These lecture notes cover some of the material that we will discuss in class on R&D, patenting, and patent licensing. Our overall concern will be with the value of patents as a tool for strategic competition, and also as options that might sometime be exercised to create commercial products that can be sold profitably. We will examine licensing as a way to reduce industry output and increase prices, but also as a way to do just the opposite — to commit to lower prices in the future. We will see how the incentives to license can be particularly strong when there are network externalities, and we will examine alternative ways of licensing a patent.

1. Preemptive Patenting

Let us see how R&D can be used strategically to deter entry.¹ We have seen how capacity expansion and brand proliferation can be used as entry deterrents. Now we will see how a monopoly can use patents to deter entry. The basic idea is that a firm with monopoly power may have an incentive to patent new technologies before potential competitors do, but then never bring those patents to the market—i.e., hold “sleeping patents.”

Suppose an established firm has a monopoly position in the sale of some product (e.g., a drug to treat migraine headaches). Entry can take place only through the invention and patenting of a substitute for that product (e.g., a comparable drug). For simplicity, assume

¹This is essentially a summary of the main points in Gilbert and Newbery, “Preemptive Patenting and the Persistence of Monopoly,” *American Economic Review*, June 1982.
that the cost of inventing the substitute depends only on the expected time lag T, i.e., $C(T)$, with $C'(T) < 0$. In other words, the faster you try to develop the substitute product, the more it will cost to do so.

Should the monopolist spend money on substitute products in order to preempt potential competitors? The answer will depend on the profit streams that occur with and without entry. We will see that the monopolist will spend more on R&D than rivals will, if entry results in a reduction of total profits below the joint maximizing level. This can be seen through the following simple model.

Good #1 is the good originally produced by the monopolist. Let Good #2 be the substitute product, which might be produced by the entrant, or by the monopolist if the monopolist develops it and brings it to market. We will assume that there is free entry into the patent race. Therefore, for competitive entrants, the cost of R&D must just equal the resulting gains

$$C(T) = \int_T^\infty \pi_m(P_{m1}, P_{e2}) e^{-rt} dt$$

(1)

where the interest rate r might be adjusted appropriately for risk.

Suppose that entry indeed occurs at the competitive entry date T. Then total profits to the (former) monopolist are:

$$V_e = \int_0^T \pi_m(P_{m1}) e^{-rt} dt + \int_T^\infty \pi_m(P_{m1}, P_{e2}) e^{-rt} dt$$

(2)

From the first equation, the monopolist knows what the competitive entry date will be, so it can preempt by bringing out the patent just a moment ahead of time. The monopolist can then calculate the difference between profits with preemption and profits with entry:

$$V_p - V_e = \int_T^\infty \pi_m(P_{m1}, P_{m2}) e^{-rt} dt - \int_T^\infty \pi_m(P_{m1}, P_{e2}) e^{-rt} dt - C(T)$$

(3)

Note that the monopolist’s price of Good #1, P_{m1}, can be different depending on whether or not there is entry. In fact, the monopolist might not even produce the patented substitute good, and instead simply let the patent “sleep.”

Is preemptive patenting by the monopolist worthwhile? To find out, substitute the first equation for $C(T)$ in the equation just above to get an alternative expression for the relative
benefits of preemptive patenting:

\[V_p - V_e = \int_T^{\infty} \{ \pi_m(P_m^1, P_m^2) - [\pi_m(P_m^1, P_e^2) + \pi_e(P_m^1, P_e^2)] \} e^{-rt} dt \]

(4)

We want to know whether the monopolist’s profits from preemptive patenting will exceed the profits it earns if it instead allows entry. It will if:

\[\pi_m(P_m^1, P_m^2) > \pi_m(P_m^1, P_e^2) + \pi_e(P_m^1, P_e^2) \]

(5)

Note that the left-hand side of this inequality is the maximum profit that the monopolist earns when there is no entry, and the right-hand side is the total industry profit (the profit to the monopolist plus the profit to the entrant) when there is entry. Hence, whenever entry reduces total profits, it will be better for the monopolist to preempt.

Should we, as a general matter, expect that entry would reduce total profits? We probably would, unless we think that there would be some kind of collusion occurring after entry. Also, note that we do not require that the monopolist’s profits be the same after entry, only that total profits do not fall.

The basic idea here is fairly simple. The monopolist has a lot to gain, i.e., a lot to protect, and is therefore likely to preempt in order to remain a monopolist. The entrant, on the other hand, has much less to gain by doing the necessary R&D to come up with a substitute product.

Question: Suppose that in a particular market a monopolist finds it optimal to deter entry by patenting early. If a potential competitor knows that this is a rational strategy for the monopolist, that competitor will not enter, i.e., will not undertake the R&D. But since the monopolist knows this, does the monopolist actually need to carry out the R&D plan? Isn’t the threat sufficiently credible so that no R&D need be done, and no sleeping patents need be accumulated?

The answer to this question depends on whether the monopolist can accelerate its R&D activity in response to R&D by a competitor, and whether the competitor’s R&D activities can be observed. If the monopolist can see or infer what the competitor is doing, and can accelerate its own R&D activities, then the threat would indeed be credible, and the actual
R&D and development of sleeping patents would not be necessary. However, delays are usually costly, and R&D activities are often not revealed, so that the preemptive patenting would probably have to be done.

Suppose the monopolist goes ahead and develops a substitute product and patents it. Should the monopolist let the patent sleep or should it commercialize the new technology? The answer depends on the size of the development costs, i.e., the costs required to commercialize the technology. If these costs are large, the monopolist would probably let the patent sleep. In particular, it would be better to let the patent sleep if, after subtracting the amortized development costs from profits, we find that:

$$\pi_m(P^1_m, P^2_m) < \pi_m(P^1_m)$$ (6)

Note that this reveals another welfare loss from monopoly power—not only is the price higher and output lower than would be the case in a competitive market, but in addition resources are spent on new technologies that will never benefit consumers.

Note that preemptive patenting does not always work. Potential competitors may be able to get around patents by making minor design changes. The costs of an infringement lawsuit may be large relative to the gains from patent enforcement. Also, firms are often dependent on each other for the use of patented technologies, and this encourages cross-licensing of patents and discourages restrictive patent enforcement. Finally, the gains from entry prevention may be small or ephemeral if the firm does not continue to introduce improved technologies and develop new products to capture a substantial market.

2. The Option Value of Sleeping Patents

So far we have examined sleeping patents from a somewhat “anti-competitive” point of view, i.e., as a means of deterring entry. Now let us take a different and “pro-competitive” view of sleeping patents. Suppose we have a monopolist that has no concern about entry prevention (or alternatively, a group of firms that compete vigorously). Might the firm still want to do R&D to get a patent, and then let the patent sleep?

The answer may indeed be yes, once we start to think of a patent as an option. For most technologies and products, the R&D leading to a patent is typically much less costly
than the development of the product itself. Pharmaceuticals provide a good example of this. The cost of the R&D required to develop a new compound, which would then be patented, is usually much less than the follow-on expenses required for testing and obtaining FDA approval, developing a full-scale production facility, marketing, etc. Furthermore, there is often considerable uncertainty about the future demand for the drug, in part because there is uncertainty about how many other drug companies will have similar drugs. Hence, we can view the patent as a call option. As with a financial call option, if the payout rate (which is the opportunity cost associated with waiting) is not too high, and if the variance of the underlying asset (the ability to produce and sell the drug) is sufficiently high, it will pay to wait rather than exercise this option immediately.

Hence, even in a very competitive environment, we would expect to see firms holding many patents, but letting most of them sleep, and only “exercising” (developing) a few of them. This is indeed what many drug companies do. They typically develop and bring to market only a small fraction of all the patents they have.

The close connection between a patent and a call option can be seen in the table below:

<table>
<thead>
<tr>
<th>Stock option</th>
<th>Patent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock price</td>
<td>Value of plant to produce product</td>
</tr>
<tr>
<td>Exercise price</td>
<td>Cost of testing, marketing, building a plant</td>
</tr>
<tr>
<td>Variance of stock price</td>
<td>Variance of plant value</td>
</tr>
<tr>
<td>Dividend rate</td>
<td>Payout rate from plant</td>
</tr>
<tr>
<td>Time to expiration</td>
<td>Patent life</td>
</tr>
<tr>
<td>Value of option</td>
<td>Value of patent</td>
</tr>
</tbody>
</table>

This option-like nature of patents (as well as unpatented technological know-how) has
obvious implications for the valuation of high-tech (and other) companies. We would expect that a substantial portion of the market value of such companies is the option value associated with technological know-how, patented or otherwise. Furthermore, the greater the volatility and uncertainty in the company’s markets, the greater should be the fraction of total market value that is due to option value. The reason is that with greater uncertainty, options are worth more, and the firm should be less willing to exercise those options (by installing physical capital to commercialize their technologies) rather than keeping them alive.

This is indeed what we find. Studies have been done that calculate the value of a company’s installed capital and compare that value to total market value. This ratio is always less than 1, and is smaller the greater is the volatility and uncertainty associated with the company’s core businesses. One study, for example, estimated the value of capital in place for 15 firms in 5 industries by capitalizing the implied flows of anticipated earnings, and found that it is half or less of market value in the majority of cases. Furthermore, this fraction is only about 1/5 to 1/3 in industries where demand is more volatile (e.g., electronics and computers), but more than 1/2 in industries with less volatile demand (tires and rubber, food processing).

3. Patent Licensing

We turn now to the question of patent licensing. When should a company license its technology to other firms, rather than retain the possibility of holding on to a monopoly position? As a general matter, one would expect to see widespread licensing, because it is often a way of creating “gains from trade.” For example, a firm might be able to expand the market for a product by licensing it to other firms, or might not have the marketing and/or production capabilities of other firms. In addition, we have seen that in markets with strong network externalities, there are incentives to license in order to avoid a costly battle over a standard. Thus, Philips agreed on a compact disk standard with Sony, and licensed the technology to other firms, thereby avoiding a standards battle.

Here we examine two additional reasons for licensing. First we will see that the licensing of a technology might move a market in which two or more firms have been competing aggressively to something closer to a monopoly. Second, we will see how licensing can be used as a way to help promote the adoption of a new technology: by sending a credible signal that prices will remain low, so that it is worthwhile for consumers to invest in the sunk costs needed to adopt the technology.

3.1. Patent Licensing to Reduce Competition

Suppose that you and a competitor both produce and sell mousetraps and, sadly, you compete aggressively with each other. Both of you produce nearly identical mousetraps, so your prices are the same. You have just invented a new digital mousetrap. Unfortunately, these digital mousetraps catch the same number of mice per day as the old analog mousetraps, and they are just as costly to manufacture. In other words, your invention seems to have no social value. But might it have some private value?

The answer is yes. Suppose you license this technology to your competition, using a two-part tariff. By structuring the license properly, you can induce your competitor to switch to your technology, and you cause industry output to drop close to the monopoly level.\(^3\)

To keep this as simple as possible, we will use the example of Cournot equilibrium in Chapter 12 of Pindyck & Rubinfeld, *Microeconomics*. Suppose you and your competitor face the following market demand curve:

\[
P = 30 - Q
\]

where \(Q = Q_1 + Q_2\) is total production. We will assume that both firms have zero marginal cost (for producing analog or digital mousetraps). In this case you can verify that your (Firm 1’s) reaction curve is

\[
Q_1 = 15 - \frac{1}{2}Q_2
\]

and your competitor’s (Firm 2’s) reaction curve is

\[Q_2 = 15 - \frac{1}{2}Q_1 \]

Thus the Cournot equilibrium is \(Q_1 = Q_2 = 10 \), price is $10, and profits are \(\pi_1 = \pi_2 = $100 \).

By comparison, the collusive (i.e., monopoly) output level is \(Q = 15 \), so that \(P = $15 \) and \(\pi_1 = \pi_2 = $112.50 \).

Is there a way to get to this collusive output level without colluding? Suppose Firm 1 licenses its digital technology to Firm 2. The license has a fixed fee \(T \) and a royalty rate \(R \). How should we choose \(T \) and \(R \)?

Begin with \(R \). Firm 2’s profit is now

\[
\pi_2 = P(Q)Q_2 - RQ_2 \\
= (30 - Q_1 - Q_2)Q_2 - RQ_2 \\
= 30Q_2 - Q_1Q_2 - Q_2^2 - RQ_2
\]

To get Firm 2’s reaction curve, maximize \(\pi_2 \) with respect to \(Q_2 \):

\[
\frac{\partial \pi_2}{\partial Q_2} = (30 - R) - Q_1 - 2Q_2 = 0
\]

so that

\[Q_2^* = 15 - \frac{1}{2}R - \frac{1}{2}Q_1 \]

Now consider Firm 1’s profit, which is

\[
\pi_1 = P(Q)Q_1 + RQ_2 \\
= 30Q_1 - Q_1^2 - Q_1Q_2 + RQ_2
\]

Maximize this with respect to \(Q_1 \) to get Firm 1’s reaction curve:

\[
\frac{\partial \pi_1}{\partial Q_1} = 30 - 2Q_1 - Q_2 = 0
\]

so that

\[Q_1^* = 15 - \frac{1}{2}Q_2 \]
To get the Cournot equilibrium, combine these two reaction curves:

\[Q_1 = 10 + \frac{1}{3}R \]
\[Q_2 = 10 - \frac{2}{3}R \]

Now pick \(R \) to maximize Firm 1’s profit:

\[
\pi_1 = P(Q)Q_1 + RQ_2 \\
= 100 + \frac{50}{3}R - \frac{5}{9}R^2
\]

\[
\frac{\partial \pi_1}{\partial R} = \frac{50}{3} - \frac{10}{9}R = 0 \\
R^* = $15 per unit.
\]

In this case \(Q_1^* = 10 + 5 = 15 \), and \(Q_2^* = 10 - 10 = 0 \). The price is \(P = $15 \) (the monopoly price), and \(\pi_1 = $225 \).

But how can we get Firm 2 to take this license and adopt the digital technology? Make the fixed fee \(T \) negative. If we set \(T = -$101 \), Firm 2 will earn 1 dollar more than before, and Firm 1 will have a net profit of $124. Not bad for a worthless technology!

Figure 1 illustrates what is going on. By setting a high enough royalty, we can shift Firm 2’s reaction curve sufficiently to the left so that it intersects Firm 1’s reaction curve at the collusive output level.

You might raise the objection that this is just a ploy that will lead to an antitrust violation. But remember that in the real world, the new technology is likely to have some positive value, so that a negative fixed fee \(T \) will not be necessary. (As we all know, digital mousetraps are, in fact, much more efficient than analog mousetraps.) You should understand the basic principle—by licensing to a competitor, you can alter the competitive equilibrium to one that is more favorable.

3.2. Cross Licensing

Firms can also license to each other as a way of creating a more favorable competitive equilibrium. Returning to our example of digital mousetraps, suppose once again that two
Figure 1: Duopoly Example
firms compete in the mousetrap market, and both have been developing digital technologies. In fact, each firm has developed its own “module” that can be used as part of the digital mousetrap design.

Suppose that the two firms arrive at a cross-licensing agreement, whereby Firm 1 licenses its module to Firm 2, charging a royalty R_1, and Firm 2 licenses its module to Firm 1, charging royalty R_2. We’ll assume that the market demand and costs are the same as they were before.

Each firm chooses its royalty rate optimally but non-cooperatively. Firm 2’s profit is now

$$\pi_2 = P(Q)Q_2 - R_1Q_2 + R_2Q_1$$

$$= (30 - Q_1 - Q_2)Q_2 - R_1Q_2 + R_2Q_1$$

Maximizing π_2 with respect to Q_2 gives Firm 2’s reaction curve:

$$Q_2^* = 15 - \frac{1}{3}R_1 - \frac{1}{3}Q_1$$

Likewise, for Firm 1:

$$Q_1^* = 15 - \frac{1}{2}R_2 - \frac{1}{2}Q_2$$

We can now solve these two equations for Q_1 and Q_2:

$$Q_1 = 10 + \frac{4}{3}R_1 - \frac{2}{3}R_2$$

$$Q_2 = 10 + \frac{4}{3}R_2 - \frac{2}{3}R_1$$

We now turn to the choice of royalty notes, R_1 and R_2. Firm 1 picks R_1 to maximize its profit, and Firm 2 picks R_2 to maximize its profit. Firm 1’s profit is:

$$\pi_1 = P(Q)Q_1 + R_1Q_2 - R_2Q_1$$

Substitute $Q_1(R_1, R_2)$ and $Q_2(R_1, R_2)$ into this expression, to get $\pi_1(R_1, R_2)$. Then, maximize $\pi_1(R_1, R_2)$ with respect to R_1, holding R_2 fixed. The result is:

$$R_1^* = 15 - \frac{1}{10}R_2$$
Likewise for Firm 2:

\[R^*_2 = 15 - \frac{1}{10} R_1 \]

Finally, combine these two equations to solve for \(R_1 \) and \(R_2 \):

\[R^*_1 = R^*_2 = 13.64 \]

These royalty rates result in \(Q^*_1 = Q^*_2 = 5.45 \), and \(P = $19.10 \). Also, \(R^*_1 Q^*_2 = R^*_2 Q^*_1 \), so the royalty payments and receipts cancel out. The profits to the two firms are \(\pi_1 = \pi_2 = $104.10 \). Note that this is better than the profits resulting under the original Cournot equilibrium (\(\pi_1 = \pi_2 = $100 \)), but not as good as the profits that would result if the firms could behave cooperatively, (\(\pi_1 = \pi_2 = $112.50 \)). These results are summarized in Figure 2.

Now compare these results to those in the previous case where only Firm 1 licenses to Firm 2. You can see that although the two firms benefit from this cross-licensing arrangement, unless the technologies are actually productive, consumers are much worse off.

3.3. Patent Licensing As a Signal of Low Prices.

Now let’s examine a second reason for licensing—it can be a way to send a credible signal to consumers that they will not be forced to pay very high prices after they have invested the sunk costs needed to adopt a new technology. We can illustrate this problem using a simple example.\(^4\)

Suppose you are a monopolist offering new process technology that you have developed and patented. The technology can be used over two years, and we will ignore discounting. The prices you charge for the technology are \(P_1 \) in the first year and \(P_2 \) in the second year. In addition, each buyer would have to spend a one-time sunk cost of \(S \) to switch to your technology. Alternatively, the buyer could stick with the old technology, at a cost of \(C \) per year.

A buyer must decide whether to buy your technology. There are four possibilities for the buyer: (a) buy the new technology in both years; (b) buy the technology in year 1 only; (c)

\(^4\)This is based on the HBS case, “Monopoly Suppliers and Adoption Costs,” HBS 9-190-111 and 5-191-127, March 1991.
Figure 2: Cross Licensing
buy it in year 2 only; (d) do not buy it in either year. We can rank these different possibilities based on the prices P_1 and P_2. In particular:

- (a) is better than (b) if $P_2 \leq C$
- (a) is better than (c) if $P_1 \leq C$
- (a) is better than (d) if $P_1 + P_2 + S \leq 2C$

Suppose $C = $10,000 and $S = $5,000. The shaded area in Figure 3 shows the prices for which the buyer would purchase the new technology in both years. What prices should we expect the supplier to charge? The answer depends on the possibilities for commitment, and the order in which the supplier and the buyer make their decisions. For example, if the supplier could set both prices P_1 and P_2 before the buyer decides whether to buy the technology and incur the sunk cost S, gains from trade can always be realized. (Such gains will exist whenever $2C > S$.) In this case the supplier could extract all of the surplus from the buyer by charging prices that add up to $2C - S$ (\$15,000 in Figure 3).

However, it is often difficult in practice to commit to a future price. Suppose that first the supplier sets a price P_1, then the buyer decides whether to buy and incur the sunk cost S, and then the supplier sets a price P_2, after which the buyer decides whether to buy a second time. Now the decision to buy is more problematical, because the buyer faces the possibility of being charged a high price in year 2, after having already paid the sunk cost S. As a result, in this situation gains from trade can only be realized if $C > S$. Suppose, for example, that $C = $10,000 and $S = $12,000. In this case, even if the supplier gave away the technology in year 1 (i.e., set $P_1 = 0$), the buyer would not choose to adopt the technology. The reason is that to do so would mean paying \$12,000 up front, and then be faced with a situation in which the supplier has the incentive to charge $P_2 = $10,000 in year 2, for a total cost over the two years of \$22,000. Thus, in this situation the supplier will end up with no sales.

What can be done in this case? One possibility is to have the supplier bear part of the adoption cost S, thereby lowering the effective adoption cost so it is less than C. Another
Figure 3: Purchase Decisions
possibility is to “commit” to a low price in year 2 through a long-term contract. (However, such contracts can be difficult to write and enforce.) Alternatively, the supplier and the buyer might engage in a long-term relationship, or even vertically integrate, as a way of ensuring that the year 2 price will be low. But this, too, is not always feasible.

Another alternative, which is likely to be more feasible, is to license the technology in order to establish second sources, and thereby commit to lower prices in year 2. To see this, let’s return to the example in which \(C = 10,000 \) and \(S = 12,000 \). Consider what happens if the supplier maintains a monopoly in year 1, but licenses the technology widely so that the market will be highly competitive in year 2. Suppose that this competition is expected to drive the price in year 2 down to $3,000. Then a buyer who purchased the technology would have a net gain of $7,000 in year 2, so that in year 1 the supplier could charge \(P_1 = C - S + 7,000 = 5,000 \). In this case, the supplier nets $8,000 in total. This is much better than making no sales at all, which would have been the case had the supplier not been able to credibly commit to a lower price in the second year. By creating competitors for itself through licensing, the supplier is able to make a commitment that leads the buyer to pay the sunk cost and purchase the new technology in year 1.

This incentive to license can be even stronger when there are network externalities. Suppose there is a strong positive network externality, so that consumers are inclined to buy a product only if they expect that a large number of other consumers will also buy the product in equilibrium. A monopolist producer of the product would therefore want to be able to credibly commit to producing a large output (which means a low price), so that consumers would expect a high level of total sales in equilibrium. But making a credible commitment of this sort would be difficult. A monopolist that simply promised to produce a large amount of output would not be believed, because he will always have the incentive later to exercise his monopoly power by reducing output for any given level of consumers’ expectations.

Licensing provides a way around this problem. By providing the technology to competitors, the monopolist gives away part of its monopoly power, but in return is able to credibly signal to consumers that prices in the future will be low, so that there will indeed be a large
4. Other Objectives of Patent Licensing

Suppose that you have developed and patented a new digital toaster. You could simply produce and sell the toasters yourself, rather than involve any other firm. However, you may not be as good at producing (never mind marketing) digital toasters as you are at inventing them. As we explained earlier, we would generally expect to see widespread licensing because it is a way of creating “gains from trade.” Very often, other firms can provide important inputs or know-how such that everybody benefits from a licensing arrangement.

Some of the other potential benefits of patent licensing can be summarized as follows:

1. Licensing can provide a way of controlling existing competitors. As we saw with our digital mousetrap example, a royalty arrangement based on a two-part tariff can be used to reduce industry output closer to monopoly levels. Another example of this was the decision of Genentech to license their patent for synthetic insulin. Genentech developed synthetic insulin in the late 1970s. Genentech could have produced and sold the synthetic insulin itself, but instead it licensed the patent exclusively to Eli Lilly, which at the time was the incumbent monopolist producer of insulin. Why did Genentech do this? Because the post-innovation monopoly profits were greater than the sum of duopoly profits, so that both firms gained considerably from licensing.

2. Licensing can also be used to deter or limit competition in other ways. Licensing a patent, for example, will reduce the incentive of other firms to “design around” it, or to develop an even better technology that leapfrogs the original patent. Thus, in the mid-1980s, Compaq Computer licensed its “Roberts patent,” which is crucial for the operation of a computer monitor, to several other computer companies.

3. We saw before that in some cases a company will want to license a patent in order to create competition, rather than reduce it. In particular, we saw that this provides a

For an analytical treatment of the ways in which network externalities make licensing desirable, see N. Economides, “Network Externalities and Invitations to Enter,” Stern School of Business, New York University, January 1992.
means of signalling low prices in the future, so that buyers will have the incentive to pay the sunk costs needed to adopt the new technology. Another reason for creating competition is to allow *multiple sourcing*. In some industries, a firm may not want to adopt a technology if it means becoming dependent on a single source. Licensing the technology to several different producers alleviates this problem.

4. Licensing can also be used to create or promote a standard. As we discussed earlier, Philips agreed on a compact disk standard with Sony, and licensed the technology to other firms, thereby avoiding a standards battle of the sort that occurred with Beta and VHS in video cassette recorders.

Often, two or more of these benefits or objectives will apply in a particular licensing situation. It is important to understand what, specifically, you are striving for when licensing a patent. It is also important to understand some of the potential problems that can arise:

1. Often, the licensor and licensee must negotiate in the presence of asymmetric and/or incomplete information. Both parties may disagree over the value of a license, which can make it difficult to strike a deal.

2. Licensing can reveal part of a company’s vital technological information, know-how, and trade secrets. For a license to be useful, it must often be accompanied by detailed technical specifications and other information. This might make it easier for the licensee to “leapfrog” the licensor at some future point in time.

3. It may be difficult to monitor the licensee’s output and sales. Monitoring is necessary in order to collect royalties. Then, why not just use a fixed fee instead of a royalty? I think you know the answer to that question.

5. **Complementary Patents and Patent Pools**

Complementary patents are patents that must be used together to have any real value. An example would be the various patents (developed by different companies over the years)
that apply to input-output operations, data buffering, synchronization, etc. on the mother board of a typical computer. Complementary patents have become particularly important with the explosive growth of “systems on a chip” (SOCs). When developing an SOC, a company like Motorola or Cadence Design Systems will typically buy or license “intellectual property blocks” (IP blocks) from companies like Rambus. These IP blocks are useless by themselves; they only have value when used together to produce an SOC for, say, a cellular telephone. (See Figure 4.)

When the development of a product involves large numbers of complementary patents, licensing problems can become very difficult. The reason is that it is hard to assign value to specific patents, and to negotiate revenue-sharing arrangements via licensing terms. Valuing IP blocks has become increasingly important as "merchant IP" has grown. In recent years, an alternative arrangement has become increasingly popular.

Starting in 1995, the U.S. government allowed firms to form patent pools. The idea is that (possibly competing) firms would pool their complementary patents so that they had joint ownership of them. The terms for this joint ownership are established ex ante, before the set of patents (or perhaps certain subsets of the patents) are licensed as a “package” to other firms. Note that the joint ownership of the patent pool can create market power, so that this naturally creates antitrust concerns. Firms that want to pool their patents must therefore apply to do so. (So far, however, almost all applications for patent pooling have been approved.) Although patent pooling is becoming increasingly popular in the United States, it has not, as of yet, had much of an impact in Europe. The European Commission is still trying to figure out how to deal with it.

Patent pooling does not eliminate all of the information problems discussed above. Different firms could have very different views regarding the relative value of the various patents that are going into the pool. However, if the complementarities are strong, it is typically much easier to negotiate a revenue-sharing arrangement for the licensing of the pool than it is to negotiate a licensing arrangement for each patent individually. Assuming the antitrust problems are not too severe, pooling provides a mechanism for enhancing the efficiency and gains from trade from patent licensing.
Figure 4: Systems on a Chip (SOC): Vertical Structure

(IP Blocks may also be developed by SOC designer, or even end user.)

(Sometimes done by end user.)