finite verb expectations

The probability of the singular and plural verb forms unterstützt and unterstützen in

(13) can be decomposed as follows (WS standing for Welches System):28

P (unterstützt|WS) = P (V.3sg|WS)P (unterstützt|V.3sg, WS)

P (unterstützen|WS) = P (V.3pl|WS)P (unterstützen|V.3pl, WS)

where V.3sg and V.3pl respectively denote singular and plural third-person finite

verbs. This decomposition simply states that the probability of a particular verb-

form v given the initial sequence Welches System is equal to the probability of a

28Although the finite verb forms unterstützt and unterstützen are compatible with first- and
second-person agreement as well, I attend only to third-person agreement because available
syntactically-annotated corpora have nearly exclusively third-person subjects. In a model whose
parameters more closely reflected speech or another written genre, we might expect P (V.2|WS) and
P (V.1pl), which respectively contribute to the probabilities of unterstützt and unterstützen, to be
substantial.
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finite verb of the correct number and person marking given the initial sequence,

times the probability that the finite verb is actually v. We can make a crude estimate

of the right-hand side of the composition with the simplifying assumption that the

conditioning on Welches System does not affect the verb’s identity.29 Under this

assumption, the ratio of the right-hand half of the decomposition for unterstützt

versus unterstützen turns out to be roughly 1 : 2.3—the forms themselves are roughly

equal in frequency (5 versus 6 in NEGRA, 14 versus 11 in TIGER), and singular

finite verbs are roughly 2.3 times as common as plural finite verbs (1844 to 789 in the

morphologically-annotated part of NEGRA).

The left-hand side of the decomposition can be further subdivided:

P (V.3sg|WS) = P (SUBJ|WS)P (V.3sg|WS, SUBJ)

+P (OBJ|WS)P (V.3sg|WS, OBJ)

P (V.3pl|WS) = P (OBJ|WS)P (V.3pl|WS, OBJ)

where SUBJ and OBJ refer to the event of sentence-initial NP turning out to be the

subject or respectively object of the matrix clause. Crucially, the probability of a

singular finite verb has two terms summed together on the right-hand side, because

the comprehender can derive expectation for finite verbs from both the subject and

object interpretations of the initial NP. The probability of a plural finite verb at this

point, on the other hand, has only one term, because a plural finite verb requires

an object interpretation of the initial NP (so P (V.3pl|SUBJ) = 0). We will use the

Freiburg corpus estimates reported by Schlesewsky et al. (2000) at face value for

the probablities P (SUBJ|WS) and P (OBJ|WS), which are therefore 0.45 and 0.55.

For the conditional probabilities of V.3sg and V.3pl, we will make the simplifying

assumption of independence between the lexical content of the initial NP and the

29If we did not assume independence of the verb form from the lexical content of the initial noun
phrase, the effect would most likely be to increase of the conditional probability of unterstützt relative
to unterstützen, because the former is one of presumably a rather narrow range of semantically
plausible verbs given System as the grammatical subject, whereas System as grammatical object is
semantically compatible with a wide range of transitive verbs.
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category of the subsequent constituent:

P (V.3{sg/pl}|WS, {SUBJ/OBJ}) ≈ P (V.3{sg/pl}|{SUBJ/OBJ})

These simplified probabilities can be estimated directly from structural counts in the

morphologically annotated NEGRA corpus, giving the following estimated probabil-

ities:30

P (V.3sg|SUBJ) = 0.651

P (V.3sg|OBJ) = 0.606

P (V.3pl|OBJ) = 0.152

The crucial comparison is between the second and third lines: even when the initial

NP is an object, the next word is far more often a singular finite verb than it is a

plural finite verb.31 With these probabilities we can now estimate the expectations

for singular and plural finite verbs:

P (V.3sg|WS) = 0.45× 0.651 + 0.55× 0.606

= 0.626

P (V.3pl|WS) = 0.55× 0.152

= 0.0836

The resulting probability ratio, 7.5 : 1 in favor of singular finite verbs, outweighs

the 2.3 : 1 ratio we estimated for the probability of the verb form given the number-

marked part of speech. Therefore, the surprisal at unterstützt is less than the surprisal

at unterstützen, which is consistent with the empirical reading-time results—even if

the relevant initial NPs are in fact more likely to be objects than subjects.

30Note that nearly all the verbs in the corpus are third-person.
31Neither set of conditional probabilities sums to 1 because the next word following the sentence-

initial NP may not yet be the finite verb; evidently this happens more often with initial subjects
than with initial objects.
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2.7 Discussion and other relevant experiments

The analysis in Section 2.4 demonstrates that the informal explanation that addi-

tional preverbal dependents make clause-final verbs easier to predict actually plays

out precisely in the surprisal-based model of processing difficulty when a probabilistic

context-free grammar is used to estimate the surprisal of the clause-final verb. The

surprisal theory encompasses the intuition of Konieczny (2000) explicitly built into the

incremental parsing architecture of his dissertation (Konieczny, 1996), that preverbal

dependents constrain the lexical type of the final verb and thus allow better predic-

tion of that verb. But the surprisal analysis also shows that this explanation, based

on predicting what the verb is, is not strictly necessary to explain the experimental

results of Konieczny (2000) and Konieczny and Döring (2003). We need only adopt

an unlexicalized PCFG—that is, assume that native German speakers are capable

of discriminating good from bad constituency structures—for the surprisal model to

make qualitatively correct predictions about final verb reading times, which derive

from the implicit inferences about where the verb is likely to be. In the classic case

of verb-final clauses, these two types of inference (the identity versus location of the

final verb) are closely bound up with each other, but in Section 2.7.1 I discuss some

evidence that they can be separated out, and independent evidence for inferences

regarding the location of clause boundaries in syntactic comprehension.

It is also instructive at this point to discuss reading-time results for verb-final

clauses in other languages that directly test locality-based processing. (Vasishth 2002

(Chapter 5), 2003, Vasishth and Lewis 2003) have conducted several experiments on

processing difficulty within Hindi complement clauses, which are verb-final, varying

the amount of material appearing before the final verb, as in (17) below:

(17) a. Siitaa-ne
Sita-erg

Hari-ko
Hari-dat

Ravi-ko
Ravi-dat

[kitaab-ko
book-acc

khariid-neko]
buy-inf

bol-neko
tell-inf

kahaa
told

‘Sita told Hari to tell Ravi to buy the book.’

b. Siitaa-ne
Sita-erg

Hari-ko
Hari-dat

Ravi-ko
Ravi-dat

[kitaab-ko
book-acc

jitne-jaldi-ho-sake
as-soon-as-possible

khariid-neko]
buy-inf

bol-neko
tell-inf

kahaa
told
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‘Sita told Hari to tell Ravi to buy the book as soon as possible.’

c. Siitaa-ne
Sita-erg

Hari-ko
Hari-dat

Ravi-ko
Ravi-dat

[kitaab-ko
book-acc

ek bad.hiya dukaan se
from-a-good-shop

khariid-neko]
buy-inf

bol-neko
tell-inf

kahaa
told

‘Sita told Hari to tell Ravi to buy the book from a good shop.’

d. Siitaa-ne
Sita-erg

Hari-ko
Hari-dat

Ravi-ko
Ravi-dat

[kitaab-ko
book-acc

jo-mez-par-thii
from-a-good-shop

khariid-neko]
buy-inf

bol-neko
tell-inf

kahaa
told

‘Sita told Hari to tell Ravi to buy the book that was on a/the table.’

Consistent with the surprisal account, reading time at the innermost verb khariid-

neko ‘to tell’ is highest in (17a), when there is no adjunct intervening between the

head noun of the direct object kitaab-ko ‘book’ and its governing verb.32

Two other relevant verb-final experiment have been carried out by Nakatani and

Gibson (2003) and Gibson et al. (2005b) for Japanese, which is verb-final and has

freely reorderable preverbal complements. In both cases, predicted asymmetries in

integration cost at final verbs failed to emerge. Gibson et al. (2005b) found patterns

similar to those we have already seen in German and Hindi: greater amounts of

preverbal material decreased, rather than increased, final-verb reading times.33 For

Nakatani and Gibson (2003), the object of investigation was the degree of center-

embeddedness in sentences with multiple sentential complements. They found that

the increased complexity of multiply center-embedded sentences showed up at the

onset of the most deeply embedded clause—signaled by a third consecutive animate

32Unlike the case with the effect of preverbal relative clause seen in Konieczny (2000), the decrease
in reading time seen here with a preverbal relative clause is not anomalous, because in Hindi relative
clauses cannot right-extrapose.

33Unlike the results of Konieczny and Döring (2003), Gibson et al. found no difference in the
reading times in contrasts of adverbial versus adnominal positioning of a preverbal constituent. One
plausible explanation of the difference in result would be that whereas the adverbial/adnominal
alternation used by Konieczny and Döring had considerably different semantic content, and the
adnominal element did not provide stage-level information that could be usefully correlated with
information about the final verb, Gibson et al. alternated a locative constituent, which even in
adnominal position could still facilititate evidential inferences about the final verb.
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nominative NP at the beginning of the sentence—rather than at the final, least-

embedded main verb, where the integration-cost component of DLT predicts it to

occur. In a locality-based processing theory, this result can be explained by a storage

cost component, as suggested by Nakatani and Gibson (2003). In a surprisal theory,

the natural place to look for an explanation would be to estimate the probability

of the conditional probability of a third consecutive animate, nominative NP given

two such consecutive sentence-initial NPs. Unfortunately, large annotated corpora

of Japanese are not nearly as available as for English or German, so I leave this

investigation as a topic of future research.

2.7.1 Relativization revisited

At this point it is appropriate to return to the syntactic configuration most that

has been extensively investigated in the context of syntactic processing difficulty:

relativization. As I noted in Section 2.3, it is well-understood that, by a variety

of measures, object-extracted RCs in English cause more processing difficulty than

subject-extracted RCs. In locality-based theories, this is due to the fact that subject

but not object relativizations minimize the distance between the extraposition and

both the gap and the governing verb. As shown by Hale (2001), surprisal predicts the

same general asymmetry due to the fact that object RCs are less common than subject

RCs. However, different theories disagree on exactly where the increased difficulty of

object RCs is predicted to occur, and more recent studies, however, have begun to

address this issue by looking at word-by-word reading time patterns in greater detail.

To begin the analysis, note that the integration-cost component of the DLT pre-

dicts that it is the RC verb that will be harder to read in object extractions than in

subject extractions, because the verb (and the immediately postverbal gap) is where

the extra integration cost is paid. Within the surprisal theory, on the other hand, a

relative pronoun triggers a syntactic environment much like a verb-final clause: the

comprehender knows that the RC’s verb must appear at some point, but is uncertain

as to what it is and whether a subject will precede it. Surprisal therefore predicts that

subject relativizations should be read more slowly than object relativizations at the
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RC verb. The cost of low expectation for object RCs should be paid at the embedded

subject, which is where the bulk of the expectation (devoted to seeing a subject-

extracted RC) is pruned away.34 But the empirical evidence in this case seems to side

with locality over surprisal. Grodner et al. (2000) show that for stimuli of the form

in (18) below, there is a marked increase in the reading time at the embedded verb

sent for the object over the subject relativization. The embedded subject in (18b),

the photographer, is read quickly (see Appendix B of Grodner and Gibson (2005) for

word-by-word reading times):

(18) a. The reporter who sent the photographer to the editor hoped for a good

story.

b. The reporter who the photographer sent to the editor hoped for a good

story.

One possible interpretation of this result within the surprisal theory would be that

the observed slowdown at the main verb is a spillover effect: the difficulty is actually

incurred at the embedded subject NP, but it is not registered until the embedded

verb. Two natural directions present themselves to test this interpretation. First, the

distance between the embedded subject and the embedded verb could be increased:

a spillover effect should occur on the material right after the embedded subject NP,

whatever it happens to be. Alternatively, the surprisal theory could be tested for by

modulating the the embedded subject NP so that it is more or less predictable. A

more predictable embedded subject NP should be read more quickly than one that

is less predictable.

Fortunately, recent research has begun to investigate both these directions. An

experiment relevant to the spillover hypothesis was conducted by Grodner and Gibson

(2005), who varied postmodification of the subject NP in matrix and embedded RC

contexts:

34The DLT’s storage component and the AFH both predict a degree of cost at the embedded
subject in an object relativization, but these predictions have no baseline of comparison and at any
rate turn out to be inferior in granularity to the predictions of surprisal, so I will not discuss them
further.
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(19) a. The nurse {∅/from the clinic/who was from the clinic} supervised the

administrator. . .

b. The administrator who the nurse {∅/from the clinic/who was from the

clinic} supervised. . .

The DLT predicts that the difficulty of the first verb will be lowest in the unmodified

case, higher in the PP-modified case, and highest in the RC-modified case; first-

verb difficulty will also be higher in the embedded contexts (19b) than in the matrix

contexts (19a). Surprisal predicts exactly the reverse pattern; and furthermore, if

the embedded-verb difficulty seen in (18b) is due to spillover from the embedded

subject NP, we might expect to see a spillover spike in the postmodifiers (19b). The

experimental results in this case generally support the DLT: there are no substantial

differences among the matrix stimuli in (19a), but all the embedded first-verb reading

times in (19b) are elevated, and in the double RC stimulus it is elevated significantly

above all other stimuli. Furthermore, across all stimuli the PP from the clinic is

consistently read quickly, which undermines a spillover account of verbal difficulty in

(18b).

Gordon et al. (2004) provide another piece of the puzzle by varying the definiteness

and quantification of embedded subject NPs in object-extracted RCs. The crucial

contrasts involve the following stimulus types:

(20) a. The salesman that {the/an} accountant contacted spoke very quickly.

(Definite/Indefinite)

b. The salesman that (the) accountants contacted spoke very quickly.

(Definite/Bare Plural)

c. The salesman that {the accountant/everyone} contacted spoke very

quickly. (Definite/Quantifier)

In a corpus study within the same article, the authors found definite NPs to out-

number their indefinite or bare counterparts for both singular and plural embedded

subjects. To reason about the predictions of surprisal for these cases, it is necessary

to recall that the theory links processing difficulty to the conditional probability of
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each word in its context. This encompasses lexical probabilities, so a rare word as a

syntactically likely continuation may well be more surprising than a common word

as a syntactically unlikely continuation. In the (20a) contrast, the discrepancy in

definite/indefinite NP frequency is the only relevant statistic, so surprisal predicts

that the definite NPs should be easier. Surprisal also predicts that the definite NPs

should be easier in (20b), but the difference in difficulty should be more dramatic,

because the comprehender receives more information at once—both the fact of an

object RC and the main lexical content of the embedded subject—in the bare plural

case than in the indefinite singular case. In the (20c) case, the relevant contrast is

likely to be between open-class and closed-class (hence high-frequency) lexical NP

head, so we predict lower difficulty for the everyone stimulus. These predictions are

fairly consistent with the experimental results of Gordon et al. (2004): (20a) produced

no significant differences in reading times, (20b) produced significantly faster read-

ing times at the embedded subject NP for the definite stimulus (and at the matrix

verb, though curiously not at the embedded verb), and (20c) produced significantly

lower reading times at the embedded subject NP, the embedded verb, and the matrix

verb.35

Finally, one experiment by Warren and Gibson (2002) simultaneously addresses

both NP content and spillover, by varying the content of embedded NP subjects and

separating the embedded NP from the RC verb with auxiliary and adverbial elements,

as seen in (21) below:

(21) The woman who {the boy/you} had accidentally pushed off the sidewalk got

upset. . .

Surprisal predicts that the you stimulus will be easier, because you is a high-frequency

closed-class word, and is very common as the subject of an object-extraposed RC.

35In a fourth experiment, Gordon et al. (2004) looked at a specific/general (and hence, also
more/less frequent) noun contrast for embedded subject, as in the accountant versus the person,
and found no significant reading time differences anywhere. Although it is perhaps not necessary
to attempt an explanation of a null result, one difference between everyone and the person that
could be relevant to surprisal is that the person may set up a stronger expectation for postnominal
modifying content than everyone. This expectation is violated in Gordon et al.’s stimuli, since the
RC verb immediately follows the head noun of the subject.
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If the differential difficulty shows up as spillover, it might be observed in between

the RC subject and verb. The DLT’s integration component predicts that difficulty

should be elevated at the main verb pushed, because you does not introduce a new

discourse referent. Results provide some confirmation for both theories: reading times

are numerically but not significantly faster at you than at the boy ; throughout the

region had accidentally pushed off, reading times are significantly elevated for the

lexical NP subject stimulus. Spillover from embedded-subject surprisal might be a

source for the elevated reading times at the auxiliary and adverb, whereas the DLT’s

integration component gains support from reading time elevation at pushed off.

Taken together, recent results on verb-final clauses and English relative clauses

pose a perplexing set of results. On the one hand, in verb-final environments, extra

dependencies preceding the head seem to facilitate rather than hinder reading at the

final verb. On the other hand, additional and more informative material before the

verb of an object-extracted RC seems to hinder, not facilitate, reading time at that

verb. Nevertheless, subregularities in the difficulty of embedded subject NPs observed

in Warren and Gibson (2002); Gordon et al. (2004) are consistent with the predictions

of surprisal.

One way of interpreting these mixed results is to hypothesize that surprisal has

a major effect on word-by-word processing difficulty, but that truly non-local (i.e.,

long-distance) syntactic dependencies such as relativization and wh-question forma-

tion are handled fundamentally differently from local syntactic dependencies, and the

storage, retrieval, and integration of long-distance dependents incurs a substantial

processing cost comparable to the cost of a highly surprising word. On this theory,

surprisal effects dominate the processing of verb-final clauses because none of the

dependencies are long-distance, but processing a relative clause involves storing, re-

trieving, and integrating a long-distance dependent, so that relative clause reading

times also exhibit substantial DLT-like effects that are not predicted by surprisal.

Working out such a two-factor theory would be a non-trivial undertaking beyond the

scope of this work, but the most recent available data suggests that formulating and

testing such an approach could well be a promising direction for future research on

syntactic processing difficulty.
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2.7.2 Disentangling verb location from verb identity

English subject-modifying relative clauses trigger another syntactic context related

to but crucially different from the verb-final clause: after the embedded verb has

been observed, the comprehender knows that at some point the RC has to end, at

which point return to the matrix clause is almost certain, but she does not know

exactly where it will end, and does not find out until seeing the first input token that

continues the matrix clause. This means that the surprisal theory makes a specific

prediction about a recent experiment carried out by Jäger et al. (2005), involving the

stimuli in (22) below.

(22) a. The player [that the coach met at 8 o’clock] bought the house. . .

b. The player [that the coach met by the river at 8 o’clock] bought the

house. . .

c. The player [that the coach met near the gym by the river at 8 o’clock]

bought the house. . .

As in verb-final clauses, the more postverbal constituents within the RC that have

been seen in (22), the fewer possible choices there are for subsequent constituents

within the RC. This means that the comprehender’s expectation for the end of the

RC (and hence seeing the matrix verb next) increases as the number of already-seen

postverbal constituents increases—once again, a prediction opposite to that of the

DLT. Table 2.6 shows matrix-verb surprisal values estimated by a PCFG trained

directly off the parsed Brown corpus, together with DLT predictions and empirical

mean reading times.36 The surprisal prediction matches the empirical result: surprisal

and reading time at the matrix verb both decrease as the number of postverbal

constituents in the preceding RC increases. Crucially, the observed effect does not

plausibly follow from the account of Konieczny (1996), in which preverbal dependents

help the comprehender guess the identity of the final verb, because there is no direct

argument structure relation between the matrix verb and the verbal dependents in

36The paired comparisons between the 1 and 2 and 1 and 3 PP conditions are statistically signif-
icant; the paired comparison between the 2 and 3 conditions is not.
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Number of PPs intervening between
embedded and matrix verb
1 PP 2 PPs 3 PPs

DLT prediction Easier Harder Hardest
Surprisal 13.87 13.54 13.40
Mean Reading Time (ms) 510± 298 410± 184 394± 143

Table 2.6: Surprisal and average reading times at matrix verb for (22)

the RC. The broader surprisal theory encompasses the narrowing of expectations

Konieczny stipulates for final-verb identities, but also predicts that comprehension

patterns will reflect implicitly-formed expectations about upcoming constituency, a

prediction that is borne out in this experiment. Finally, note that this data is entirely

consistent with the mixed surprisal/long-distance DLT theory suggested at the end

of Section 2.7.1, because the long-distance dependency is already resolved well before

the matrix verb is encountered, so surprisal effects should dominate at the matrix

verb.

2.8 Falsifiability and future directions

A common objection to frequentistic processing theories is they make it too easy to

tell just-so stories, by choosing a grain-level of analysis in which the relevant frequen-

cies happen to fit a set of experimental results. This objection calls the falsifiability

of frequency-based processing theories into question. In this section, however, I argue

that frequentistic processing, and in particular surprisal-based processing, is highly

testable in comparison to other processing theories, and outline a future line of re-

search which tests surprisal-based processing in a direct, highly-constrained way.

2.8.1 Falsifiability

First, it is not the case that non-frequentistic processing theories, such as the memory-

based resource-requirement theories of syntactic locality and the Active Filler Hypoth-

esis, are not subject to just-so stories. Syntactic locality-based theories such Gibson’s
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or Hawkins’s have a degree of flexibility in terms of what counts as a discourse entity

or integration, or what counts as a constituent. In the DLT, for example, both head

nouns and relative pronouns count as discourse entities, but complementizers do not

(Gibson, 1998); copular verbs count as discourse entities (Grodner and Gibson, 2005),

but auxiliary verbs do not (Warren and Gibson, 2002).

Second, the logical structure of frequency-based processing theories invites falsi-

fication. These theories state that for every experimental result E in condition C,

there is some corpus C’ grain size G such that the optimal frequency-driven resource

allocation strategy in C, as estimated by G on C’, will match E. Falsification requires

only that we can find some E* for which no appropriate C’ and G can be found.

Third, although the question of which grain size best reflects the upcoming-word

expectations of an adult native speaker, there is good reason to believe that the appro-

priate grain size is quite fine. Adult native speakers disambiguate naturally-occuring

utterances quite accurately, certainly far more accurately than any computer-implemented

parsing system available today. In the theory outlined in this chapter, surprisal as

a measure of processing difficulty is a direct consequence of incremental, stochastic

disambiguation. By all indications available from the probabilistic parsing litera-

ture (Collins, 1999; Charniak, 2000; Collins and Duffy, 2001; Bod, 2003; Charniak

and Johnson, 2005), a grain size considerably finer than gross syntactic category or

even lexicalized syntactic category is required to achieve high-accuracy disambigua-

tion. We can infer that with present-day technology and data sources, no robust

conditional word probability model we build is likely to err on the side of being too

fine-grained.37

This last consideration indicates a very concrete research strategy that can test

surprisal-based processing directly. Since, as I have outlined in this chapter, surprisal-

based processing can be derived directly as a consequence of a rational, incremental,

and parallel parsing strategy, we expect that more rational parsing models should

37By robust I mean a model that does not fit too many parameters given the amount of data
available—in statistical terminology, one that does not trade too much bias for variance. Given a
finite amount of data, is possible to build a model so fine-grained that its conditional word probability
predictions are unreliable because each parameter of the model is effectively estimated from only a
few datapoints. We would not expect such an overfitted model to make reliable predictions about
the probabilities of upcoming words, let alone about processing difficulty reading times.
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make surprisal-based predictions on processing difficulty that more closely match

experimental data. But the rationality of a parsing model can be operationalized by

its degree of fit to empirical (corpus) data – in terms of classification accuracy, or

perhaps more appropriately in this case, by its perplexity. As a research strategy,

then, we can therefore work at improving the fit of parse models to corpora, and see

whether the improved models model psycholinguistic data better.

The caveat to this is that the data against which the rationality of a parse model

is assessed should be from the same population (in statistical terms) as the data from

which online processing results are derived. Now, the vast majority of online sentence

processing experiments bear little distributional relation to naturally occuring data:

they pick out a highly specific syntactic construction and instantiate it many times to

create a dataset. One strategy is to customize parsing models to individual psycholin-

guistic experiments. This is something along the lines of what I have done in this

chapter, when I percolated case marking and morphological information to syntactic

categories in the investigation of German clause order. To carry this strategy out

too far, however, is dangerous, because the resulting models would begin to depart

from what rational models of everyday linguistic performance must look like—and

it is these latter models that we hypothesize are behind the psycholinguistic exper-

iments themselves. Another strategy, perhaps more interesting and novel, would be

to take advantage of newly emerging eye-tracking corpora (McDonald and Shillcock,

2003; Kennedy et al., 2003), whose stimuli are drawn from naturally-occuring sources.

Virtually no such research has been done on such corpora; it has been shown that

conditional word probabilities in a bigram language model are correlated with reading

time (McDonald and Shillcock, 2003), but it is not even known how a syntax-based

language model would perform. Since state-of-the-art parsing-based language models

have recently become more competitive with good n-gram language models (Chelba

and Jelinek, 1998; Charniak, 2001; Collins et al., 2004; Hall and Johnson, 2004), this

would be an interesting subject for future research.
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2.8.2 Deriving Surprisal

One piece of theoretical progress made in this chapter is that the association of sur-

prisal with processing difficulty is given an information-theoretic basis as the KL

divergence between probability distributions. Although Hale 2001 proposed surprisal

as a model of processing difficulty, he provided no theoretical basis for surprisal as

a plausible measure, as noted in Hale 2003a. The derivation of surprisal as the

KL divergence between probability distributions allows us to understand surprisal as

a measure emerging from the process of incremental, parallel probabilistic parsing,

which simultaneously addresses the issues of ambiguity management and disambigua-

tion. Surprisal as a measure of processing difficulty therefore becomes more closely

connected with the basic functional problem posed by human online processing: how

inherently ambiguous input is effortlessly and accurately processed.

A deeper question still remains, however: suppose we have accepted that human

sentence processing is incremental, fully parallel, and probabilistic. Processing any

word of input thus requires an update of the distribution over partial parses in the

sentence. It still does not logically follow that the cost of this update should be the KL

divergence between distributions. Imagine, for example, that the brain actually used

Stolcke’s algorithm for update. We might associate processing difficulty with time

required for incremental update. But in Stolcke’s algorithm, this time requirement is

in general linearly dependent on the size of the category space and rule space in the

grammar, and does not depend on the actual probability magnitudes involved. Unlike

the KL divergence, then, processing time in Stolcke’s algorithm is (a) representation-

dependent; and (b) unrelated to actual probability masses.

Nevertheless, surprisal as an estimate of processing difficulty has powerful intu-

itive, theoretical, and empirical attraction. A major question, then, is whether we can

derive surprisal or some related model of processing difficulty from deeper cognitive

principles. I see two major prospects for such a derivation. The first is at the level

of mechanism: we may be able to show that a neurally plausible distributed repre-

sentation of incremental probabilistic parsing naturally leads to probability-sensitive

measures of update difficulties. The second is at the level of rational analysis (An-

derson, 1990): perhaps we can show that an optimal parallel and incremental parsing
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strategy entails probability-sensitive update difficulty. I can think of two plausible

approaches in the latter tack. The first attributes costs to structure pruning, and

perhaps to structure generation, along with some assumptions about typical distribu-

tion over partial parse probabilities; the second supposes that as a matter of course, a

comprehender conducts and acts on inference from incomplete linguistic input, that

the choice of which inference to act on is guided by relative beliefs about the incom-

plete input, and that there is a cost to aborting actions after their premises have been

disconfirmed by further input.

2.8.3 Surprisal and linguistic typology

On a higher level, we can also ask what implications a surprisal theory of expectation-

based processing may have for understanding the dimensions of linguistic variation.

The connection between processing theories of language and linguistic universals has

a strong tradition, perhaps best exemplified by the work of Hawkins (1994, 2004).

Hawkins’ theory of domain minimization is a strongly psychological theory of pro-

cessing and grammar universals, and its formulation bears a close relationship to that

of the DLT (Gibson, 1998, 2000). The simple concept of domain minimization allows

Hawkins to derive several of Greenberg’s most prominent linguistic universals, such

as the correlation between verb-object and preposition-noun head positions, although

it leaves a number of issues open. For example, Mandarin Chinese is a mysterious,

unexplained language in Hawkins’ typology because its combination of head-initial

VPs and head-final NPs is clearly suboptimal in Hawkins’ typology.

Expectation-based processing is a direct challenge to memory-based theories of

syntactic processing such as Gibson’s, however. It is therefore appropriate to ask

what conclusions we can draw about language typology from an expectation-based

theory. We will use surprisal-based processing for this investigation.

Let us first look at probabilistic languages and grammars from an information-

theoretic perspective. Elementary information theory tells us the probability of a
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string in a given probabilistic language PL determines the actual amount of informa-

tion that the string conveys to someone who knows PL—the lower the string’s prob-

ability, the more information it conveys. Now let us consider any string s = w1 · · ·wn

and let PPL(s) = p. Incremental processing tells us that the total processing difficulty

for s should simply be the sum of the individual processing difficulties at each wi.
38

Now we can ask how different probabilistic languages for which s conveys the same

information p might be structured so as to change the distribution of incremental

processing difficulties over s. We can do this because there may be many probabilis-

tic languages PL′ that assign the same total probability p to s, but whose array of

conditional probabilities PPL′(wi|w1...i−1) is in general not the same as PL’s. If we

assume that the total processing difficulty DPL(s) incurred in the comprehension of

s is the sum of the processing difficulty at each wi in s, then by the surprisal measure

of processing difficulty we have:39

DPL(s) = −
n∑

i=1

log PPL(wi|w1···i−1) (2.15)

= −
n∑

i=1

log
PPL(w1 · · ·wi)

PPL(w1···i−1)
(2.16)

= −
n∑

i=1

log PPL(w1···i)− log PPL(w1···i−1) (2.17)

= log PPL(ε)−
(

n−1∑

i=1

log PPL(w1···i) (2.18)

− log PPL(w1···i)
)
− log PPL(w1···n) (2.19)

= log 1− log PPL(w1···i) (2.20)

= − log PPL(w1···i) (2.21)

38That is, the total amount of effort required to comprehend s. This is distinct from intuitive
notions of complete-sentence complexity, as traditionally attributed in the pyscholinguistic literature
to multiply center-embedded sentences and the like. I suggest that complete-sentence complexity
would be more appropriately attributed to the maximal local difficulty within a given sentence.

39For notational convenience, for i = 0 I have taken w1···i to be ε, the empty string; and PPL(ε),
the prefix probability of the empty string, is 1 because the empty string is a prefix for all strings.
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This gives us a counter-intuitive result: no matter how information is distributed

throughout a sentence, the resulting total processing difficulty is the same. To see why

this is counter-intuitive, compare two probabilistic languages that assign p to s: PL1,

for which PPL1
(w1) = p and PPL1

(wi|w1···i−1) = 1 for all i > 1, and PL2, for which

PPL2
(wi|w1···i−1) = p

length
(s) for all i. That is, in PL1 every sentence s begin with a

word w that begins no other sentence, so w conveys all the information in s; whereas in

PL2, each word in each sentences has the same conditional probability, so information

is distributed equally throughout s. The strict surprisal theory says that the total

processing difficulty of s is the same in PL1 and PL2. But the strong intuition is

that natural languages are much more like PL2: unambiguous grammatical sentences

become incomprehensible when too much complexity is focused in a small region of

the sentence (as with multiple center-embeddings).

We can escape this conundrum by departing a bit from the strict theory of

surprisal-based processing we have investigated thus far and saying that for some

k,

observed difficulty ∝ [log P (wi|w1, · · · , wi−1)]
k (2.22)

the intuition being that the actual processing difficulty experienced at a word w may

be a nonlinear function of w’s strictly informational difficulty.

This family of surprisal-based models is still broadly consistent with all the theo-

retical and empirical concerns that we have investigated in this chapter so far: it is

distribution-dependent and representation-independent, and processing difficulty is

still a monotonic function of conditional word probability. The family can be broadly

partitioned into three pieces:

k







< 1 PL1-optimal

= 1 PL0 (conventional surprisal)

> 1 PL2 -optimal

(2.23)

I submit that natural languages are much more like PL2, so we would expect that we
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are in the region of k > 1. This claim captures the natural intuition that the more

surprising an event, the more difficulty is associated with incremental increase in how

surprising it is.

The PL2 hypothesis also makes empirical predictions with respect to sentence

processing: that the best-fit regressions of surprisal against reading time should give

exponents of k > 1. At present our limited understanding of how to devise fine-

grained probablilistic string models appropriate to controlled experimental stimuli

makes it premature to evaluate this claim against most of the sentence processing

literature. However, I am aware of one intriguing recent study that can be inter-

preted as supporting the PL2 hypothesis. In an interesting self-paced reading time

study whose stimuli involved a superposition of relative clauses and arithmetic prob-

lems, Fedorenko et al. (2004) found a superadditive—that is, non-linear—interaction

between difficulty of the linguistic stimuli (subject vs. object relativization) and the

arithmetic stimuli (large vs. small numbers) on reading time. This superadditive in-

teraction indicates that the addition of a constant amount of difficulty has a greater

incremental effect on reading time in the presence of difficulty than it does in the

absence of difficulty.40 The multiple-task nature of Fedorenko et al. 2004’s task made

it possible to quantify task difficulty in a way that allowed them to identify nonlinear

effects. In single-task reading studies, surprisal can potentially serve as the yardstick

against which to evaluate the linearity of processing difficulty effects.

Exploring the consequences of the PL2 hypothesis leads us, however, to another

question. Natural languages are sets of form-meaning pairs, and it is possible that an

alternative language PL′ might assign the meaning that PL assigns to a given string

s to another string s′. Let us assume that PL′ can choose any string s′ so long as

PPL′(s′) = PPL(s), and can distribute the incremental conditional word probabilities

in s′ any way it wants. If k > 1, then for a given length of s′, the lowest-difficulty

assignment is to equalize the conditional probablity of each word; and if we vary the

length of s′, find that the longer it gets the lower the overall processing difficulty, so

long as PL′ assigns the same conditional probability to every word in s′. If language

40Although Fedorenko et al. 2004 use the term shared working memory resources in discussion of
the interaction, nothing in their data crucially demands an account based on memory as opposed to
expectation or other cognitive resources.



CHAPTER 2. SURPRISAL-BASED SYNTACTIC PROCESSING 83

typology consisted of the exploration for probabilistic languages that convey messages

with the lowest difficulty, then we would expect natural languages to prefer extremely

long sentences, each word of which is only slightly informative.

The solution to this conundrum, I propose, comes again from psycholinguistics

and also basic principles of linguistics. Independent of either memory-based or

expectation-based processing effects, a large proportion of total variance in read-

ing times can be explained simply by accounting for word length: people spend more

average time reading a longer word than a shorter word (Just and Carpenter, 1980;

Rayner et al., 1996). Similarly, sentences with more words are generally read more

slowly than sentences with shorter words. This points to a duality of patterning in

processing difficulty: there is a cost of processing phonetics and/or orthography, and

a separate cost of processing syntax. We can re-incorporate this into the equation for

incremental processing difficulty as follows:

difficulty ∝ [log P (wi|w1, · · · , wi−1)]
k + Cost(phon(wi), orth(wi)) (2.24)

Assuming that the cost function has a positive, non-zero lower bound, arbitrarily long

sentences with small, equally-distributed incremental probabilities will no longer have

arbitrarily small total processing difficulties.

We are now in a position to entertain an adaptive theory of language typology

derived from the surprisal theory of sentence comprehension. The typology of natural

languages should consist of the solutions minimizing the overall difficulty given in

2.24 summed over the distribution of strings in the language. Given a probabilistic

language PL, we can compare a small perturbation PL′ that assigns a longer string

s′ to the meaning of s in PL. In some cases, the reduction of the context-sensitive

syntactic expectation cost may outweigh the context-independent phonological and

orthographic processing cost; in other cases, the context-independent phonological

and orthographic cost may outweigh the context-sensitive syntactic expectation cost.

We can then think of dimensions of language typology as a set of trade-offs between

these costs. The overall cost of a natural language can be estimated using two things:
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(a) an estimate of the probabilistic language associated with that natural language;

and (b) a sample of strings in the language, whose cost may be estimated using the

estimated probabilistic language.

A natural approach to elucidating this typological theory would be to take a lan-

guage well-described in frequentistic terms and looking at the effect on the difficulty

metric given in 2.24 of perturbing its (non-categorical) grammatical structure: alter-

ing, freeing, or stiffening syntactic word order; or looking at the effects of inserting

or deleting function words, to name just two. Such investigations may already be

possible with languages for which we have syntactically-annotated corpora and know

how to estimate reasonably accurate probabilistic languages.

As a concrete example of how such a theory might play out in syntax, consider a re-

cent study by Race and MacDonald (2003) on the effect of dropping relative pronouns

on reading times for object relative clauses. From among a number of factors Race

and MacDonald found two positively associated with that deletion: pronominality

of the subject of the relative clause, and presence of a determiner in full-NP sub-

jects of the relative clause. Race and MacDonald also conducted a self-paced reading

time study whose results are generally consistent with expectation-based processing:

when the embedded subject is a determinerless full NP, object relative clauses are

read more slowly when that is deleted than when that is preserved; but when the

embedded subject is pronominal, there is no significant reading time difference.

We can apply our embryonic theory of language typology to the question of

why there might be a positive association between pronominal subjects (and full-

NP subjects with determiners) and that deletion. Remember that, on our theory,

languages should tend towards spreading information equally throughout a sentence.

We have also seen that open-class and closed-class words vary tremendously in their

predictability, simply due to the overwhelming number of open-class words. In a

pseudo-English lacking complementizer deletion, then, pronominal subject NPs in

relative clauses would have far less surprisal than determinerless full NPs in the same

position, simply because pronouns are closed-class. If we think of the grammar as

cooperating with the comprehender, that is doing useful work in the determinerless

full-NP subject cases, because it signals to the comprehender that a relative clause
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has begun and to expect a subject NP. But in the pronominal subject case, that may

be extranneous, because the somewhat high surprisal incurred by the onset of a rela-

tive clause would be offset by the high predictability of the pronominal subject. Since

the other half of our theory is that a cost is also incurred in processing phonological

material, dropping that before subject pronouns and determiners may be a beneficial

tradeoff for the comprehender. This theory makes the highly specific and testable

prediction that that deletion should correlate with the conditional probability of the

first word of the relative clause given everything preceding the RC.

Such a theory also encompasses recent results in the quantitative phonology of

listener modeling. As shown by Gregory (2001), speakers tend to choose as targets

for phonological reduction those words that they consider highly predictable to their

audience. Extending the notion of a two-level cost function with a tradeoff between

a constant phonological processing cost and a predictability-dependent linguistic in-

tegration cost, some reduction of highly predictable words may pay off in terms of

the decrease in phonetic processing cost, even if the associated integration cost may

increase due to lowered predictability of the actual phonetic realization.

2.9 Conclusion

Recent experimental results in syntactic ambiguity resolution indicate that compre-

henders incrementally integrate a variety of evidential knowledge in the process of dis-

criminating the preferred interpretation of a sentence; probability theory serves as a

coherent architecture for this constraint-based, resource-allocation paradigm of ambi-

guity resolution. We can extend the parallel, probabilistic disambiguation perspective

of incremental sentence processing into a theory of syntactic complexity and process-

ing difficulty by formalizing a linking hypothesis stating that the primary source of

difficulty incurred in processing a given word is determined by the degree of update in

the preference distribution over interpretations of the sentence that the word requires.

Formalized appropriately using the information-theoretic measure of the relative en-

tropy between probability distributions, we are able to derive a theory of processing

difficulty previously stipulated by Hale (2001), that the difficulty of a word is the
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surprisal (negative log of the conditional probability) of that word given its context.

This surprisal theory has several desirable theoretical and mathematical properties,

including a coherent integration of rational disambiguation, incremental processing,

and differential processing difficulty; representation-agnosticism; and freedom from

granularity bias that plagues other probabilistic theories of syntactic comprehension.

Empirically, it can smoothly incorporate major results in the ambiguity-resolutution

literature; it also makes non-trivial predictions about processing difficulty in unam-

biguous sentences that compare favorably to locality-based resource-requirement the-

ories of syntactic complexity, particularly in head-final and similar contexts where the

comprehender knows that a certain type of constituent is upcoming, but is uncertain

as to exactly where and what it is.



Chapter 3

Nonlocal dependencies from

context-free trees

3.1 Introduction

This chapter takes up the problem of identifying the complete dependency structure of

natural language sentences.0 As I argued in Chapter 1, context-free phrase structure

grammars (CFGs), which in some sense are at the the heart of the majority of both

formal and computational syntactic research, in their simplest incarnations only pro-

vide adequate information to recover local dependency relations. In the context-free

structural description Example (1) below, for instance, the wh-phrase who is seman-

tically a dependent of the deeply embedded verb attend, but the verb with which it

is in a local structural relationship is do (or perhaps expect):

(1) [SBAR [WHNP Who] [S do you [VP expect [VP to attend]]] ?]

The dependency between who and attend in this sentence is therefore syntactically

non-local.

Although a variety of mechanisms exist for enhancing CF trees to express the

classes of non-local dependency most common in natural language (see Section 1.4

0An earlier version of this chapter appeared previously as Levy and Manning (2004).

87
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for an overview), relatively little work in broad-coverage statistical parsing has focused

on these mechanisms. In this chapter I investigate the first of the three approaches

outlined in Section 1.4. Complete dependency recovery is viewed as a two-phase pro-

cess: first, a unique CF parse, encoding only the information necessary for surface

dependencies, is chosen for a sentence; second, an algorithm for non-local depen-

dency identification and resolution is applied to that unique CF parse. The resulting

enhanced phrase-structure tree contains all the information necessary to uniquely

determine the full dependency structure of the sentence.

The dependency-reconstruction algorithm is built from individual components in-

volving Maximum-Entropy statistical classifiers. These classifiers must be trained

on a hand-constructed syntactically annotated corpus. Fortunately, such corpora

are now available for several languages. In this chapter, I compare results of the

dependency-reconstruction algorithm on corpora of newspaper text in English and

German. This is an interesting contrast because, despite their similarity in many

grammatical respects, non-local dependency is considerably more prevalent in Ger-

man than in English. Since this approach is dependent on a hand-annotated dataset,

the types of non-local dependency covered here is dependent on the contents of the

annotated corpora available. Nevertheless, I attempt to discuss these examples in the

larger context of discontinuity as it relates to syntactic theory.

3.1.1 Previous and Related Work

Previous work on nonlocal dependency recovery in broad-coverage parsing has focused

entirely on English, despite the disparity in type and frequency of various non-local de-

pendency constructions for varying languages (Kruijff, 2002). Collins (1999)’s Model

3 investigated GPSG-style trace threading for resolving nonlocal relative pronoun

dependencies. Johnson (2002) was the first post-processing approach to non-local de-

pendency recovery, using a simple pattern-matching algorithm on context-free trees.

More recently, Campbell (2004) and Jijkoun and de Rijke (2004) have followed a

strategy similar to that presented here, taking context-free parse trees as a start-

ing point and enhancing them with non-local dependency information. Dienes and
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Dubey (2003a,b) and Dienes (2003) approached the problem by pre-identifying empty

categories using an HMM on unparsed strings and threaded the identified empties

into the category structure of a context-free parser, finding that this method com-

pared favorably with both Collins’ and Johnson’s. The division of labor into context-

free and trans-CF parsing phases can also be related to traditional non-stochastic

Lexical-Functional Grammar (LFG) parsing (Kaplan and Maxwell, 1993), which first

produces a context-free packed forest for an input tree and subsequently introduces

constraints determining (sometimes trans-CF) functional relations between nodes in

the CF phrase-structure forest. More recently, however, stochastic parsing of hand-

crafted unification- or constraint-based grammars in both LFG (Riezler et al., 2002;

Kaplan et al., 2004) and Head-Driven Phrase Structure Grammar (HPSG) (Toutanova

et al., 2005) have tended towards single-phase inference using discriminative models

over complete parses that include both local and non-local dependency information.

3.2 Datasets & types of non-local dependency cov-

ered

In this section I briefly discuss the annotation practices for discontinuity in Penn

Treebanks and for the NEGRA treebank. This section is also useful for reference in

Chapter 4.

3.2.1 Nonlocal Dependency in the Penn Treebanks

The Penn Treebanks use a variety of null-element annotations that can be viewed as

syntactic discontinuities (Bies et al., 1995, see ch. 4–4). These in turn are a subset

of a larger class of empty-category annotations in the Penn Treebanks. Figure 3.1

shows an example of these annotations in the Penn Treebank and their interpretation

as discontinuous relationships. Of them, the following types involve coindexation:1

1There are also several kinds of null-element and “pseudo-attachment” annotations in the Penn
Treebank that I ignore, because they are not plausible instances of syntactic discontinuity. These
include *U*, which is used to canonicalize the implicit form of unit (mostly monetary) expressions;
*?* and *NOT*, which are annotation patterns for ellipsis; and *PPA*, which indicates unresolvable
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� traces (A′ movement in Government-Binding theory (Chomsky, 1981)): wh-

movement, topicalization, relative clauses, parasitic gaps, and tough movement,

annotated as *T*;

� vacant argument positions (GB’s PRO and NP movement): passives, raising,

controlled and arbitrary subjects of participials, gerunds, and infinitives, anno-

tated as *;

� right node raising, annotated as *RNR*;

� right dislocations such as relative clause or prepositional phrase extraposition

from NP, annotated as *ICH*;

� expletives, annotated as *EXP*;

Two major classes of discontinuous dependency are contained in these annota-

tions. The first I term dislocations, cases where a constituent should not be given a

transparent compositional (i.e., sister-head) semantic interpretation at its position in

the parse tree, but rather has a compositional relationship with some more distant

node. The second, shared nodes, are those that should be interpreted both at their

site in the tree and in a compositional relationship with some other node. Of the

above, traces, right dislocations, expletives, and some right node raisings are cases

of dislocations (although unembedded instances of right node raising can be handled

cleanly as a context-free local dependency by some accounts of coordination, such as

that of Maxwell and Manning (1996)). Coindexed vacant argument positions such

as those involved in raising and control are cases of shared nodes.2 Passivization is

also given the same annotation in the Penn Treebank as raising and control, with the

empty dependent node appearing postverbally inside the VP.3

syntactic ambiguity (such as PP attachment ambiguities where the correct attachment cannot be
determined from context).

2It is controversial in theoretical linguistics whether the shared dependency in all cases of raising
and control is purely syntactic (see for example discussion in Chapter 7 of Pollard and Sag 1994),
but addressing this controversy is beyond the scope of this chapter.

3The syntactic motivation for annotating passivization identically to raising is that they are both
analyzed as A-movement in Government and Binding syntactic theory (Haegeman, 1991). Although
control is not typically analyzed as A-movement, it shares with passivization and raising the common
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There are also three cases in which a dislocated constituent is identified with more

than one base position. The first is when there is an association with positions in co-

ordinated conjuncts. When an argument sister of coordinated verbs is extracted, the

trace appears as a sister of each conjunct. These examples can generally be handled

by creating a coordinate mother node that the dislocation is in a unique relationship

with. The second case is right node raising; unembedded instances can be subsumed

under (non-constituent) coordination, but embedded instances require either multiple

base positions or non-local feature passing through context-free categories. The third

case is parasitic gaps, rare but arguably present in the Penn Treebank.4

One more type of Penn Treebank annotation needs to be explained in order to

completely understand nonlocal dependency in the corpus. In Figure 3.1, the WHNP

in the lower right corner dominates 0, which is notation for a null complementizer—

the silent beginning of a relative or complement clause that alternates with an overt

instance of that or which. In this particular case, annotation on the maximal NP pro-

jection of the null complementizer mediates the (potentially long-distance) extraction

of the RC object, as indicated by the -1 coindexation in Figure 3.1.

3.2.2 Nonlocal dependency in the NEGRA treebank

The NEGRA treebank (Skut et al., 1997b), which consists of roughly 350,000 words

of German newspaper text, was constructed explicitly with the possibility of discon-

tinuous constituency in mind. There are no string-position constraints on syntactic

constituency in NEGRA, and there are no null elements. However, a transformed

property of entering into a syntactic relationship with the governing verb both at the overt and
underlying position: at the overt position, agreement with the governing verb is determined, and
semantic relationships are determined at the underlying position (as well as at the overt position, in
the case of control). Since it is impossible to distinguish raising from control using only Treebank
annotation, I have left the three phenomena together as “shared dependencies”.

4Although parasitic gap annotation guidelines exist in the manual (Bies et al., 1995, p. 68), I
have been unable to find a clear example of parasitic gapping in the Treebank. The closest (yet still
dubious) example I have found is

Of 1,224 companies surveyed, 31% expect to cut spending on plant equipment and
machinery , while only 28% plan to spend more.

where the initial PP is annotated as a topic extracted from the two percentage NPs.
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Figure 3.1: Example of empty and nonlocal annotations from the Penn Tree-
bank of English, including null complementizers (0 ), relativization (*T*-1 ), right-
extraposition (*ICH*-2 ), and syntactic control (*-3 ).

version was also produced algorithmically (Brants, p.c.; Skut et al. 1997a) where all

phrase structure trees are context-free, but discontinuous dependency relations are

annotated using Penn Treebank-style dislocated-constituent coindexation. The types

of discontinuity appearing as a result of the context-free transformation of NEGRA

include roughly traces, rightward displacement, and expletives, as described in Section

3.2.1 for the Penn Treebanks.5 They further include instances of argument composi-

tion or clause union (Hinrichs and Nakazawa, 1994), where one verb subcategorizes

for another and the arguments of the two are positionally interleaved.6 All these

5Interestingly, parasitic gaps appear not to exist in standard German (Kathol, 2001).
6Significantly, subjects in NEGRA are taken to be in the domain of the finite verb. This means

that finite auxiliary + participial verb combinations are treated as having discontinuous clauses
when a non-subject argument is fronted. For example, in the sentence

(i) Das
the

Buch
book

habe
have

ich
I

gelesen
read

the combination [das Buch + gelesen] is taken to be a discontinuous constituent. In dependency
terms, the dependency of Buch on gelesen is a crossing dependency because it crosses the root of
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“The RMV will not begin to be formed for a long time.”

Figure 3.2: Nonlocal dependencies via right-extraposition (*T1* ) and topicalization
(*T2* ) in the NEGRA corpus of German, before and after transformation to context-
free form. Dashed lines show effect of remapping into context-free form.

cases can be considered as dislocations in the classification introduced above for Penn

Treebank discontinuities. Figure 3.2 gives an example of an annotated NEGRA sen-

tence containing discontinuous dependencies, and the corresponding automatically

produced context-free version with annotation of nonlocalities.

3.3 Algorithm

Corresponding to the three types of empty-element annotation found in the Penn

Treebank, we divide the process of CF tree enhancement into three phases. Each

phase involves the identification of a certain subset of tree nodes to be operated on,

followed by the application of the appropriate operation to the node. Operations

may involve the insertion of a category at some position among a node’s daughters;

the marking of certain nodes as dislocated; or the relocation of dislocated nodes to

the sentence, habe.
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other positions within the tree. The content and ordering of phases is consistent

with the syntactic theory upon which treebank annotation is based. For example,

WSJ annotates relative clauses lacking overt relative pronouns, such as the SBAR in

Figure 3.1, with a trace in the relativization site whose antecedent is an empty relative

pronoun. This requires that empty relative pronoun insertion precede dislocated

element identification. Likewise, dislocated elements can serve as controllers of control

loci, based on their originating site, so it is sensible to return dislocated nodes to their

originating sites before identifying control loci and their controllers. For WSJ, the

three phases are:

1. (a) Determine nodes at which to insert null complementizers7 (IdentNull)

(b) For each comp insertion node, determine position of each insertion and insert

comp (InsertNull)

2. (a) Classify each tree node as ± dislocated (IdentMoved)

(b) For each dislocated node, choose an origin node (RelocMoved)

(c) For each pair 〈dislocated,origin〉, choose a position of insertion and insert

dislocated (InsertReloc)

3. (a) Classify each node as ± control locus (IdentLocus)

(b) For each locus, determine position of insertion and insert locus (InsertLocus)

(c) For each locus, determine controller (if any) (FindController)

Note in particular that phase 2 involves the classification of overt tree nodes as dislo-

cated, followed by the identification of an origin site (annotated in the treebank as an

empty node) for each dislocated element; whereas phase 3 involves the identification

of (empty) control loci first, and of controllers later. This approach contrasts with

that of Johnson (2002), who treats empty/antecedent identification as a joint task,

7The WSJ contains a number of SBARs headed by empty complementizers with trace S’s, gen-
erally corresponding to fronted quotations such as the following:

[S-1 Those dividend increases may signal trouble ahead for stock prices] , some analysts
[VP warn [SBAR 0 ∗T ∗ −1]].

These SBARs are introduced in the algorithm as projections of identified empty complementizers
as daughters of non-SBAR categories.
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and with Dienes and Dubey (2003a,b), who always identify empty nodes first and

determine antecedents later. The motivation is that it should generally be easier to

determine whether an overt element is dislocated than whether a given position is the

origin of some as yet unknown dislocated element (particularly in the absence of a

sophisticated model of argument expression); but control loci are highly predictable

from local context, such as the subjectless non-finite S in Figure 3.1’s S-2.8 Indeed

this difference seems to be implicit in the non-local feature templates used by Dienes

and Dubey (2003a,b) in their empty element tagger, in particular lookback for wh-

words preceding a candidate verb.

As described in Section 3.2, NEGRA’s nonlocal annotation schema is much sim-

pler, involving no uncoindexed empties or control loci. Correspondingly, for NEGRA

the algorithm includes only phase 2 of the WSJ algorithm, step (c) of which is trivial

for NEGRA due to the deterministic positioning of trace insertion in the treebank.

In each case I use a maximum-entropy (MaxEnt) model for node classification.

The following section provides a brief introduction to Maximum Entropy models and

particular aspects of them relevant to the work in this chapter. In the second and

third parts of phases 2 and 3, when determining an originating site or controller for a

given node N, or an insertion position for a node N′ in N, I use a competition-based

setting, using a binary classification (yes/no for association with N) on each node

in the tree, and during testing choosing the node with the highest score for positive

association with N.9 All other phases of classification involve independent decisions

at each node. In phase 3, I include a special zero node to indicate a control locus

with no antecedent.

8Additionally, whereas dislocated nodes are always overt, control loci may be controlled by other
(null) control loci, meaning that identifying controllers before control loci would still entail looking
for nulls.

9The choice of a unique origin site makes the algorithm unable to deal with right-node raising
or parasitic gaps. Cases of right-node raising could be automatically transformed into single-origin
dislocations by making use of a theory of coordination such as Maxwell and Manning (1996), while
parasitic gaps would require the introduction of a secondary classifier. Both phenomena are low-
frequency, and I ignore them here, but in principle we could allow multiple origins either (more
straightforwardly) by selecting all origins above a certain threshold, or by treating multiple-origin
assignments as distinct classification options that receive their own probability.
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3.4 Maximum Entropy Models

The algorithm presented in this section for recovery of non-local dependency relies

on the sequential application of classifiers to various parts of tree structure. These

individual classifiers take the form of Maximum Entropy models—equivalently, in

our case, logistic regression models. This section briefly overviews the key features of

Maximum Entropy models utilized in this chapter. Further details can be found in

many places in the literature, including Della Pietra et al. (1997) and Berger et al.

(1996).

The general problem of classification is as follows: given an observed datum o,

choose from among a set of predetermined hidden classes H the correct class h for o.

The application of probabilistic models to classification involves the construction of

a conditional probability distribution (c.p.d.)

P (h|o)

Discriminative probabilistic models, of which MaxEnt is an example, directly estimate

such a c.p.d.

The further assumption is made that P (h|o) is completely determined by a vector

F of features that is deterministically specified by the combination h, o. That is,

there is a function f specifying a feature vector of real-number values f(h, o) =

(f1, f2, · · · ) and P (h|o) = P (h|f(h, o)).10 The method of maximum entropy involves

a commitment to the log-linear family of functions for P (h|o), namely:

P (h|o) =
Πn

i eλifi

Σh∈HΠn
i eλifi

(3.1)

=
eΣn

i
λifi

Σh∈HeΣn

i
λifi

(3.2)

where fi is the value of the i-th entry in f(o). A particular member of this family

of functions is specified by a parameterization—that is, a choice of specific values for

10Typically, F will be finite-dimension, but kernel methods (see Collins and Duffy 2001 and others)
can in fact extend discriminative classification to certain cases where F is infinite-dimension.
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the λi.

We can usefully distinguish two variants, fixed-class and variable-class, of maximum-

entropy classification. In the fixed-class variant, the possible hidden classes of each

observation oi range over the same inventory {h1 · · ·hn}. In this situation, it is com-

mon to assume that each feature directly calculable exclusively from the observation

corresponds to n different features in F , one for each hidden class, and that a feature

in F derived from hi must have value 0 for all pairings 〈hj, o〉, j 6= i. If there are m

different features arising from the possible o, then the length of the feature vector F

must be m × n. For example, if the task is to guess the part of speech of a word in

isolation, there are 25 parts of speech in the language, and the two observation-based

features to use are whether the word starts in un- ends in -ing, then F would be length

50 (25 features pair a hidden class with un- and 25 with -ing), but only two features

could be non-zero for any particular 〈h, o〉. This fixed-class variant of maximum en-

tropy is equivalent to the logistic regression models widely used in categorical data

analysis (Agresti, 2002), and all the classifiers I use in nonlocal dependency recovery

are fixed-class (the hidden classes always being “yes” and “no” for each node).

The variable-class variant of maximum entropy generalizes the fixed-class variant

by allowing each observation oi to have a different (and possibly infinite) range of

possible hidden classes. As an example, an observation o could be a natural language

string and the hidden class h could be a complete parse tree whose fringe is o, as in

parse selection work such as Toutanova et al. (2005). The possible classes range over

the possible parse trees for o given some grammar, and the feature function f(h, o)

would be sensitive to various properties of a complete parse tree.11

Given the choice of a family of probabilistic models, a criterion must be chosen

by which a particular model parameterization is chosen as a fit to a set O of training

observations—that is, a setting of the parameters {λh
i } of Equation 3.1 to values

that are somehow consistent with the dataset. For this purpose we use the method

11There might be a potential gain in treating origin-site and controller identification as a variable-
class model, with the classes for each dislocated or shared dependent ranging over the nodes in its
tree, because the resulting likelihood function is more closely related to the actual classification task,
but I have resolved the prominent cases where this might be an issue through appropriate feature
templates.
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of maximum likelihood.12 That is, if every example 〈h, o〉 in our training set has a

likelihood determined by Equation 3.1, then we can calculate a total likelihood for

our entire training set as follows:

L(O; {λh
i }) = Π〈h,o〉∈OP (h|o) (3.3)

= Π〈h,o〉∈O

eΣn

i
λh

i
fi

Σh∈HeΣn

i
λh

i
fi

(3.4)

Since our problem is now framed as choosing a set of values for the parameters {λh
i }

of our model, we regard O as constant and seek to maximize L(O) with respect to the

parameters {λh
i }. It turns out that it is very easy (though possibly time-consuming)

to maximize the MaxEnt family of models: the likelihood surface defined by 3.3 is

convex, and thus has a unique maximum under ordinary circumstances.

Once a model has been fit to a set of training data, that model can then be used to

classify a new observation o′ by finding the hidden class h′ for which the conditional

probability P (h′|o′) is maximized.

3.4.1 Regularization

In a wide variety of machine learning problems, including this one, the featurization

of the data—the dimension of the feature vector (f1, f2, · · · , fn) corresponding to an

observation o—is very high, often on the order of the number of training samples. This

renders trained models prone to overfitting—that is, learning parameter settings too

closely tuned to the particulars of the training set and unable to robustly generalize

to new data. The most extreme example of this problem comes when a feature acts

as a perfect predictor—when a particular feature fk∗ takes on a non-zero value only

for a certain class hj∗ in the training data. In this case, the likelihood is monotonic in

λj∗

k∗ (increasing or decreasing depending on whether fk∗ is positive or negative), and

12The maximum-likelihood values for the parameters λi of the loglinear-form c.p.d. given in Equa-
tion 3.1 also turn out to maximize the entropy of the c.p.d. H(P (h|o) subject to the constraint that
the model’s expectation for each λi is equal to the observed expectation. This likelihood/entropy
duality is the source of the term “maximum entropy”.
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thus has no maximum; if we approximate the best fit by giving a λj∗

k∗ an arbitrarily

high value, then at classification time, an example with activation of fk∗ will always

be assigned class hj∗ , no matter what other features are active. Crucially, this will

occur even if there is only one example for which fk∗ is non-zero.13

A common solution to this problem, which I employ here, involves the application

of a penalty or regularizing term T ({λh
i }) to the objective function. The regularizing

term is structured to capture the intuition that we do not just want a model that

maximizes the likelihood of our training data; we want a model that achieves high

data likelihood without coming to strong conclusions on the basis of small amounts

of evidence. This term finds its minimum at the origin and is multiplied with the

likelihood to achieve the new objective function:

L(O; {λh
i })× T ({λh

i }) (3.7)

I use the common Gaussian prior regularizing term (Berger and Miller, 1998; Chen

and Rosenfeld, 2000), which is of the form

exp(−
∑

h,i

(λh
i )

2

2σ2
) (3.8)

where σ2, the variance of the Gaussian term being used, is chosen before training.

Since a given feature weight λh
i helps the likelihood more if the feature is common,

but is penalized only once regardless of feature frequency, the effect of regularization

is that rarer features will tend to receive smaller weights than more common features,

13In the presence of a perfect predictor, the likelihood has the following form:

L(O; {λh
i }) = (Π〈hj ,o〉∈O,j 6=j∗

e
Σ
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i
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fi
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)

(3.5)

With respect to λ
j∗

k∗ , the first parenthesized term is constant, as j is never equal to j∗; the second
parenthesized term can be put in the form

aeλ
j∗

k∗fk∗

aebλ
j∗

k∗ + C
(3.6)

for positive constants a and C.
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Figure 3.3: Different classifiers’ specialized tree-matching fragments and their pur-
poses

capturing the intuition that we should generalize more aggressively from more com-

monly occurring evidence.14 Choosing smaller values for σ2 increases the strength of

penalty, in effect decreasing the predisposition to generalize from small amounts of

evidence. In practice, however, I did not find that model performance was especially

sensitive to the particular value of σ2. The results reported in this chapter use a value

of σ2 = 1.0.

3.5 Features

Each subphase of the dependency reconstruction algorithm involves the training of

a separate model and the development of a separate feature set. I found that it

was important to include both a variety of general feature templates and a number

of manually designed, specialized features to resolve specific problems observed for

individual classifiers. I developed all feature templates exclusively on the training

and development sets specified in Section 3.2.

Table 3.1 shows the general feature templates in each classifier. The features

are coded as follows. The prefixes {∅,m,g,d,r} indicate that the feature value is

calculated with respect to the node in question, its mother, grandmother, daughter

14In addition, perfect-predictor features have finite optimal weights under regularization.
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Tag X X

Hd X

Cat×mCat ⊗ X

Cat×mCat×gCat X X X

Cat×Hd×mCat×mHd ⊗
Cat×Tag×mCat×mTag ⊗
Cat×Tag X X

Cat×Hd ⊗
(First/Last)Cat X X

(l/rSis)Cat X X

dPos×Cat X

Path X X

Cat×rCat X

Tag×rCat X

Cat×Tag×rCat X

Cat×rCat×dPos X

Hd×rHd ⊗
Cat×Hd×rHd X

Cat×dCat X X X X

mHd×Hd ⊗
# Special 9 0 11 0 0 12 0 3

Table 3.1: Shared feature templates. See text for template descriptions. # Special is
the number of special templates used for the classifier. ⊗ denotes that all subsets of
the template conjunction were included.

(applied once for each daughter in the local tree), or relative node respectively.15

{Cat,Pos,Tag,Hd} stand for syntactic category, position (of daughter) in mother,

head tag, and head word respectively. For example, when determining whether an

infinitival VP is extraposed, such as S-2 in Figure 3.1, the plausibility of the VP head

being a deep dependent of the head verb is captured with the mHd×Hd template.

(First/Last)Cat and (l/rSis)Cat are templates used for choosing the position

to insert relocated nodes, recording respectively whether a node of a given category

is the first/last daughter, and the syntactic category of a node’s left/right sisters.

Path is the syntactic path between relative and base node, defined as the list of

the syntactic categories on the (inclusive) node path linking the relative node to the

node in question, paired with whether the step on the path was upward or downward.

15The relative node is Dislocated in RelocMoved and Locus in FindController.
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For example, in Figure 3.2 the syntactic path from VP-1 to PP is [↑-VP,↑-S,↓-VP,↓-

PP]. This is a crucial feature for the relativized classifiers RelocateMoved and

FindController; in an abstract sense it mediates the gap-threading information

incorporated into GPSG-style (Gazdar et al., 1985) parsers, and in concrete terms it

closely matches the information derived from Johnson (2002)’s connected local tree

set patterns. Gildea and Jurafsky (2002) is to my knowledge the first use of such

a feature for classification tasks on syntactic trees; they found it important for the

related task of semantic role identification.

I expressed specialized hand-coded feature templates as tree-matching patterns

that capture a fragment of the content of the pattern in the feature value. Repre-

sentative examples appear in Figure 3.3. The italicized node is the node for which a

given feature is recorded; underscores indicate variables that can match any cate-

gory; and the angle-bracketed parts of the tree fragment, together with an index for

the pattern, determine the feature value. Details of specialized feature templates are

given in Appendix B.

3.6 Results

3.6.1 Testbed

The datasets used for this study consist of the Wall Street Journal section of the Penn

Treebank of English (WSJ) and the context-free version of the NEGRA (version

2) corpus of German (Skut et al., 1997b), as described in Section 3.2. Full-size

experiments on WSJ described in this chapter used the standard sections 2–21 for

training, 24 for development, and trees whose yield is under 100 words from section

23 for testing. In the comparative English/German experiments described in Section

3.6.4, I used for English the same development and test sets but files 200–059 of WSJ

as a smaller training set; for German I followed Dubey and Keller (2003) in using the

first 18,602 sentences of NEGRA for training, the final 1,000 sentences of NEGRA for

development, and the remaining 1,000 for testing. In keeping with the output format

of available Treebank-style parsers, I stripped all functional tags from the syntactic
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Gold trees Parser output
Jn Pres Jn DD Pres

np-* 62.4 75.3 55.6 (69.5) 61.1
wh-t 85.1 67.6 80.0 (82.0) 63.3
0 89.3 99.6 77.1 (48.8) 87.0
sbar 74.8 74.7 71.0 73.8 71.0
s-t 90 93.3 87 84.5 83.6

Table 3.2: Comparison with previous work using Johnson’s PARSEVAL metric. Jn
is Johnson (2002); DD is Dienes and Dubey (2003b); Pres is the present work.

categories of input context-free trees prior to both training and testing (though in

several cases this seems to have been a limiting move; see Section 3.8).

3.6.2 Comparison with previous work

If we think of a statistical parser as a function from strings to CF trees, and the

nonlocal dependency recovery algorithm A presented in here as a function from trees

to trees, we can naturally compose the algorithm with a parser P to form a function

A ◦ P from strings to trees whose representation is, hopefully, an improvement over

the trees from P .

Johnson (2002) introduced a PARSEVAL-based evaluation metric for evaluating

empty-annotation recovery on context-free parse trees: a correct empty category in-

ference requires the string position of the empty category, combined with the left and

right boundaries plus syntactic category of the antecedent, if any. We can compare

the algorithm’s performance on this metric with the results of Johnson (2002) and

Dienes and Dubey (2003a) on WSJ. Valid comparisons exist for the insertion of un-

coindexed empty nodes (Comp and Arb-Subj), identification of control and raising

loci (ControlLocus), and pairings of dislocated and controller/raised nodes with

their origins (Disloc,Controller). Table 3.2 presents results using this metric in
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comparison with Johnson (2002) and Dienes and Dubey (2003a).16,17 Note that this

evaluation metric does not require correct attachment of the empty category into the

parse tree. In Figure 3.1, for example, WHNP-1 could be erroneously remapped to

the right edge of any S or VP node in the sentence without resulting in error ac-

cording to this metric. I therefore abandon this metric in further evaluations as it

is not clear whether it adequately approximates performance in predicate-argument

structure recovery.18

3.6.3 Composition with a context-free parser

The evaluation metric used in the previous section is insufficiently stringent, and fails

to capture the essential information that non-local dependency (or discontinuous-

constituency) annotation is mean to provide. Furthermore, it gives us no way to ad-

dress the major issue motivating non-local dependency algorithms in the first place:

to what extent does the context-free simplification of constituency/dependency fail to

capture the structural relationships present in the sentence of a natural language? In

Sections 1.3.2 and 1.4, I showed that discontinuous constituency, head-sister phrase

structure relationships that do not express government, and crossing dependency are

different facets of the same phenomenon. This suggests that a natural way of com-

paring context-free trees with and without extra non-local dependency annotation is

to (deterministically) induce dependency trees from the headed constituency trees re-

sulting from a CF parser with and without a non-local dependency algorithm. Such a

dependency tree can be compared against the gold-standard dependency tree induced

16For purposes of comparability with Johnson (2002) I used Charniak’s 2000 parser in the “parser
output” evaluation.

17This algorithm was evaluated on a more stringent standard for np-* than in previous work:
control loci-related mappings were done after dislocated nodes were actually relocated by the algo-
rithm, so an incorrect dislocation remapping can render incorrect the indices of a correct np-* labeled
bracketing. Additionally, our algorithm does not distinguish the syntactic category of null insertions,
whereas previous work has; as a result, the null complementizer class 0 and WH-t dislocation class
are aggregates of classes used in previous work.

18Collins (1999) reports 93.8%/90.1% precision/recall in his Model 3 for accurate identification of
relativization site in non-infinitival relative clauses. This figure is difficult to compare directly with
other figures in this section; a tree search indicates that non-infinitival subjects make up at most
85.4% of the WHNP dislocations in WSJ.
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PCF P A ◦ P J ◦ P D G A ◦G J ◦G
Overall 91.2 87.6 90.5 90.0 88.3 95.7 99.4 98.5
NP 91.6 89.9 91.4 91.2 89.4 97.9 99.8 99.6
S 93.3 83.4 91.2 89.9 89.2 89.0 98.0 96.0
VP 91.2 87.3 90.2 89.6 88.0 95.2 99.0 97.7
ADJP 73.1 72.8 72.9 72.8 72.5 99.7 99.6 98.8
SBAR 94.4 66.7 89.3 84.9 85.0 72.6 99.4 94.1
ADVP 70.1 69.7 69.5 69.7 67.7 99.4 99.4 99.7

Table 3.3: Typed dependency F1 performance when composed with statistical parser.
PCF is parser output evaluated by context-free (shallow) dependencies; all others are
evaluated on deep dependencies. P is parser, G is string-to-context-free-gold-tree
mapping, A is present remapping algorithm, J is Johnson 2002, D is the Combined
model of Dienes 2003.

from an enhanced CF tree as it appears in the annotated corpus.

To test this idea quantitatively, I evaluate performance with respect to recovery

of typed dependency relations between words. A dependency relation is defined at a

node N of a lexicalized parse tree as a pair 〈wi, wj〉 where wi is the lexical head of N

and wj is the lexical head of some non-head daughter of N. Dependency relations may

further be typed according to information at or near the relevant tree node; Collins

(1999), for example, reports dependency scores typed on the syntactic categories of

the mother, head daughter, and dependent daughter, plus on whether the dependent

precedes or follows the head. I present here dependency evaluations where the gold-

standard dependency set is defined by the remapped tree, typed by syntactic category

of the mother node.19 In Figure 3.1, for example, to would be an ADJP dependent

of quick rather than a VP dependent of was ; and Farmers would be an S dependent

both of to in to point out . . . and of was. Trees are lexicalized using the head-finding

rules of Collins (1999), and assuming that null complementizers do not participate in

dependency relations. To further compare these results with previous work, I obtained

the output trees produced by Johnson (2002) and Dienes (2003) and evaluated them

on typed dependency performance. Table 3.3 shows the results of this evaluation.

19Unfortunately, 46 WSJ dislocation annotations in this testset involve dislocated nodes domi-
nating their origin sites. It is not entirely clear how to interpret the intended semantics of these
examples, so they are ignored in evaluation.
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Performance on gold trees Performance on parsed trees
ID Rel Combo ID Combo

P R F1 Acc P R F1 P R F1 P R F1
WSJ(full) 92.0 82.9 87.2 95.0 89.6 80.1 84.6 34.5 47.6 40.0 17.8 24.3 20.5
WSJ(sm) 92.3 79.5 85.5 93.3 90.4 77.2 83.2 38.0 47.3 42.1 19.7 24.3 21.7
NEGRA 73.9 64.6 69.0 85.1 63.3 55.4 59.1 48.3 39.7 43.6 20.9 17.2 18.9

Table 3.4: Cross-linguistic comparison of dislocated node identification and remap-
ping. ID is correct identification of nodes as ± dislocated; Rel is relocation of node
to correct mother given gold-standard data on which nodes are dislocated (only ap-
plicable for gold trees); Combo is both correct identification and remapping.

For comparison, I include shallow dependency accuracy for Charniak’s parser under

PCF.

3.6.4 Cross-linguistic comparison

In order to compare the results of nonlocal dependency reconstruction between lan-

guages, we must identify equivalence classes of nonlocal dependency annotation be-

tween treebanks. NEGRA’s nonlocal dependency annotation is quite different from

WSJ, as described in Section 3.2, ignoring controlled and arbitrary unexpressed sub-

jects. The natural basis of comparison is therefore the set of all nonlocal NEGRA

annotations against all WSJ dislocations, excluding relativizations (defined simply as

dislocated wh- constituents under SBAR).20

Table 3.4 shows the performance comparison between WSJ and NEGRA of Ident-

Disloc and RelocMoved, on sentences of 40 tokens or less. For this evaluation

metric, I use syntactic category and left & right edges of (1) dislocated nodes (ID);

and (2) originating mother node to which dislocated node is mapped (Rel). Combo

requires both (1) and (2) to be correct. NEGRA is smaller than WSJ (∼350,000

words vs. 1 million), so for fair comparison we tested WSJ using the smaller training

set described in Section 3.6.1, comparable in size to NEGRA’s. Since the positioning

of traces within NEGRA nodes is trivial, we evaluate remapping and combination

20The interpretation of comparative results must be modulated by the fact that I spent more total
time on feature engineering for WSJ than for NEGRA, and I am not a native speaker of German.



CHAPTER 3. NONLOCAL DEPENDENCIES FROM CF TREES 107

PCF P A ◦ P G A ◦G
WSJ(full) 76.3 75.4 75.7 98.7 99.7
WSJ(sm) 76.3 75.4 75.7 98.7 99.6
NEGRA 62.0 59.3 61.0 90.9 93.6

Table 3.5: Typed dependency F1 performance when composed with statistical parser.
Remapped dependencies involve only non-relativization dislocations and exclude con-
trol loci.

performances requiring only proper selection of the originating mother node; the al-

gorithm is thus carried out on both treebanks through step (2b). This is adequate for

purposes of typed dependency evaluation in Section 3.6.3, since typed dependencies

do not depend on positional information. State-of-the-art statistical parsing is far

better on WSJ (Charniak, 2000) than on NEGRA (Dubey and Keller, 2003), so for

comparison of parser-composed dependency performance I used vanilla PCFG mod-

els for both WSJ and NEGRA trained on comparably-sized datasets; in addition to

making similar types of independence assumptions, these models performed relatively

comparably on labeled bracketing measures for development sets (73.2% performance

for WSJ versus 70.9% for NEGRA).

Table 3.5 compares the testset performance of algorithms on the two treebanks

on the typed dependency measure introduced in Section 3.6.3.21

3.7 Data analysis

3.7.1 General Trends

First, there is a considerable amount of annotation inconsistency for nonlocal depen-

dencies in the Penn Treebank, in particular revolving around control loci and their

antecedents. Inconsistencies include

� whether a passive verb governs a control locus, and if it does, whether that

locus has an antecedent
21Many head-dependent relations in NEGRA are explicitly marked, but for those that are not

I used a Collins (1999)-style head-finding algorithm independently developed for German PCFG
parsing.
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Figure 3.4: An ambiguous shared dependency

� whether control locus subjects of infinitival and gerund phrases are given an-

tecedents

3.7.2 Genuine difficulties in nonlocal dependency reconstruc-

tion

In terms of control relations, one of the most genuinely difficult disambiguation tasks

is to determine subject versus object control for infinitival VP complements in transi-

tive (or otherwise two-argument) clauses. In Figure 3.4, the infinitival VP to release

Nelson Mandela is truly ambiguous between being a purpose clause, in which case

the infinitival VP complement should be coindexed with the subject they, and be-

ing a verbal complement, in which case it should be coindexed with the object the

government (due to properties of the verb+preposition complex call on).22 In this

particular case, I judge the verbal complement reading to be more plausible, and

in fact the annotator coindexed it with the object. But from the machine learning

perspective, a number of facts have to be recognized to get this judgement correct:

22See Chapter 14 of Bies et al. (1995) for more details. Ironically (p. 246), call on is not one of the
verbs listed as being able to select for, and thus specify object coindexation for, an infinitival com-
plement. Although the annotator was clearly right in treating this example as an object-coindexed
infinitival complement, the coindexation was actually annotated on the entire PP on the government
rather than the correct target the government.
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advise 8 detail 0 instruct 6 request 2
ask 78 direct 4 invite 16 recommend 0
beg 3 enjoin 0 order 19 teach 5
beseech 0 exhort 0 persuade 29 tell 12
challenge 1 forbid 2 pray 0 urge 53
command 0 implore 1 promise 2
counsel 0 incite 0 remind 0

Table 3.6: Sparsity of ditransitive verbs selecting infinitival VP complement: count
of cooccurrences with infinitival VP

1. the VP should occur in an external environment that licenses a controlled sub-

ject;

2. the lexical governor of the infinitive is call

3. the PP sister, headed by on, is actually a determining factor in the relevant

verbal lemma (c.f. call on the phone);

4. call on can select for an infinitive VP whose subject gets coindexed with the

NP inside the on PP.

5. the infinitival VP actually is a selected complement in this particular case.

Even if we hard-coded the property of item 4, all other properties would have to be

learned in the classifier, and items 3 and 5 could easily be dependent on the identity of

the verb in question. But as we can see in Table 3.6, many such verbs are quite sparse

in the training set (note that these are counts of stemmed forms, so inflected form

counts are sparser still). Due to this sensitivity to the properties of a lexical governor,

subject versus object control is an ambiguity where maximum entropy classification

is able to do quite well in comparison to purely structure-based dependency recovery

algorithms, but it is also highly susceptible to data sparsity and thus an inherently

difficult ambiguity.
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3.7.3 Parsed input and degradation of nonlocal dependency

identification

Central to the question of whether a first phase of context-free parse disambiguation

is a safe approximation is the degree to which nonlocal dependencies that are reliably

identifiable from perfectly parsed context-free trees become incorrectly identified for

state-of-the-art parsed input. An error in nonlocal dependency identification induced

by an error in the context-free parse can be termed an error cascade. One simple

measure of the frequency of error cascades lies in Table 3.3. If we compare the overall

f -score improvement achieved by composing the non-local dependency algorithm to

gold-standard trees versus automatically-parsed trees (4.7% versus 3.9%, judged by

comparing the difference between A ◦ G and G with the difference between A ◦ P

and P ), we see that over 80% of the benefit on gold-standard trees carries over to

automatically-parsed trees. For a state-of-the-art context-free parser of English, error

cascades do not compromise the utility of our algorithm. The picture for composi-

tion with a vanilla PCFG parser is rather different: in Table 3.5, we can see that

most of the dependency improvement achieved on gold-standard trees disappears on

automatically-obtained parse trees.

It is also useful to look at the error cascades that do exist in the composition

with the Charniak parser. One of the major cascades involves NP/VP attachment

ambiguity and control. In Figure 3.5, the phrase to take matters into their own

hands is correctly analyzed as the complement of threats. The general rule for ETB

is that null subjects of infinitival VP complements inside NPs should not be assigned

antecedents (see Bies et al. 1995, p. 241), whereas inside VPs they typically are,

although ETB annotation is not entirely consistent in this regard.23 The positioning

of the infinitival complement clause induces an attachment ambiguity, however: in

23From a theoretical linguistic standpoint, the division of coindexation by governing category of
infinitival complement is not necessarily well-founded. The ETB manual specifies that null subjects
for infinitival complement clauses of VPs should be coindexed “with whatever lexical NP it is asso-
ciated with” (presumably on intuitive grounds). But the same criterion could easily be applied to
many null subjects in infinitival complement clauses of NPs, including that in Figure 3.5 (where the
coindexed antecedent would presumably be the first appearance of the possessive pronoun their). A
good deal of evidence, including cases of complement coercion such as the following:
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addition to its correct association with only the right NP conjunct threats, higher

attachments are possible, either at the level of coordinate NP mother their agitation

and threats and as a verbal in association with the VP step up their efforts, in which

case the infinitival complement would be interpreted as a purposive clause. The parser

(quite reasonably, in this case) misattaches the infinitival complement to the VP; the

nonlocal dependency recovery algorithm correctly identifies a control locus, but the

underlying parse error incorrectly leads to the assignment of the subject the large

number of right-wing white males . . . as its antecedent.

3.8 Discussion

The WSJ results shown in Tables 3.2 and 3.3 suggest that discriminative models

incorporating both non-local and local lexical and syntactic information can achieve

good results on the task of non-local dependency identification. On the PARSEVAL

metric, this algorithm performed particularly well on null complementizer and control

locus insertion, and on S node relocation. In particular, Johnson noted that the proper

insertion of control loci was a difficult issue involving lexical as well as structural

sensitivity. I found the loglinear paradigm a good one in which to model this feature

combination; when run in isolation on gold-standard development trees, the model

reached 96.4% F1 on control locus insertion, reducing error over the Johnson model’s

89.3% by nearly two-thirds. The high performance is also evident in the substantial

contribution to typed dependency accuracy seen in Table 3.3. For gold-standard

input trees, the algorithm reduces error by over 80% from the surface-dependency

baseline, and over 60% compared with Johnson’s results. For parsed input trees, the

algorithm reduces dependency error by 23% over the baseline, and by 5% compared

The prison administration promised themi ∗i to be allowed being held to-
gether if they would stop their hungerstrike. (http://www.blythe.org/nytransfer-
subs/Covert Actions/Palestine: Updates on Internationalist Prisoners, May 19, 2005)

Ed Heier flew by, and signalled ∗i to ‘join up’, but Mageei was too confused to respond.
(http://www.acepilots.com/usmc magee.html, May 19, 2005)

suggests that the underlying basis for control assignment is semantic rather than syntactic in any
sense. See Pollard and Sag (1994), Chapter 7, for a detailed discussion.
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with Johnson’s results. Note that the dependency figures of Dienes lag behind even

the parsed results for Johnson’s model; this may well be due to the fact that Dienes

built his model as an extension of Collins (1999), which lags behind Charniak (2000)

by about 1.3–3.5%.

Manual investigation of errors on English gold-standard data revealed two major

issues that suggest further potential for improvement in performance without further

increase in algorithmic complexity or training set size. First, as suggested in Section

3.7.1, annotation inconsistency accounted for a large number of errors, particularly

false positives. VPs from which an S has been extracted ([SShut up,] he [VP said t])

are inconsistently given an empty SBAR daughter, suggesting the cross-model low-

70’s performance on null SBAR insertion models (see Table 3.2) may be a ceiling.

Control loci were often under-annotated; the first five development-set false positive

control loci I checked were all due to annotation error. And why-WHADVPs under

SBAR, which are always dislocations, were not so annotated 20% of the time. Second,

both control locus insertion and dislocated NP remapping must be sensitive to the

presence of argument NPs under classified nodes. But temporal NPs, indistinguish-

able by gross category, also appear under such nodes, creating a major confound.

I used customized features to compensate to some extent, but temporal annotation

already exists in WSJ and could be used. Note that Klein and Manning (2003b)

independently found retention of temporal NP marking useful for PCFG parsing.

As can be seen in Table 3.3, the absolute improvement in dependency recovery

is smaller for both this and Johnson’s postprocessing algorithms when applied to

parsed input trees than when applied to gold-standard input trees. It seems that

this degradation is not primarily due to noise in parse tree outputs reducing recall

of nonlocal dependency identification: precision/recall splits were largely the same

between gold and parsed data, and manual inspection revealed that incorrect nonlocal

dependency choices often arose from syntactically reasonable, yet incorrect, input

from the parser. I gave examples of these error cascades in Section 3.7.3.

The English/German comparison shown in Tables 3.4 and 3.5 is suggestive, but

caution is necessary in its interpretation due to the fact that differences in both

language structure and treebank annotation may be involved. Results in the G column
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of Table 3.5, showing the accuracy of the context-free dependency approximation

from gold-standard parse trees, quantitatively corroborates the intuition that nonlocal

dependency is more prominent in German than in English.

Manual investigation of errors made on German gold-standard data revealed two

major sources of error beyond sparsity. The first was a widespread ambiguity of S and

VP nodes within S and VP nodes; many true dislocations of all sorts are expressed at

the S and VP levels in CFG parse trees, such as VP-1 of Figure 3.2, but many adverbial

and subordinate phrases of S or VP category are genuine dependents of the main

clausal verb. I was able to find a number of features to distinguish some cases, such

as the presence of certain unambiguous relative-clause introducing complementizers

beginning an S node, but much ambiguity remained. The second source of error was

the ambiguity that some matrix S-initial NPs are actually dependents of the VP head

(in these cases, NEGRA annotates the finite verb as the head of S and the non-finite

verb as the head of VP). This is not necessarily a genuine discontinuity per se, but

rather corresponds to identification of the subject NP in a clause. Having access to

reliable case marking would improve performance in this area; such information is

in fact included in NEGRA’s morphological annotation, another argument for the

utility of involving enhanced annotation in CF parsing.

As can be seen in the right half of Table 3.4, performance falls off considerably

on vanilla PCFG-parsed data. This fall-off seems more dramatic than that seen in

Sections 3.6.2 and 3.6.3, no doubt partly due to the poorer performance of the vanilla

PCFG, but likely also because only non-relativization dislocations are considered in

Section 3.6.4. These dislocations often require non-local information (such as identity

of surface lexical governor) for identification and are thus especially susceptible to

degradation in parsed data. Nevertheless, seemingly dismal performance here still

provided a strong boost to typed dependency evaluation of parsed data, as seen in

A ◦ P of Table 3.5. This may indicate that dislocated terminals are being usefully

identified and mapped back to their proper governors, even if the syntactic projections

of these terminals and governors are not being correctly identified by the parser.
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3.9 Conclusion

In this chapter I have presented a high-performance algorithm for identifying non-

local syntactic relationships—both dislocated and shared dependencies—in context-

free parse trees. When applied to gold-standard context-free input tree, it correctly

recovers 86% of nonlocal dependencies, a 57% relative error reduction over the best

previous work. When applied to the input trees from a state-of-the-art context-free

parser, it reduces the overall dependency error by 23%, a 5% improvement over the

best previous work. Perhaps the outstanding feature of the algorithm presented here

is its integration of structural and lexical information through log-linear discriminative

models.

The basic motivation for enhancing the annotation of context-free parse trees of

natural language sentences is that headed context-free trees (which constitute the out-

put of most available statistical parsers) only explicitly represent local dependency

relations. The non-local syntactic annotations already available in treebanks can,

however, be interpreted as determining non-local dependency relations. Consistent

with linguistic intuition, we found in this chapter that the context-free approximation

of dependency structure implicitly embedded in most Treebank-based broad-coverage

parsers is quite adequate for English, but less accurate for German. This difference in

adequacy consists of two dimensions. First, a higher proportion of the dependencies

found in English newspaper text are context-free than in German newspaper text.

Second, for English greedy inference at the level of state-of-the-art context-free pars-

ing does not seriously degrade the ability of a high-accuracy non-local dependency

identifying algorithm, such as the one introduced here, to recover the complete de-

pendency structure given a context-free input tree. For German, the state of the

art in context-free parsing is rather less successful, and we see greater degradation

in non-local dependency recovery. One conclusion that might be drawn from this is

that greedy inference at the level of context-free parsing is not as safe for freer word

order languages like German as it is for English. This leads us to consider parsing

algorithms that directly integrate the continuous and discontinuous constituency, the

topic of Chapter 4.
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Figure 3.5: Incorrect identification of a shared dependency due to error in parse input



Chapter 4

Direct discontinuous constituency

parsing with probabilistic wrap

grammars

In this chapter I conduct a preliminary investigation into the direct probabilistic

parsing of discontinuous constituency—that is, parsing such that discontinuous con-

stituents are directly represented as intermediate derivational items. I add a prob-

abilistic component to the multiple context-free grammar (MCFG) formalism (Seki

et al., 1991) and use a bottom-up agenda-based parsing algorithm, together with A*

search heuristics (Klein and Manning, 2003a), to implement optimal discontinuous-

constituent parsing. I also investigate how to incorporate distance sensitivity into

a probabilistic MCFG, and argue that distance sensitivity is important to both effi-

ciency and accuracy in probabilistic MCFG parsing.

4.1 Introduction and Background

In this section I briefly discuss the option of learning generative versus discrimina-

tive probabilistic models for parsing, and then discuss the mildly context-sensitive

grammatical formalisms that permit tractable discontinuous constituency parsing.

116
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4.2 Generative versus Discriminative Models

There are two principal approaches to the problem of classification in probabilistic

machine learning. Formally, classification is the problem of choosing the hidden class

H∗ with the highest conditional likelihood given an observation O:

H∗ = arg max
H

P (H|O) (4.1)

The requirement is therefore to come up with a conditional likelihood model for

P (H|O). This is typically done in one of two ways: discriminatively or generatively.

Discriminative models directly estimate P (H|O). Logistic regression or maximum-

entropy models are perhaps the most widely used probabilistic discriminative models

in machine learning. Discriminative models are considered to have two primary ad-

vantages. First, training a probability model typically involves a search for parameter

values of the model that maximize the model’s likelihood. With discriminative mod-

els, the maximized likelihood is the likelihood that is actually used for classification.

Second, it is possible to use arbitrary features of observed data in probability esti-

mates of hidden structure, regardless of overall model complexity. This contrasts with

generative models for reasons that will momentarily become clear.

Generative models directly estimate the joint likelihood of hidden plus observed

datapoints, P (H, O), and estimate the conditional likelihood via Bayes’ rule:

P (H|O) =
P (O, H)

P (O)
(4.2)

In classification, because P (O) is constant, the candidate H∗ with optimal joint

likelihood is also the candidate with optimal conditional likelihood. Typical gen-

erative models used in natural language tasks, such as for document classification,

tagging, or parsing, treat observations as conditionally dependent on hidden vari-

ables, rather than vice versa. In typical generative probabilistic parsing models, for

example, each word w occurs in a terminal node of the tree, and the identity of

w is conditionally dependent on the part-of-speech tag in the dominating pretermi-

nal node, and sometimes on more distant features of the tree such as the governing
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word, part of speech, and category. Because O is conditionally dependent on H , it

is not possible to incorporate arbitrary features of observations into joint generative

models over complex hidden classes, because these features must also be represented

within the hidden classes to affect joint probabilities. Furthermore, training of gen-

erative models typically involves maximizing joint likelihood, but this likelihood is

not directly used in classification, creating the possibility that the trained model is

not optimal for the intended task (see Johnson 2001; Klein and Manning 2002 for

discussion).

Despite these apparent disadvantages, in this chapter I investigate generative syn-

tactic models for discontinuous constituency. There are several reasons for this. First,

because generative syntactic models produce an optimized joint distribution over H, O

pairs, they implicitly define a distribution over observations O. They therefore have

theoretical interest as language models for speech recognition, or, as I have argued in

Chapter 2, as plausible models of performance in human sentence processing. Dis-

criminative models cannot readily be so applied, because they do not produce a

reliable distribution over O.

Second, the purported advantage of incorporating arbitrary input-based features

enjoyed by discriminative models has not been shown to be effective in broad-coverage,

Treebank-style parse settings. It is notable that the best broad-coverage parsers of

English newswire (Charniak, 2000; Collins, 2000; Bod, 2003; Charniak and Johnson,

2005) all involve a generative component, and all except Collins’ and Charniak and

Johnson’s are exclusively generative.1 When used for parse selection on the output of

hand-crafted grammars, on the other hand, discriminative models enjoy a considerable

advantage (Toutanova et al., 2005; Riezler et al., 2002). This contrast naturally arises

from the fact that parses can be tractably enumerated and individually ranked in the

hand-crafted grammar case, whereas in the Treebank grammar setting dynamic pro-

gramming and hence strict locality assumptions regarding probabilistic dependence

among components of hidden structure are essential to achieving tractability. This

1All state-of-the-art approaches to discriminative Treebank-style parsing, including Collins
(2000), involve the application of discriminative models to reranking of an n-best parse list pro-
duced by a generative parser.
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means that while complex, non-local interdependences between parts of hidden struc-

ture can be used in the hand-crafted grammar parse selection case, they cannot for

Treebank-style parsing. Arbitrary input features could be used in broad-coverage

parsing, but because the topology of parse trees is only dimly reflected in the linear

ordering of observed strings, there is no guarantee that such input-exclusive features

will consistently provide useful information.

While generative models have remained unsuperseded in Treebank-style broad-

coverage parsing, however, the face of broad-coverage parsing itself may be open

to future change. While broad-coverage and Treebank grammar have been nearly

synonymous in the past, one particularly interesting result has been that of Kaplan

et al. (2004), who achieved considerable success in broad-coverage parsing using a

hand-crafted LFG grammar plus discriminative parse selection. While it is difficult

to evaluate their results directly against those of broad-coverage statistical parsers

on a completely level playing field, the possibility is enticing that high-quality broad-

coverage parsing with hand-crafted grammars will become better and better in the

future.

4.2.1 Mildly context-sensitive grammar formalisms

In Section 1.4 of Chapter 1, I outlined three major approaches to the recovery of non-

local syntactic dependencies in statistical parsing. In the first approach, parsing is

taken as a two-phase, serial process: the first phase approximates all dependencies as

local, and the second phase corrects the resulting parse trees for nonlocal dependency.

I investigated such an approach in Chapter 3. Both the second and third approaches

identify nonlocal and local syntactic dependencies in a single, joint inferential step.

The second approach simply enhances context-free parse trees by threading non-local

dependencies through an enhanced category structure, in the fashion of Generalized

Phrase Structure Grammar (GPSG; Gazdar et al. 1985). This is perhaps the most

obvious approach to joint inference, and has already been investigated in both gen-

erative (Collins, 1999; Dienes, 2003; Dubey, 2004) and discriminative (Cahill et al.,

2004) contexts, so I have not investigated it further. In the third approach, nonlocal
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dependency is captured through an enhancement of the edge structure of parse trees:

tree nodes can be discontinuous constituents. This third approach is the topic of the

present chapter.

The conceptual path leading from nonlocal dependency to discontinuous con-

stituency trees turns out to be rather simple. As I point out in Section 1.3.2, for

every dependency tree D over a given string S, there is a headed constituent parse

tree over S that induces D through the head/sister relationships in each local tree.

If we restrict ourselves to context-free headed parse trees—that is, trees where each

node dominates a continuous substring—we can only induce dependency trees with no

crossing branches. If we commit to generating crossing dependencies through head-

sister relations on parse trees, we must therefore consider discontinuous constituency

trees: trees where some nodes dominate discontinuous string spans. This chapter

therefore concerns itself with parsing algorithms that can construct discontinuous

constituency trees.

In full generality, parsing for discontinuous constituency trees cannot be tractable,

because worst-case recognition involves considering and possibly storing every poten-

tial tree node for a string, and a string of length n there may be as many as 2n

such tree nodes (each subset of the words in the string may be the span of a tree

node).2 Fortunately, a great deal of work over the last three decades has gone into

investigating precisely those aspects of natural language syntax that do not transpar-

ently lend themselves to context-free descriptions (either weak or strong). This work

began in divergent frameworks, including Tree-Adjoining Grammars (Joshi et al.,

1975; Joshi, 1985), Head Grammars (Pollard, 1984), Combinatory Categorial Gram-

mars (Steedman, 2000), and Minimalist Grammars (Stabler, 1997), but has been

strongly convergent: each formalization turns out to give rise to the same set of

mildly context-sensitive languages, whose recognition remains tractable, although the

worst-case recognition time is generally of higher-order polynomial complexity than

the CFLs. Furthermore, each formalism is characterized by context-free derivation

trees (Vijay-Shanker et al., 1987), and the grammars of one formalism can generally

2See Johnson (1985) for a parsing algorithm detailing just how to go about parsing with a
grammar that allows arbitrary discontinuous constituency.
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be converted to grammars of the other that lead to isomorphism in the derivation

trees. When a given string is parsed in such a formalism, the nodes of the derivation

tree can be identified with the nodes of the string’s discontinuous constituency parse,

from which a dependency tree can in turn be induced from head-sister derivational

relationships. As I discuss in Section 4.3, the context-free property of the derivation

trees is advantageous for probabilistic interpretation of these formalisms as well.

Equipped with a probabilistic instantiation of a mildly context-sensitive gram-

matical formalism—which I investigate under the moniker of probabilistic wrap gram-

mars—I take up the problems of parameter estimation and efficient natural language

parsing. In Section 4.5, I show that a simple form of “surface” parameter estimation

is particularly easy to use given a corpus of discontinuous constituency trees, but that

it fails to capture cross-cutting generalizations about constituency and linear order

that are desirable from the perspective of NL syntax. In particular, “surface” pa-

rameter estimation fails to capture the distance-sensitivity that is quite prominent in

many types of discontinuous constituency. The first results of Section 4.7 are consis-

tent with this failure: the main barrier to efficient parsing is the construction of large

numbers of discontinuous-constituent edges that should be disfavored on the grounds

that the discontinuity is implausibly large (in terms of linear order). In the later

part of Section 4.5, I show how to bring distance sensitivity into discontinuous con-

stituency parsing by factorizing the probabilistic grammar into immediate dominance

(ID) and linear precedence (LP) components, in the spirit of GPSG. The remain-

der of the chapter concerns itself with parameter estimation for an ID/LP-factorized

probabilistic wrapping grammar.

4.3 Linear Context-Free Rewrite Systems and Gen-

erative Probabilistic Models

Given that we are interested in joint probabilistic models over syntactic structures

specifying nonlocal dependency relations, we need a grammatical formalism G spec-

ifying a set of possible syntactic structures TG, and a probabilistic interpretation of
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the formalism to distribute probability mass over the structures. One crucial require-

ment is that the model be proper (or non-deficient): that is, that
∑

s∈TG
P (s) = 1.

This requirement immediately distinguishes between two classes of trans-CF gram-

matical formalism. Vijay-Shanker et al. (1987) point out that although unification-

based grammatical formalisms (UGs; including Lexical-Functional Grammar (Kaplan

and Bresnan, 1982) and Functional Unification Grammar (Kay, 1979)) and indexed

grammars (IG; Gazdar 1985) share with Head Grammars (HGs) and Tree-Adjoining

Grammars (TAGs) the ability to generate trans-CF languages, UGs and IGs are dis-

tinguished from HGs, TAGs, and CFGs in that the former can produce an unbounded

number of dependent paths sharing an unbounded amount of information, whereas

the latter cannot. Vijay-Shanker et al. (1987) generalize the latter class into Lin-

ear Context-Free Rewriting Systems (LCFRSs), which share the common property

of derivational independence: every derivation structure is tree-shaped, and the set

of derivational possibilities at any node of a partial derivational tree is completely

independent of the context external to that node in the derivation tree. CFGs are a

particularly transparent form of LCFRS in that the tree structure resulting from a

derivation is completely isomorphic to the derivation tree itself. The formal definition

of the LCFRSs is presented in Section 4.4.

Vijay-Shanker et al. (1987) show that LCFRSs always enjoy polynomial-time

recognition. In a probabilistic context, their property of derivational independence

gives rise to another important advantage: ease of parameter estimation. Suppose

that we have a corpus of derivation trees in some LCFRS G, and we want to estimate

the parameters of a probabilistic formulation of G, where each parameter denotes the

probability of a particular rewrite of a given node in the derivation tree (so for each

non-terminal symbol S in the LCFRS,
∑

α P (S → α) = 1). Chi and Geman (1998)

showed that the relative-frequency estimate of probabilistic parameters for a CFG al-

ways yields a proper, maximum-likelihood probability distribution. Nothing in their

proof, however, hinged on CFGs as a grammar over trees or strings; so the proof

can equally be applied to show that relative frequency is the maximum-likelihood

proper estimate for parameters of an LCFRS. The parameter estimation problem for

LCFRSs is therefore fairly easy.
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UGs and IGs, in contrast, do not enjoy the property of derivational independence,

hence relative frequency estimates do not in general produce a proper probability

distribution. Abney (1997) discusses the reasons for deficiency, and shows one way

to estimate proper probability distributions over unification-based grammars using

random fields. This estimation process is, however, much more complicated than

maximum-likelihood estimation for probabilistic LCFRSs.

4.4 Definition of probabilistic wrap grammars

Following the notation of Seki et al. (1991), a multiple context-free grammar (MCFG)

is a tuple G = (N, O, F, P, S) such that:

� N is a finite set of non-terminal symbols;

� V is a finite set of terminal symbols;

� O is a set of n-tuples (n ≥ 1) of strings over a finite symbol set;

� F is a finite set of partial functions from O× · · · ×O to O, and Fq is the set of

partial functions from Oq to O that are in F ;

� R is a set of rules, each of the form A → A1 · · ·An; f (alternatively written as

A→ f [A1 · · ·An]) with f ∈ Fn; and

� S is the start symbol.

with the constraint that for every f ∈ Fk, if fh is the component of f that determines

the hth tuple in the range of f , then is of the form

fh(x1, · · · , xn) = u0z1u1z2 · · ·umzm (4.3)

where each ui is a (possibly empty) string of terminals in V ∗, and each zi is some

component of one of the xj tuples. Furthermore, each component of each xj is used

at least once by some fh.3

3This is the component (f2) from Seki et al. (1991).
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There are two other relevant conditions that can be placed on MCFGs. The first

is the information-lossless condition of Seki et al. (1991):4 that each component of

each xj is used at most (and hence exactly) once by f . Any MCFG that satisfies the

information-lossless condition is also an LCFRS. The second condition, which I will

call strict concatenation, is that every ui in (4.3) is the empty string, unless f is a zero-

arity function,5 in which case u0 must be a single terminal symbol. Seki et al. (1991)

showed that imposing the information-lossless condition does not affect the weak

generative capacity of MCFGs. It is also clear that imposing strict concatenation also

has no effect, since an MCFG can simply be transformed into a strict-concatenation

MCFG by interposing unary rewrites in between every non-terminal node and every

terminal. I will call an MCFG that satisfies both the information-lossless and strict-

concatenation conditions a wrapping grammar (WG).

A probabilistic wrapping grammar, or PWG, is then simply a WG combined with

a probability function P : R → [0, 1] such that for each X ∈ N ,
∑

X→f [α]∈R P (X →

f [α]) = 1.

4.4.1 A simple probabilistic wrapping grammar

Although we can write out the component mappings f of rules X → f [X1 · · ·Xn]

explicitly as functions whose domains are lists of lists of symbols and whose ranges

are lists of symbols, when we talk about specific rules it is generally more convenient

to use a subscript notation on the categories to specify f implicitly. Consider for

example a rule specifying that a two-component subject NP is wrapped around a one-

component VP, producing a one-component S. A plausible WG rule for this would

be S → f [NP VP], where f0 has one component:

f 1
0 (x11, x12, x21) = x11x21x12 (4.4)

This rule can be much more succinctly expressed with subscript variables specifying

the structure of f0 (the � indicates a split between components of a string tuple):

4This is the (f3) condition from Seki et al. (1991).
5The arity of f : On → O is simply n.
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LHS RHS Probability
Sαγβ → NPα�β VPγ 1
NPα�β → NPα RCβ 0.2
NPαβ�ε → Detα Nβ 0.5
NPα�ε → PProα 0.3
VPα → Vα 1.0
RCβαγ → NPα VP/NPβ�γ 1.0
VP/NPβ�α → Vα RelProβ 1.0

Vα → arrivedα 0.5
Vα → knewα 0.5

Detα → aα 1.0
Nα → womanα 1.0
PProα → Iα 1.0
RelProα → whoα 1.0

Figure 4.1: A simple probabilistic wrapping grammar

Sαγβ → NPα�β VPγ (4.5)

Figure 4.1 shows a simple probabilistic wrapping grammar that generates both in

situ and extraposed relative clauses for subjects, and wraps relative object pronouns

around relative clauses.

4.5 PWG parameter estimation

As noted in Section 4.3, the context-free derivation property of LCFRSs means that a

simple means of parameter estimation for PWGs—maximum-likelihood estimation—

can be employed, provided that we have a corpus of LCFRS derivation trees. No

such corpus exists, however. What we do have access to is hand-parsed corpora of

discontinuous constituency trees, including NEGRA and TIGER for German; the

Prague Dependency Treebank; and, implicitly, all Penn Treebanks, including those

for English, Chinese, and Arabic. In the rest of this chapter, I will address two

closely related problems: estimating PWG models from discontinuous constituency

treebanks; and efficient, accurate parsing with the resulting PWG models.
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4.5.1 From treebank trees to wrap trees

The first guiding principle of PWG estimation we follow is to assume strict isomor-

phism between the tree structure of a discontinuous constituency parse and a LCFRS

derivational history. That is, for each local tree X → X1 · · ·Xn in the discontinuous

constituency parse we assume exactly one LCFRS rule of the form X → X1 · · ·Xn; f .

In a probabilistic setting, we might also be interested in smoothing the probabilities

of these rules, by treating the observation of one LCFRS rule as evidence for the exis-

tence of related rules. One useful method of smoothing rule probabilities is to break

down observed local trees into subcomponents with shorter right-hand sides. Thus

we are faced with two important questions: first, how can we decompose a given local

discontinuous constituency tree into a series of binary-branching trees (an important

question in a probabilistic setting); and second, for a given binary-branching tree how

do we determine the LCFRS component-matching function f?

Binarization

An important part of PCFG preprocessing has been the binarization, or equivalently,

markovization process: transforming each n-ary headed local tree into a set of binary

branching local trees, each of which encodes some subset of information from the

original n-ary tree in the mothers and head daughter category structure of the new

trees. This accomplishes two goals. First, no rule in the grammar read off of the

resulting trees has more than two symbols on the right-hand side; this can facilitate

parsing efficiency by minimizing the number of rule applications attempted. Second,

depending on the amount of derivational history recorded in the binarized constituent

labels, binarization can serve as a method of smoothing PCFG modelsby introducing

new independence assumptions between the presence of what were jointly occurring

siblings in the original trees. In this method of grammar smoothing, the number of

original sister constituents encoded in each constituent label is known as the Markov

order of smoothing. There are a variety of options available in context-free tree

binarization (Roark and Johnson, 1999); in keeping with our interest in wrapping

grammars as directly encoding head-dependent relations, we will restrict our scope to
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P(VP→ VP NP PP PP AdvP) 1.0 VP

V

discussed

NP

the weather

PP

with Ira

PP

at the office

AdvP

recently

(a) Raw

P(VP → VP-AdvP AdvP) 1.0
P(VP-AdvP → VP-PP PP) 1.0
P(VP-PP → VP-PP PP) 0.5
P(VP-PP → VP-NP NP) 0.5
P(VP-NP → V) 1.0

VP

VP-AdvP

VP-PP

VP-PP

VP-NP

V

discussed

NP

the weather

PP

with Ira

PP

at the office

AdvP

recently

(b) Smoothed

Figure 4.2: Smoothing a PCFG (Markov order 1)

head-outward binarization (Collins, 1999), where information from head daughter of

the original local tree is retained through all binarized tree levels. Figure 4.2 shows

the transformation and corresponding effect on MLE rewrite probabilities from head-

outward binarization of a single local tree with Markov order 1.6 Note that the

presence or absence of a second or third PP modifier in the smoothed grammar is

independent of the NP and AdvP sisters (whereas in the original grammar, a second

PP modifier is obligatory and a third is impossible). In effect, the smoothed grammar

distributes probability mass onto all rules of the form VP → NP PP+ AdvP (the +

being the Kleene plus).

There is a limited set of options for head-outward binarization of context-free

trees while keeping them context-free. Left- and right- headed local trees can only

be binarized in one direction; trees whose head daughter has both left and right

6There are also minor degrees of freedom regarding exactly how to binarize in that the head
daughter could be directly generated in the lowest binary tree, rather than as a separate unary as in
Figure 4.2; and in that an additional unary could also be introduced above the highest binary tree,
which is not done in Figure 4.2. These choices have no effect on the resulting probability models,
and I ignore them in the remainder of the chapter.
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sisters create some ambiguity, but they must still be binarized from the head out.

Discontinuous constituency trees, on the other hand, can be binarized in any order.

Furthermore, because some binarizations create intermediate constituents with more

holes than others, the choice of binarization can affect computational complexity as

well as smoothing effects. This leads to two natural criteria for choice of binarization:

complexity minimization and likelihood maximization.

Since the maximum number of holes in a constituent determines the computational

complexity of wrap grammar parsing, the complexity minimization criterion naturally

leads to a hole minimization approach to binarization.

Adapting CFG head-finding algorithms

The binarization process outlined above, as well as the dependency-based evaluation

metrics I use later in this chapter, presupposes a determination of the head daughter

of each local tree. The prevalent head-finding algorithms used in the Treebank pars-

ing literature have been defined for CF trees, and are generally definable as a nested

iteration over a list of sets S of syntactic categories and a linear search among the

daughters (in either left-to-right or right-to-left) order for the first daughter D whose

syntactic category is in the first S (Magerman, 1994; Collins, 1999). In discontinuous

constituency trees, however, complete-constituent precedence does not in general de-

fine a total linear ordering among sister nodes, so search order among the daughters

is underdetermined.

One simple and intuitive way of adapting existing CF-tree head-finding algorithms

to the discontinuous constituency context is to define precedence by the linear order

of the head terminal of each node. Headship can then be unambiguously determined

from the bottom up, and sister nodes are always totally ordered. This approach has

the advantage of closely exploiting the isomorphism between headed phrase struc-

ture trees and word-dependency graphs. (In principle, of course, more complicated

head-finding algorithms making reference to cases of incomplete precedence could be

defined.) The adaptation of a CF head-finding algorithm is given in Figure 4.3.
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function getHead(Tree T ,HeadFinder HF )
for each daughter Di of T do

if Di is a terminal node then
Hi ← string index position of Di

else
Hi ← string index position of the head terminal for getHead(Di,HF )

end if
end for
D′ ← the list of Di, ordered by their respective Hi

return the daughter chosen when HF is applied to D′

end function

Figure 4.3: Adaptation of context-free head-finding algorithm

4.5.2 “Surface tuple” estimation of PWGs

Adopting a principle of isomorphism between discontinuous constituency tree struc-

ture and derivational history still leaves the string tuple composition function f under-

specified. The simplest approach to this component of the PWG estimation problem

is to assume another strict isomorphism: between the “surface tuple” structure of

every node in the discontinuous constituency tree and the underlying tuple struc-

ture of the corresponding node in the LCFRS derivation tree. (This is equivalent

to saying that no LCFRS node has a string tuple component that is empty.) This

additional isomorphism completely determines the identity f for each LCFRS node

corresponding to a discontinuous constituency tree node, and thus determines a one-

to-one relationship between trees in the corpus and LCFRS derivation trees. We can

then use the maximum-likelihood estimates of all PWG parameters.

4.6 Parsing with PWGs

Harkema (2001) provides bottom-up, top-down, and Earley-style recognition algo-

rithms for MCFGs. Any recognition algorithm can be easily converted to a parsing

algorithm by tabulating partial derivations, and any parsing algorithm can be con-

verted to a weighted parsing algorithm by including the weights (in this case proba-

bilities) of partial derivations in the tabulation. In this chapter I focus on bottom-up
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Item form: [A, ~α] ~α a list of integer pairs

Axioms: [A, ((i, i + 1))] A→ f [ε], f [ε] = wi+1

Goal: [ROOT, ((0, n))]

Inference Rule:

IA + OA : [A, ~α]

IB + OB : [B, ~β]
IA + IB + Z + OX : [X,~γ]







[X → f [A B]] ∈ R
P (X → f [A B]) = Z

f(~α • ~β) = ~γ

Figure 4.4: Bottom-up weighted deduction scheme for binary PWGs. IY and OY are
the inside and outside weights for item Y ; Z is the weight of the invoked rule.

parsing, as it is most naturally compatible with the formulation of A* parsing as

introduced in Klein and Manning (2003a). Figure 4.4 shows a deductive scheme for

bottom-up parsing of binary-branching PWGs, in the style of Shieber et al. (1995).

Each of the terms ~α, ~β,~γ is a list of index pairs that specify the beginning and ending

of each substring component of the corresponding category.7

As noted by Nederhof (2003), such a deductive scheme can be adapted to finding

lowest-weight (i.e., highest-probability) parsing by assigning weights to each item,

and always processing the lowest-weight item, following Knuth’s algorithm (Knuth,

1977). In Figure 4.4, these weights are subdivided into three components: inside

weights IZ , outside weights OZ , and rule weights (the cost of invoking a rule) R. The

inside weight of a chart item will be the exact weight of constructing the constituent

from the terminals it dominates. In Figure 4.4, then, it must always be the case

that IX = IA + IB + Z. The outside weight is an estimate of the cost of reaching

the goal from the item. Following Knuth, it is required that IA + IB + Z + OX ≥

max(IA +OA, IB +OB). In the simplest case, OY = 0 for all items Y ; this corresponds

to an LCFRS generalization of the bottom-up weighted deductive system given by

Nederhof (2003) for CFGs. In the general case, OY must be a monotonic, optimistic

estimate of Y ’s true outside weight; this leads to the A* parsing system introduced

7The equation f(~α • ~β) = ~γ is shorthand for stating that α and β are disjoint, and that their
indices align appropriately such that the result of the concatenation determined by f , applied to the
multi-component substrings determined by α and β, is represented in the string by the new index
pair list γ.
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ROOT

X

? · · ·?
︸ ︷︷ ︸

n1

· · · ? · · ·?
︸ ︷︷ ︸

n2

· · · ? · · ·?
︸ ︷︷ ︸

n3

Figure 4.5: Outside probability estimates for an edge

for PCFG parsing by Klein and Manning (2003a).8

4.6.1 Outside probability estimates for A* parsing

In optimal probabilistic parsing, the value O in Figure 4.4 is interpreted as an estimate

of the Viterbi outside probability of the situated category [X,~γ]. The trivial value is

O = 0, which corresponds to prioritizing items by their inside probability. I investigate

both the inside-probability priority and a simple outside estimate for O: the highest

possible Viterbi outside probability for an edge of category X covering ~γ in a sentence

of the correct length (this corresponds to the SX estimate of Klein and Manning

2003a). For a k-component category, determining this outside estimate requires filling

in a k + 1-dimensional chart (one dimension for the number of non-terminals to the

left of each component, plus one dimension for the number of non-terminals to the

right of the entire edge, as shown in Figure 4.5).

8As noted by Nederhof, Knuth’s algorithm is not limited to the bottom-up parsing proposed by
Klein and Manning; but there is good reason to use bottom-up parsing in an A* setting, because the
weight of a partial derivation can be decomposed into its inside and outside weights, and bottom-up
parsing always determines exact inside weights of partial derivations. In top-down parsing regimes,
in contrast, both inside and outside weights must in part be estimated, potentially leading to looser
bounds and thus less efficient parsing.
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Figure 4.6: Chart density and number of edges by edge type in a complete chart parse

4.7 Parsing Efficiency

The most fundamental properties of chart parsing for PWGs involve the size and

saturation of different components of the parse chart. I investigate these quantities

first by using a very loosely fit surface-estimated PWG from sections 2-21 of the

WSJ treebank (binarized with Markov factor 1, as explained in Section 4.5.1) and

exhaustively parsing a sample of sentences from the training data. Figure 4.6 shows

growth in the size of the complete parse chart as sentence length increases. We can see

that chart density stabilizes around length 17 or so, and while the density of the chart

(the number of observed N-component items divided by the number of theoretically

possible N-component items, for a particular N) is high (> 10%) for continuous (1-

component) items, it is lower for 2-component items and quite low for 3-component

items. But because the number of k-component items grows as n2k in the length n

of the sentence, the stability of chart density means that the k-component part of

the chart grows more quickly for higher k. In particular, 1-component items quickly

come to dominate: by sentence length 20, they comprise over 90% of the chart. Our

major concern, then, is how to limit their growth.

We might expect that simple A* item prioritization would contribute significantly
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to capping this growth. Figure 4.7 shows the effects of inside-probability and sim-

ple outside-estimate (based on syntactic category and the lengths of all the gaps

between components) priorities of chart saturation. The results here are consistent

with those of Caraballo and Charniak (1998); Klein and Manning (2003a) in that

inside probability prioritization yields only a small effect on chart size; this result

extends to discontinouous edges as well. The simple outside-estimate prioritization

used here makes a larger contribution, but fails to change the qualitative picture that

2-component edges dominate the chart.

There are, of course, a variety of technical remedies available that can improve

parsing efficiency at the cost of losing exactness, including beam search and inadmis-

sible A* heuristics. It is theoretically interesting, however, to investigate all available

means of improving efficiency while maintaining exact inference. In the remainder

of this chapter, I introduce a more sophisticated PWG estimation procedure that, I

argue, captures structure and ordering generalizations better than surface-tuple esti-

mation and, in conjunction with A* prioritization, will lead to more efficient parsing.
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Figure 4.7: Growth in number of edges with varying A* priorities
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4.8 ID/LP factorization of probabilistic wrapping

grammars

The “surface tuple” approach to estimating PWGs from discontinuous constituency

treebanks has the advantage that every discontinuous constituency tree defines a

unique LCFRS derivation. But it has two drawbacks that become especially promi-

nent in a probabilistic setting. First, there is no natural connection between simi-

lar constituencies in continuous vs. discontinuous rule variants. This can be seen

clearly in Figure 4.8: in the extraposed case (Figure 4.8a), the top NP node is a

two-component category, whereas in the in situ case (Figure 4.8b), the top NP node

is a one-component category. This means that the left-hand sides of the rules are

different in the two RC-producing NP rewrites, so the MLE rewrite probabilities of

each derivation are determined independently.

The second drawback is that distance is intuitively an important consideration in

discontinuous constituency models, because many kinds of discontinuity tend to hap-

pen only over short distances. Rightward extraposition of PPs and relative clauses

is perhaps the clearest such case: rightward extraposition is more likely the longer

the extraposable PP or RC, and less likely the more material intervenes between the

modified NP and the end of its clause (see Uszkoreit et al. 1998 for a representa-

tive corpus study of German). But it is not clear where distance can figure into a

surface-estimated PWG. In the surface-tuple model, the choice to extrapose or not

to extrapose is made at the level of the S rewrite; but on the derivational generative

view of context-free rewrite systems (Weir, 1988), the internal constituency of the NP

and VP are not known at this point. Some modification to the model and parameter

estimation process must be made to sensibly incorporate distance.

One intuitively attractive option for including distance sensitivity into PWGs

would be to adopt a long-standing factorization of natural language grammars into

constraints on immediate dominance (ID) and linear precedence (LP). The ID/LP ap-

proach to grammatical generalizations was perhaps most prominent in GPSG, where

it was deployed primarily as a way of simplifying large numbers of context-free rules

into a smaller number of basic generalizations; but it has also been an influential idea
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S

NP VP

NPb V RC

(a) dislocated

S

NP VP

NPb RC V

(b) in situ

Figure 4.8: Dislocated and in situ relative clauses

in the linearization approach to discontinuous constituency in more recent HPSG

work (Reape 1994; Kathol 2000 among others). A simple probabilistic formulation of

the ID/LP principle in PWGs would decompose an LCFRS rule into its constituency

and its shuffle, and use the Markov rule to say that

P (X → f [X1 · · ·Xn]) =

dominance
︷ ︸︸ ︷

P (X → X1 · · ·Xn)

precedence
︷ ︸︸ ︷

P (f |X → X1 · · ·Xn) (4.6)

The two halves of the Markov decomposition can then be individually estimated.

The dominance half can be estimated by merging categories with the same label,

regardless of the number of surface holes exhibited. The two NPs in Figure 4.8 would

therefore be treated as the same two-component syntactic category. In 4.8a, the

left component would consist of the string dominated by the NPb, the right of the

string dominated by the relative clause. In 4.8b, the left component would consist

of the concatenation of the NPb and relative clause strings, and the right would

consist of the empty string. This identification of syntactic category with surface node

label (irregardless of number of surface holes) solves the first problem of generalizing

constituency between rule variants with different degrees of surface discontinuity.

Distance can usefully be incorporated into the precedence half of the Markov

decomposition by conditioning the likelihoods of different shuffles on the sizes of the

individual pieces of Y and Z. At first glance, this may seem an ill-formed idea

because on the derivational, generative approach the internal constituency of Y and
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Z has not yet been determined. But there is a view of WG tree generation that

saves distance in the Markov decomposition. Suppose that a tree is generated in two

parts: beginning at the start symbol, the constituency—that is, the ID relations—are

recursively generated top-down until every frontier node of the tree is a terminal. The

probability of each ID relation is characterized by the dominance half of the Markov

decomposition in Equation 4.6. After the constituency of the tree is complete, the LP

relations are recursively generated bottom-up. At the point of determining the shuffle

relation between each mother node X and the children of X, the internal constituencies

and linear orderings of X’s children are always completely known. Among other

things, the size of each component of each of X’s children is completely determined,

and so it can be conditioned on. This derivational perspective also has a degree

of plausibility as a model of natural language generation: the complete structural

contents of a sentence are determined first, and only subsequently are these contents

arranged in a linear ordering.

Although the ID/LP approach solves both the constituency-generalization and

the distance-sensitivity problems for PWG formulation, it creates a new problem in

parameter estimation: there is no longer a one-to-one correspondence between discon-

tinuous constituency trees and wrapping grammar derivations.9 This arises because

the correspondence between the “surface tuple” structure of a node in a discontinu-

ous constituency tree and its corresponding LCFRS category is no longer trivial. In

Figure 4.8b, for example, the correspondence is underdetermined between the one

surface component of the NP and the two components of the LCFRS NP category.

(Contrast this with the “surface tuple” estimation procedure of Section 4.5.2, where

this correspondence is guaranteed to be trivial at the cost of distinguishing between

syntactic categories with the same label but different numbers of components.) The

prospect remains, however, that useful ID/LP-factorized PWGs may still be learnable

from discontinuous constituency treebanks through a combination of heuristics and

unsupervised learning techniques.

9A similar problem is faced in the literature on probabilistic Tree-Adjoining Grammar
estimation—see Chiang (2003) for an overview.
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4.9 Conclusion

Although parsing with grammars allowing unrestricted discontinuous constituency is

intractable, Linear Context-Free Rewrite Systems (LCFRSs) allow constituents with

limited, lingustically plausible discontinuities while permitting parsing in polynomial

time. In addition, the derivational independence of LCFRSs means that probabilistic

LCFRS models (called probabilistic wrapping grammars, or PWGs for convenience

here) learned in a completely supervised fashion using maximum-likelihood estimation

are guaranteed to be proper. From this foundation, it is relatively easy to learn proper

PWGs from available discontinuous constituency treebanks. The practical efficiency

of these empirically-learned PWGs benefits from the fact that most observed natural

language syntactic rules are actually continuous; and, in an A* exact parsing setting,

from the fact that discontinuity-introducing syntactic rules are likely only in a limited

set of circumstances.

Nevertheless, I have found that the time and memory required for bottom-up

A* parsing of the simplest empirically-learned PWGs is dominated by the construc-

tion and processing of discontinuous constituents, simply because so many such con-

stituents are possible. As a proposed remedy to this efficiency bottleneck, I have intro-

duced a novel factorization of probability models over LCFRSs into dominance (ID)

and linear precedence (LP) components, which in principle allows tighter probabilistic

models over discontinuous constituency structures by scoring the distance between

ID/LP components of a discontinuous constituent. However, completely supervised

learning of such factorized PWGs is no longer possible with existing data sources.

Future extensions of this work will involve empirical learning of ID/LP factorized

grammars from treebanks using unsupervised learning techniques, and investigation

of accuracy as well as efficiency in discontinuous constituency parsing.



Chapter 5

Conclusion

This dissertation has investigated the application of probabilistic disambiguation in

models both of human syntactic comprehension and of naturally-occurring corpus

data. With respect to human syntactic comprehension, I have argued for a simple

theory of processing complexity in which the surprisal of an event determines its pro-

cessing difficulty, which follows as a natural consequence of incremental, probabilistic

disambiguation. With respect to refining models of corpus data, I have focused on

problems of accuracy and efficiency in recovering nonlocal, or discontinuous, syntactic

dependencies. From the work presented here we can draw several major conclusions

that I enumerate below, and subsequently discuss.

1. Expectations from parallel, incremental disambiguation can explain syntactic

“complexity”

2. Non-local dependencies are of particular interest in syntactic comprehension

3. Non-local dependencies can reliably be inferred serially, after context-free pars-

ing, in English

4. Linguistically plausible discontinuous constituency trees can be parsed in poly-

nomial time

5. Distance-sensitivity can be properly incorporated in generative probabilistic

models over discontinuous constituency trees
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5.1 Expectations and syntactic complexity

In the field of human syntactic comprehension, the effect of disambiguation on pro-

cessing difficulty has primarily been thought of as relevant only in locally ambiguous

sentences. There is ample evidence, however, that human syntactic processing in-

volves constant, incremental disambiguation. In Chapter 2, I show that from a sim-

ple set of assumptions regarding incremental disambiguation it is possible to derive

a highly intuitive model of processing complexity, where the difficulty of a word is

inversely related to the word’s expectation, or more formally its probability, in its

context. Because difficulty in this model falls out of the redistribution of probability

mass among possible completions of the sentence, it can be thought of as a resource

allocation difficulty model. This resource-allocation model subsumes a prominent

line of work in ambiguity resolution, which that argues that structural ambiguity

is resolved in proportion to the frequency of the structures involved. In addition,

the model makes a number of non-trivial predictions regarding processing difficulty

in unambiguous sentences. In most of the cases where its predictions diverge from

the predictions of more traditional resource-limitation models, available experimental

evidence favors the expectation-based, resource-allocation model.

5.2 Nonlocal dependencies in syntactic comprehen-

sion

Nonlocal syntactic dependencies turn out to be particularly interesting both for the

practical problem of syntactic disambiguation and for the theory of processing diffi-

culty. As I discussed in Chapter 1, there is a close relationship between nonlocal de-

pendency, context-sensitivity, crossing dependency, and discontinuous constituency.

Most work in probabilistic parsing has focused on local, context-free syntactic re-

lationships, rather than on identification and disambiguation of nonlocal relation-

ships. Nevertheless, I showed in Chapter 3 that there is a considerable amount of

nonlocal syntactic dependency (up to nearly 5%) even in written text of English,

a language/genre pair with relatively little discontinuity; and considerably more in
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German text. Major sources of nonlocal dependency, such as wh-question formation

and relativization, are of course especially prominent in interactive utterances that

are important in an interactive setting.

In the theory of processing difficulty, nonlocal depedendency is especially interest-

ing because the one experimental result to my knowledge that clearly favors resource-

limitation over resource-allocation models, that of Grodner and Gibson (2005), in-

volves storage and retrieval of a long-distance dependency induced by relativization.

As I suggested in Section 2.7.1, one possible way to reconcile the two processing the-

ories might be to posit that resource limitation effects are substantial in syntactic

processing only for true nonlocal syntactic dependencies. The precise formulation

and testing of such a mixed theory awaits future research.

5.3 Parsing local and nonlocal dependencies seri-

ally

Chapter 3 presented an algorithm for determining the complete syntactic depen-

dency structure of a sentence (i.e., both local and non-local dependencies) through

a serial process, first identifying the most probable context-free parse of the sen-

tence in a PCFG representing only local dependencies, and then identifying and

disambiguating non-local dependencies between nodes of the context-free tree using

cascaded maximum-entropy classifiers. Applying this algorithm to gold-standard En-

glish newswire input reduced error over purely context-free dependencies by over 80%.

Furthermore, most of this improvement in dependency accuracy was maintained when

the algorithm was composed with a state-of-the-art PCFG parser. These facts indi-

cate that state-of-the-art context-free parsing is good enough that a serial approach to

identifying the complete syntactic structure of English newswire sentences is viable.

The situation with respect to German newswire text, in contrast, is much less clear,

partly because German context-free parsing is much more error-prone than English,

and partly because efforts to identify non-local dependencies in German were less

successful overall.
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5.4 Tractable discontinuous constituency parsing

Although this finding is not new, it is worth reiterating in the present context.

Although grammars that allow completely unrestricted discontinuity do not admit

polynomial-time recognition via traditional parsing algorithms, the Linear Context-

Free Rewrite Systems (LCFRSs) allow limited degrees of discontinuity, for which

polynomial-time recognition is possible. The expressivity (and correspondingly worst-

case parsing complexity) of an LCFRSs can be tailored to fit the degree of disconti-

nuity observed in a sample of natural language syntax, which facilitates the learning

of LCFRSs from syntactically-annotated natural language data. Chapter 4 shows

that most rules in LCFRS grammars learned from syntactically-annotated corpora

involve no discontinuity, and very few rules involve more two discontinuities. Finally,

the local set or derivational independence property of the LCFRSs means that proper

probability distributions over LCFRS derivation trees can be learned relatively easily.

5.5 Distance sensitivity for discontinuous constituency

Empirically, many discontinuity-inducing constructions (perhaps most notably right-

ward extraposition of nominal postmodifiers) are optional and highly distance-sensitive:

they are used only when the linear dependent-governor distance they create is not

unsuitably large. It is clearly desirable to incorporate this type of distance sensitiv-

ity into probabilistic models over discontinuous constituency trees, but due to their

derivational independence property it is not immediately obvious how probabilistic

LCFRSs can condition on such information. In Chapter 4, I show how distance sen-

sitivity can be built into a probabilistic LCFRS by introducing a probabilistic imme-

diate dominance/linear precedence ID/LP factorization. In addition to introducing

distance-sensitivity, this factorization has the added benefit of permitting natural

cross-cutting probabilistic generalizations about structural constituency across con-

tinuous and discontinuous instantiations of a single syntactic category. Although

ID/LP-factorized probabilistic LCFRSs can no longer be learned in a completely

supervised manner from existing data sources, I outline an algorithm for learning
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factorized LCFRSs from corpora consisting of discontinuous constituency trees, and

provide a supporting theoretical analysis.



Appendix A

Proof of equivalence of headed

context-free trees and non-crossing

dependency trees

Definition. A headed context-free (HCF)-tree is a context-free tree such that (i)

terminal nodes have no sisters; and (ii) for each non-terminal node in the tree, exactly

one daughter is distinguished as the head daughter. The head of a HCF-tree is the

unique terminal node to which a path can be traced from the root of the tree through

an uninterrupted sequence of head daughters.

Definition. A dependency (D)-tree on 1, · · · , n is a set S of ordered pairs 〈i, j〉

such that for one number h between 1 and n, the root, there is no ordered pair in

S beginning with h, and for all other numbers k between 1 and n there exactly one

ordered pair in S beginning with k. An ordered pair 〈i, j〉 is called a dependency of

j on i. A pair of dependencies d1 = 〈i, j〉 and d2 = 〈i′, j′〉 is crossing iff, for x and

x′ the smaller numbers and y and y′ the greater numbers in d1 and d2 respectively,

x < x′ < y < y′ or x′ < x < y′ < y. A dependency 〈i, j〉 such that h is between i and

j is said to cross the root. A D-tree that has a pair of crossing dependencies or has a

dependency that crosses the root is said to be a crossing D-tree.

A HCF-tree t induces a D-tree as follows: each non-unary node N in the HCF-tree

has a head daughter H headed by h and non-head daughters D1,··· ,n headed by d1,··· ,n.
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For each non-head daughter Di of N, the dependency 〈h, di〉 is in the D-tree induced

by t.

Lemma 1. In a HCF-tree headed at h, no induced dependency 〈i, j〉 can exist

such that i < h < j.

Proof: by induction on tree depth. Base case: in tree of depth 1, all induced

dependencies are of the form 〈i, h〉. Therefore the lemma holds.

Induction: suppose that the lemma holds for trees of depth equal to or less than

m. Now consider a tree T of depth m + 1. The top node has one head daughter H ,

and n non-head daughters D1,··· ,n. Now consider an arbitrary dependency 〈i, j〉 in the

induced D-tree. i may be inside H or inside some Dk. If it is Dk, then it is either the

head of Dk or it is not. If it is, then j = h and thus 〈i, j〉 does not cross h. If it is

not, then it is dependent on something else in Dk, and therefore 〈i, j〉 cannot cross h.

If i is inside H , then it cannot be the head, since the head of H is the head of T and

it is dependent on nothing. So 〈i, j〉 is induced by H . But since H is of depth equal

to or less than m, we have that 〈i, j〉 does not cross h by the inductive assumption.

Therefore the lemma holds for m + 1.

Theorem. No HCF-tree induces a crossing D-tree, and for every non-crossing

D-tree, there is an HCF-tree that induces it.

Proof. Constructing an HCF-tree that induces a given D-tree is not difficult. We

make use of an intermediate representation form involving ordered constituent pairs.

The tree construction process goes as follows. First, for each i ∈ 1, · · · , n create a

constituent Ci dominating only i. Then create a set of constituent pairs by replacing

each i in every dependency pair with the corresponding Ci.

Next, for each constituent that nothing depends on (that is, each constituent that

never appears in the second position of a constituent pair), find the constituent H

that it depends on. Then, for each such constituent H , do the following:

1. If there are constituents {Li} to the left of H that depends on H , create a new

constituent M headed by H with sister Li nearest to H .

2. Otherwise there must be constituents {Ri} to the right of H that depends on

H . Create a new constituent M headed by H with sister Ri nearest to H .

Note that the constituent M resulting from the combination of H with its left or
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right dependent C must be continuous. If it were not, then there would be some word

w in between H and C that depends neither on C nor on H . If w were dependent

on nothing, it would be the root, and the dependency between the heads of H and C

would cross the root. If w were not the root, then it would be dependent on something

outside of H or C and the dependency between the heads of H and C would cross

with the dependency of w.

To see that the resulting HCF-tree induces the original D-tree, note that there

will be n−1 binary nodes in the HCF-tree, and no nodes with More than two sisters.

Each binary node N induces a dependency between the head H and its sister C. But

this means that the original D-tree must contain the dependency of the head c of C

on the head h of H , or N would not have been constructed. Therefore, the HCF-tree

induces all and only the dependencies in the original D-tree.

Now we must prove that no HCF-tree induces a D-tree with crossing dependencies.

We prove this by contradiction. Suppose that an HCF-tree T induced a D-tree with

crossing dependencies. This would mean either that there are two dependencies 〈i, j〉

and 〈i′, j′〉 such that, if x and x′ are the lesser and y and y′ are the greater of 〈i, j〉

and 〈i′, j′〉, then x < x′ < y < y′; or that a dependency 〈i, j〉 crosses the head. The

latter can be immediately ruled out as it is a violation of Lemma 1.

If the former is true, then there must be constituents X, X ′, Y, Y ′ with respective

heads x, x′, y, y′ such that X and Y are in a head-sister relation and X ′ and Y ′ are

as well. Call M the mother of X and Y and M ′ the mother of X ′ and Y ′. Since the

spans of M and M ′ overlap, either M is in M ′ or vice versa. Suppose that M ′ is in

M . (The reverse case, if M is in M ′, also holds by symmetry.) The span of M ′ also

overlaps with the span of Y , so either M ′ is in Y or Y is in M ′. If M ′ is in Y , then

we have a violation of Lemma 1, since Y is headed by y but there is a dependency

across y induced by Y . If Y is in M ′, then M ′ cannot be in M as Y is a daughter of

M . Therefore there can be no crossing dependencies induced by T .



Appendix B

Specialized tree-matching pattern

features

This section contains a list of the specialized pattern templates used in the vari-

ous classifiers of this chapter. Pattern syntax and semantics is that of tregex, a

tree-matching software package written by myself and Galen Andrew. It can be

downloaded at http://nlp.stanford.edu/software/tregex.shtml.

B.1 Empty Complementizer Insertion

B.1.1 Quoted S under SBAR

S > /^S/ $-- ‘‘ $++ ’’

A quoted S node under an SBAR node is likely to be a direct in-situ (i.e., im-

mediately following a speech verb) quotation. When direct in-situ quotes have no

overt complementizer that introducing them, the Treebank annotates an empty com-

plementizer instead.

Slavery was prohibited in Massachusetts by the terms of the constitution

of 1789, which declared 0 “all men are born free and equal”.
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B.1.2 Presence of SBAR daughter

__ < SBAR

Nothing with an SBAR daughter should have an empty complementizer.

B.1.3 VP right sister of S

VP > /^S/ $-- S

When a speech fragment (quoted or indirect) is topicalized, the VP is usually

annotated as having an empty complementizer and a trace of topicalization:

“ [Wage increases and overall compensation increases are beginning to

curl upward a little bit,]i ” said 0 ti Audrey Freedman, a labor economist

at the Conference Board, a business research organization.

When deciding whether an apparently intransitive VP should be the origin site of

quoted speech, it is useful to see whether there is a plausible topicalized speech

fragment.

B.1.4 Matrix VP

VP > (S > ROOT)

Because topicalized speech fragments are a major source of empty complementiz-

ers, and topicalized speech is usually in the matrix clause, it is useful to distinguish

between matrix and non-matrix VPs.

B.1.5 VP descendent of PRN

VP > PRN | > (__ > PRN)

VPs inside parenthetical expressions are more likely to have extraposed direct or

indirect speech:
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[Eventually, he believes 0 ti , investors will be willing to pay higher prices

for companies with proven track records of earnings growth.]i

B.1.6 Syntactic paths from S

A special feature template is activated for VP nodes, and is instantated three times

for every S node in the tree. In each instantiation, the syntactic path (as defined in

Section 3.5) from that S node is recorded. The head word and head tag of the VP

node are also included in the second and third instantiation respectively.

B.1.7 VP with sister punctuation

VP $ /^(\.|\,|’’|‘‘)$/

Verb phrases next to punctuation are more likely to have topicalized speech frag-

ments extracted from them, and hence more likely to have an empty complementizer.

The template instantiation records the type of punctuation (period, comma, or quote).

B.2 Dislocated node identification – English Tree-

bank

B.2.1 Quoted S

S > /^S/ $-- ‘‘ $++ ’’

This pattern picks out quoted S nodes, which are often dislocated from their

canonical position:

“[There is a large market out there hungry for hybrid seeds,]i” he said ti .
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B.2.2 Parenthetical S

S < (PRN < (/^S/S=s))

Sometimes a single quotation is wrapped around the clause that introduces it.

The Treebank annotates the introducing clause as a parenthetical expression (PRN),

and uses a cyclical annotation structure for the dislocation:

[Nevertheless, he said ti , he is negotiating with Plant Genetic to acquire

the technology to try breeding hybrid cotton.]i

This template is instantiated twice: in one instantiation, the head word of the =s con-

stituent is recorded; in the other, the head word, tag, and label of the =s constituent

are all recorded.

B.2.3 Nodes in S or SINV preceding VP

__ > /^S/=s $++ VP=vp

Nodes of certain categories appearing in an S or SINV are likely to be dislocated

from the VP of that clause. This includes locative inversion:

[Even more at fault]i are ti those leaders in and out of government who

urged and supported their defections, thereby giving great help and com-

fort to the enemy propagandists.

and topicalized sentential complements (especially indirect speech):

[The SEC will probably vote on the proposal early next year]i , he said ti.

This feature template is instantiated twice. Both instantiations include the syn-

tactic categories of X and its parent. The second instantiation also includes the

number of words dominated by the VP (the relevant VPs are typically small in cases

of dislocation).
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B.2.4 Expletive subjects

SBAR > (VP < VBN|VBD > (VP > (S < (NP < (PRP < it))) < (/^(VB|AUX)/

< was|is|’s|WAS|be)))

/^S/=s > (VP >+/^S/ (/^S/ < /^NP/=np))

Right extrapositions that leave behind expletive subjects are annotated as dislo-

cations:

It ti was enjoyable [to hear accomplished jazz without having to sit in a

smoke-filled club]i . . .

The first pattern is more narrow, matching only those cases when the matrix verb is

the copula, which is a strong indicator of expletive subjecthood. The second pattern

was used only when the =np node was headed by there or it (ignoring capitalization),

and was instantiated twice—once as a basic feature, the second time also recording

the head word of the clause.

B.2.5 Final VP daughters separated from an NP

__ >- VP $-- (__=sep $-- NP)

Most right extrapositions from within VP are directly out of NPs:

UNESCO is now holding its biennial meetings ti in Paris [to devise its

next projects]i.

This means that jumping over an intervening constituent is a necessary condition

for extraposition. The pattern above looks for VP-final phrases that are separated

from an NP constituent; for every intervening constituent, the pattern is instanti-

ated, recording the final constituent’s syntactic category as well as the category of

the intervening =sep constituent (PPs and ADVPs are intuitively more likely to be

jumped over than NPs or Ss, for example). Note that finding these right-extraposed

constituents at all is hard because they are rare.
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B.2.6 Constituents following an initial coordinator

__ $- (CC=cc >, S)

Occasionally, there are adverbial-type constituents that occur immediately after

an initial coordinator:

And [so]i it went ti through the first half . . .

The presence of an initial coordinator seemed to be a signal for this behavior. This

feature template also recorded the specific head word of the coordinator.

B.2.7 Extra context for WH phrases

A WH-phrase (including the parent category of an empty complementizer) gets ad-

ditional context feature templates instantiated, including:

� category × grandparent-category conjunction

� category × grandparent-head-word conjunction

� category × grandparent-head-tag conjunction

B.2.8 Daughter of SINV to the left of VP

Any category to the left of the main VP (defined as the leftmost VP whose head tag

is VBZ, MD, VBD, or VBP) gets this feature.

B.2.9 . . . , he said construction

S > S $++ (VP <, said|says|noted|notes)

This pattern is instantiated only if the VP in the pattern is the main verb (as

defined in Section B.2.8 of its parent.
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B.2.10 Paths from S to VP

Every S node has the syntactic paths to each VP recorded as a feature. Also, if a

path contains an ↑-PRN element, then the head terminal of the VP is also recorded.

B.3 Dislocated node identification – NEGRA

B.3.1 Final S daughter of VP or S

S >- VP|S=parent <, __=dtr

S >- VP|S=parent <, (__=dtr << PRELS)

Final S daughters of VP or S are likely to be right extraposed relative clauses.

The PRELS tag is a sign of this. Both of these templates are instantiated including

the categories of the =parent and =dtr nodes.

Mehr
More

Sicherheit
safety

sollen
should

überwachungsgeräte
monitoring equipment

ti bringen,
bring,

[mit
[with

denen
which

zu
at

Hause
home

Puls
pulse

und
and

Atemfrequenz
breathing rate

kontrolliert
controlled

werden
be

können]i.
can].

“Greater safety should arrive with monitoring equipment via which pulse

and breathing rate can be controlled at home.”

B.3.2 Postposition from CS

S > S $-- (CS=cs)

Speech fragments wrapped around a speech-introducing verb are typically anno-

tated in NEGRA as coordinated sentences with one extraposed element:1

1Contrast this annotation with the cyclical dislocation annotation in the WSJ, noted in Section
B.2.2.
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“Wir
“We

identifizieren
identify

uns
ourselves

mit
with

unserem
our

Programm
program

ti ,”
,”

sagt
said

Silvia
Silvia

Stenger,
Stenger,

“[arbeiten
“work

alle
all

gemeinsam
together

am
on

gleichen
same

Produkt]i.”
product.”

‘“We identify ourselves with our program,” said Silvia Stenger, “everyone

works together on the same product.”’

One sign of this is that if an S node has a CS daughter with only one S daughter.

The number of S daughters of the =cs node is recorded with this template.

B.3.3 Path to pronominal PROAV

S|VP=tree >- (__=parent <+VP (PP < PROAV))

This pattern indicates a plausible path to a pronomial adverb PROAV:

Und
And

sicherlich
surely

ist
is

es
it

nicht
not

falsch
incorrect

darauf
at it

ti hinzuweisen,
to point out,

[daß
that

sie
they

ja
well

nun
now

noch
still

kein
no

Wahlrecht
suffrage

haben]i.
have.

“And surely it isn’t incorrect to point out that they are still disenfran-

chised.”

The syntactic category of =tree is recorded with this template.

B.3.4 Conjunct in a non-coordinated category

PP=t $- KON > S|VP=parent

The sequence KON PP should only occur in a coordinated PP element. But these

sometimes appear elsewhere:2

2Note that examples such as this would probably be more conventionally analyzed as VP gapping,
rather than conjunct extraposition.
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Die
The

Zivilisation
civilization

eines
of a

Staates
state

läßt
lets

sich
self

[CPP nicht
not

allein
alone

an
by

seinem
self’s

Bruttosozialprodukt
gross social product

ti tj ] ablesen,
read off,

[sondern]i
rather

[zum
for

Beispiel
example

auch
also

daran,
thereby,

welche
which

Bedingungen
conditions

er
he

bietet,
provides,

ein
a

qualifiziertes,
qualified,

verantwortbares
responsible

Studium
study

zu
to

absolvieren]j .
complete.

“The civilization of a state should not be measured solely by its gross social

production, but, for example, also by the conditions that it provides to

complete a qualified, responsible course of study.”

The parent category is also included in the instantiation.

B.3.5 Final S and VP constituents binned by size

S|VP >- S|VP=parent

Right extraposition is more likely for larger constituents. Therefore, two size

features are recorded for S or VP constituents final in an S or VP: the size of the

constituent in words, divided by four and rounded down; and the proportion of the

size of its parent that the constituent makes up, multiplied by five and rounded down.3

B.3.6 Head, First, Last Daughter

__ ># __

__ >- __

__ >, __

A head daughter should definitely not be dislocated.4 First and last daughters

are the best positions to find dislocated constituents.

3Different bin sizes are treated as distinct indicator features, rather than treating size as a single
real-valued feature (though the latter approach would also be plausible).

4Partial VP fronting (de Kuthy and Meurers 2001 and others) would in principle be a possible
exception, but it is exceedingly rare.
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B.3.7 Categories in between node and head sister

__ $++ (__=between $++ (__ ># __=head))

__ $-- (__=between $-- (__ ># __=head))

This is a general-purpose template designed to capture generalizations about what

extraposed constituents like to extrapose across. The categories of the target con-

stituent, the =between constituent, and the =head constituent are all recorded.

B.3.8 Expletive Antecedent

__ > S|VP $ (NP < (PPER < Es))

Since many right-extrapositions leave expletive antecedents, it is useful to look for

a plausible expletive antecedent to judge whether a constituent is right-extraposed:

Es
It

ti spielt
plays

eben
precisely

keine
no

Rolle,
role,

[ob
whether

die
the

Musik
music

gefällig
pleasing

ist]i
is

. . .

. . .

“Whether the music is pleasing plays no role . . . ”

B.3.9 Precedes last preverbal argument

__ $+ (__ $++ VP|CVP) !$-- VP|CVP

When a German clause is scrambled, the context-free NEGRA transformation puts

the arguments of the main verb preceding the subject in S, and the subject typically

becomes the last daughter of S preceding the main VP. Any argument before this

likely subject has a good chance of being a dislocated (due to fronting) constituent.

[Im
In

April
April

nächsten
next

Jahres]i
year

soll
shall

die
the

Bevölkerung
populace

ti über
over

ihre
their

Unabhängigkeit
independence

von
from

Äthiopien
Ethiopia

abstimmen. . .
vote. . .

“Next April the populace shall vote on independence from Ethiopia. . . ”
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B.3.10 Daughters of unembedded S nodes

__ > (S !<- VAFIN|VAIMP|VVFIN|VVIMP|VMFIN | < (__ $--

VAFIN|VAIMP|VVFIN|VVIMP|VMFIN)

This pattern picks out nodes that are inside an unembedded (i.e., matrix or

matrix-like) S node. It is instantiated once for each node that matches it. In ad-

dition, nodes matching this pattern that are the leftmost daughter of their parent

(the most likely place for a dislocated constituent) have features with the following

information recorded:

1. Their syntactic category, plus whether or not their parent has a VP;

2. Their syntactic category, plus the head word of their parent;

3. The conjunction of (1) and (2).

B.4 Control locus identification

B.4.1 Passive verbs

VP < VBN|VBD > (VP|SQ < (/^(VB|AUX)/ < be|was|is|are|were|been|

being|’s|’re|’m|am|Been|Being|WAS|IS|get|got|getting|gets|

Get|gotten|become|became|felt|feels|feel|seems|seem|seemed|

remains|remained|remain))

VP < VBN|VBD > (VP < CC > (VP|SQ < (/^(VB|AUX)/ < be|was|is|are|

were|been|being|’s|’re|’m|am|Been|Being|WAS|IS|get|got|getting|

gets|Get|gotten|become|became|felt|feels|feel|seems|seem|seemed|

remains|remained|remain)))

Passive verbs are annotated as having control loci, controlled by the subject, as

sisters:

[A record date]i hasn’t been set ∗i .

The second pattern is for coordinated VPs with a single auxiliary.
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B.4.2 Participials in selected small-clause context

VP < VBN|VBD > (S > (VP < (/^(VB|AUX)/ < be|was|is|are|were|been|being|

’s|’re|’m|am|Been|Being|WAS|IS|get|got|getting|gets|Get|gotten|

become|became|felt|feels|feel|seems|seem|seemed|remains|remained|

remain)))

VP < VBN|VBD > (S > (S > (VP < (/^(VB|AUX)/ < be|was|is|are|were|been|

being|’s|’re|’m|am|Been|Being|WAS|IS|get|got|getting|gets|Get|gotten|

become|became|felt|feels|feel|seems|seem|seemed|remains|remained|

remain))))

Participials can receive a small-clause interpretation under some verbs. Under

these circumstances they are annotated with a control locus in the VP, controlled by

the small-clause subject:

. . . if we can get [that Warsaw Pact superiority]i brought ∗i down to par-

ity. . .

The second pattern is for coordinated VPs.

B.4.3 Participial verbs

VP < VBN|VBD > (NP < NP)

VP < VBN|VBD > (VP < CC > (NP < NP))

Participial verbs inside NPs have (uncontrolled) control loci:

rising consumer prices reported * last week

The second pattern is for coordinated VPs.
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B.4.4 Granddaughters via VP

S=s < VP=vp

When this pattern is matched, the feature is instantiated once for every daughter

node of the =vp node, recording the syntactic category of that daughter. This is

because information about the VP (notably whether it contains a TO, or a VBG

gerund) is a strong indicator of whether there should be a controlled subject.

B.4.5 Unary-rewrite PP sister of VBN

PP <: __ $ VBN

When a verb-plus-preposition combination is passivized, a control locus annota-

tion expresses the passivization:

We have as much nostalgia as anyone for those leafy, breezy days in Wash-

ington when honorable men and women dickered over budgets and even

log-rolled a bit to see that the bridges got build [sic], roads paved, soldiers

paid or that [the desperately poor]i were cared for ∗i .

The best indicator for this is a unary-rewrite PP next to a participial verb.

B.4.6 Node size

The length of the node’s yield (in number of words) is recorded.

B.4.7 Perfect auxiliary

VP > (VP < (/^(VB|AUX)/ < has|have|had|’ve|having|’d|HAS))

The have auxiliary is a strong negative indicator that its VP complement is not

passive.
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B.4.8 Complement of verb that selects bare-verb VPs

VP < VB|NN > (S > (VP < (/^(VB|AUX)/ < help|helping|helped|helps|had|

have|has|having|let|letting|lets|see|sees|saw|seeing|seen|make|

makes|making|made|hear|hears|hearing|heard|watch|watches|watched|

watching)))

The above verb forms select for bare-verb VPs, which have controlled subjects.

B.4.9 S or VP without non-temporal NP

S|SQ !< (NP=np $++ VP)

VP !< (NP=np $-- /^(V.*|MD|AUX.*)$/)

These are a more fine-grained attempt at filtering out temporal NPs, the presence

of which should not be interpreted as the presence of an argument NP. These patterns

are only considered matched when the =np constituent is temporal, defined as when

its head matches the regular expression

Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday|years?|

months?|weeks?|days?|mornings?|evenings?|January|February|March|

April|May|June|July|August|September|October|November|December|

[Tt]oday|[Yy]esterday|[Tt]omorrow|[Ss]pring|[Ss]ummer|[Ff]all|

[Aa]utumn|[Ww]inter

B.4.10 Subjectless TO or gerund VP

S !< NP < (VP <<# TO|VBG|AUX)

This pattern only works when the VP in the pattern is the main verb of the S,

as defined in Section B.2.8. The motivation for this pattern is similar to that of the

pattern in Section B.4.4.



APPENDIX B. SPECIALIZED TREE-MATCHING PATTERN FEATURES 161

B.5 Finding Controllers

B.5.1 Special features for uncontrolled loci

Since a control locus does not need a controller, a special classification choice, the

NULL controller, is introduced. For this choice of controller, the following templates

are introduced (the governing node is defined as the lowest node dominating the

control locus that is not headed by the control locus):

1. The head tag of the governing node;

2. (1) conjoined with the category of the governing node’s parent;

3. (2) conjoined with the governing node’s parent’s head tag;

4. (2) conjoined with the governing node’s parent’s head word.

B.5.2 Plausible Object Controller

__ > (NP > (S < VP=vpSis >+/^PP/ (VP=vpAbove <+/^PP/ NP=controller)))

If this pattern matches on the control locus empty, then the =controller node

gets two feature instantiations: one that includes the governing verb (the head of

=vpAbove), and one that includes both the governing verb and its part of speech.

. . . Sen. Strom Thurmond recently urged [fellow lawmakers]i ∗i to revive

a broad federal death penalty.

This template is instantiated twice. Both times including the head tag of the =vpSis

node; one of those times, the head word of the =vpAbove node is also included.

B.5.3 Subject controller in presence of object controller

__ > (NP > (S < VP=vpSis >+/^PP/ (VP=vpAbove <+/^PP/

NP=objectControllerCandidate >+/^VP/ (S <

NP=subjectControllerCandidate))))



APPENDIX B. SPECIALIZED TREE-MATCHING PATTERN FEATURES 162

If this pattern matches on the control locus empty, then the node matching the

=subjectControllerCandidate pattern element gets two feature instantiations: one

that includes the governing verb (the head of =vpAbove), and one that includes both

the governing verb and its part of speech. This pattern is necessary in the inde-

pendent binary training scheme, because the subject controller position is so highly

favored overall. This template is instantiated twice, recording the exact same extra

information as for the template in Section B.5.2.



Appendix C

NEGRA punctuation for

discontinuous trees

As came up in Chapter 2, the placement of punctuation in the NEGRA corpus was

not linguistically motivated. In the original crossing-dependency representation of

the corpus, all punctuation attaches directly to the root node of the tree; in the

context-free version of the corpus, it is attached as high as possible.1 Both of these

strategies, however, can lead to spurious discontinuities—defined as the presence of

holes containing only punctuation—in the discontinuous-constituency representation.

Such a hole can never be linguistically motivated, however, because punctuation

marks prosodic bounds in the linear string. To minimize this discontinuity, I use

the algorithm shown in Figure C.1 to reposition punctation in the discontinuous-

constituency tree. Intuitively, this algorithm attaches every punctuation node P to

the lowest node in the tree that covers both the first non-punctuation terminal to the

left of P and the first non-punctuation terminal to the right of P . Punctuation nodes

at the left and right edges of the sentence are both attached to the root node.

1Although maximally high attachment can obfuscate distributional generalizations, such as the
fact that non-restrictive relative clauses in English occur with a following comma, it actually has a
precedent in the statistical parsing work of Collins (1999). The discussion in Chapter 4 suggests a
reason why this might be advantageous: bringing punctuation out of its distributionally motivated
position effectively weakens probabilistic independence between the internal structure of the node
where the punctuation originated and the external structure in which it is situated.
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for each punctuation node P in the tree do
i← string position of P
l ← i
while the terminal in the l − 1th string position is punctuation do

l := l − 1
end while
r ← i
while the terminal in the r + 1th string position is punctuation do

r := r − 1
end while
if l = 1 or r = n then

re-attach P as child of the root node
else

let N be the terminal in the l − 1th string position
while r + 1 is not covered by N do

N := PARENT (N)
end while
re-attach P as child of N

end if
end for

Figure C.1: Punctuation-repositioning algorithm for discontinuous-constituency trees
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