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Abstract: We propose a simplified approach to matching for causal inference that simultaneously optimizes balance
(similarity between the treated and control groups) and matched sample size. Existing approaches either fix the matched
sample size and maximize balance or fix balance and maximize sample size, leaving analysts to settle for suboptimal
solutions or attempt manual optimization by iteratively tweaking their matching method and rechecking balance. To jointly
maximize balance and sample size, we introduce the matching frontier, the set of matching solutions with maximum
possible balance for each sample size. Rather than iterating, researchers can choose matching solutions from the frontier
for analysis in one step. We derive fast algorithms that calculate the matching frontier for several commonly used balance
metrics. We demonstrate this approach with analyses of the effect of sex on judging and job training programs that show
how the methods we introduce can extract new knowledge from existing data sets.

Replication Materials: The data, code, and additional materials required to replicate all analyses in this article
are available on the American Journal of Political Science Dataverse within the Harvard Dataverse Network, at:
doi:10.7910/DVN/SURSEO. See also King, Lucas, and Nielsen (2016).

Matching is a statistically powerful and con-
ceptually simple method of improving causal
inferences in observational data analysis. It

is especially easy to use in applications when thought
of as a nonparametric preprocessing step that identifies
data subsets from which causal inferences can be drawn
with greatly reduced levels of model dependence (Ho
et al. 2007). The popularity of this approach is increasing
quickly across disciplinary areas and subfields. Indeed,
the proportion of articles using matching in the Amer-
ican Journal of Political Science has increased by about
500% from 2005 to 2015, with matching used in about a
quarter of all articles.

Although successful applications of matching require
both reduced imbalance (increased similarity between
the treated and control groups) and a sufficiently large
matched sample, existing matching methods optimize
with respect to only one of these two factors. Typically,
the required joint optimization is performed by manually
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tweaking existing methods or is ignored altogether. How-
ever, jointly optimizing balance and sample size is crucial
since, if the subset identified by the matching method is
too small, the reduction in model dependence (and hence
bias) achieved will be counterbalanced by an unaccept-
ably high variance. Similarly, the small variance associated
with a large matched data subset may be counterbalanced
by unacceptably high levels of imbalance (and thus model
dependence and bias). Some of these problems may also
be exacerbated by current matching methods, which op-
timize with respect to one balance metric but encourage
researchers to check the level of balance achieved with
respect to a completely different metric for which the
method was not designed and does not optimize.

To remedy these problems, we introduce a procedure
that enables researchers to define, estimate, visualize, and
then choose from what we call the matching frontier, a set
of matched samples that fully characterize the trade-off
between imbalance and the matched sample size. Unlike

American Journal of Political Science, Vol. 61, No. 2, April 2017, Pp. 473–489

C©2016, Midwest Political Science Association DOI: 10.1111/ajps.12272

473



474 GARY KING, CHRISTOPHER LUCAS, AND RICHARD A. NIELSEN

other approaches, we allow researchers to evaluate how
much balance is achieved by pruning observations and si-
multaneously trade balance off against the lower variance
produced by larger matched sample sizes. At each location
(denoted by the matched sample size) along the match-
ing frontier, our approach offers a matched subset of the
complete data such that no other possible subset of the
same size has lower imbalance. Any matching solution not
on this frontier is suboptimal, meaning that a lower level
of imbalance can be achieved using an alternative data
subset of the same size. As a result, no matching method
can outperform the matching frontier, provided that both
use the same imbalance metric. Thus, constructing and
analyzing a matching frontier achieves all of the benefits
of any individual matching method, allows researchers to
extract maximal causal information from their observa-
tional data, is considerably easier to apply appropriately
than manual optimization of balance and sample size,
and avoids many of the pitfalls and difficulties that lead
researchers to ignore best practices in applications.

Unfortunately, finding the matching frontier for an
arbitrary imbalance metric by examining each possible
matched sample is an exponentially difficult computa-
tional task that is infeasible for all but the smallest data
sets, even if it were possible to simultaneously use every
computer ever built and run them for as long as the uni-
verse has existed. We show how to calculate the frontier
for a set of commonly used imbalance metrics, for which
we are able to derive a set of algorithms that run in a few
minutes on one personal computer. We prove that these
algorithms compute the (optimal) frontier exactly, that
is, without any approximation.

We begin by introducing the trade-off between prun-
ing observations to reduce model dependence and re-
taining observations to reduce variance that exists in
all matching methods for causal inference. We then
detail our mathematical notation, goals, and assump-
tions; the choices required for defining a matching fron-
tier; and a formal definition of and algorithms for
calculating the frontier. Finally, we offer several empir-
ical examples and conclude. Software to implement all
the algorithms proposed in this article can be found at
http://projects.iq.harvard.edu/frontier (King, Lucas, and
Nielsen 2016). Additional analyses, information, and sim-
ulations can be found in our Supplementary Appendix
that accompanies this article.

The Matching Frontier Trade-Off

Matching methods selectively prune observations from a
data set to reduce imbalance. A reduction in imbalance

reduces, or reduces the bound on, the degree of model
dependence, a result that has been shown both formally
(Iacus, King, and Porro 2011a; Imai, King, and Stuart
2008; King and Zeng 2006) and in real data (Ho et al.
2007). However, matching has a potential cost in that
observations pruned from the data may increase the vari-
ance of the causal effect estimate. Although researchers
using matching confront the same bias-variance trade-
off as in most of statistics, two issues prevent one from
optimizing on this scale directly. First, since matching is
commonly treated as a preprocessing step, rather than a
statistical estimator, particular points on the bias-variance
frontier cannot be computed without also simultaneously
evaluating the estimation procedure applied to the result-
ing matched data set. Second, best practice in matching
involves avoiding selection bias by ignoring the outcome
variable while matching (Rubin 2008), which requires giv-
ing up the ability to control either bias or variance directly.

Thus, instead of bias, matching researchers focus on
reducing the closely related quantity, imbalance. The spe-
cific mathematical relationship between the two is given
by Imai, King, and Stuart (2008), but conceptually, imbal-
ance combines with the relative importance of individual
covariates to determine bias. Researchers exclude rela-
tive importance because it cannot be estimated without
the outcome variable (although scaling the covariates by
prior expectations of importance is a common and valu-
able step). Similarly, instead of variance, researchers focus
on the matched sample size. The variance is determined
by the matched sample size along with the heterogeneity
(i.e., residual unit-level variance) in the data. Researchers
exclude heterogeneity because it can only be estimated by
using the outcome variable.

Consequently, the goal of matching involves the joint
optimization of balance and matched sample size. Op-
timizing with respect to one, but not both, would be a
mistake. Existing methods address the joint optimiza-
tion by combining machine optimization of one of these
factors with manual (human) optimization of the other.
These attempts to optimize by hand are time-consuming
and usually result in suboptimal matched samples be-
cause human data analysts are incapable of evaluating all
possible matching solutions.

Many good suggestions for ad hoc approaches to
manual optimization of matching methods have ap-
peared in the methodological literature (e.g., Austin 2008;
Caliendo and Kopeinig 2008; Rosenbaum, Ross, and
Silber 2007; Stuart 2008). For example, Rosenbaum and
Rubin (1984) detail their gradual refinement of an initial
model by including and excluding covariates until they
obtain a final model with 45 covariates, including seven
interaction degrees of freedom and one quadratic term.
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Ho et al. (2007, 216) recommend trying as many match-
ing solutions as possible and choosing the one with the
best balance. Imbens and Rubin (2009) propose running
propensity score matching, checking imbalance, adjust-
ing the specification, and iterating until convergence, as
well as manual adjustments. Applying most of these meth-
ods can be inconvenient, difficult to use optimally, and
hard to replicate. With nearest neighbor and propensity
score matching in particular, tweaking the procedure to
improve imbalance with respect to one variable will often
make it worse on others, and so the iterative process can
be frustrating to apply in practice.

Because manual tweaking is time-consuming and
frustrating, applied researchers using matching rarely fol-
low suggested best practices, such as the procedures just
listed. In what follows, we replace the existing machine-
human procedures for optimizing both balance and
sample size with a machine-machine optimization pro-
cedure, thus guaranteeing optimal results in considerably
less time.

Causal Inference Objectives

We define here our notation and choices for the causal
quantity of interest. We separate discussion of the neces-
sary assumptions into those that are logically part of the
notation and assumptions that become necessary when
trying to learn about the quantities of interest from the
data.

Notation and Basic Assumptions

For unit i , let Ti denote a treatment variable coded 1 for
units in the treated group and 0 in the control group. Let
Yi (t) (for t = 0, 1) be the (potential) value the outcome
variable would take if Ti = t. Denote the treatment effect
of T on Y for unit i as TEi = Yi (1) − Yi (0). However,
for each i , either Yi (1) or Yi (0) is observed, but never
both (which is known as the fundamental problem of
causal inference; Holland 1986). This means we observe
Yi = Ti Yi (1) + (1 − Ti )Yi (0). Finally, define a vector of
k pretreatment control variables Xi .

We simplify this general framework by restricting
ourselves to consideration of TEs only for treated units.1

In this situation, the only unobservables are Yi (0) for
units that received treatment Ti = 1 (since Yi (1) ≡ Yi is
observed for these units).

1Since the definition of which group is labeled “treated” is arbitrary,
this does not restrict us in practice.

A coherent interpretation of this notation implies two
assumptions (Imbens 2004). The first is overlap (some-
times called “common support”): Pr(Ti = 1|X) < 1 for
all i (see also Heckman, Ichimura, and Todd 1998, 263).
The idea here is that for treated units, where Ti = 1, it
must be conceivable that before treatment assignment,
an intervention could have taken place that would have
assigned unit i instead to the control group, while hold-
ing constant the values of X . If this could not have been
possible, then Yi (0), which we need to define TEi , does
not even logically exist.

A second assumption implied by the notation is stable
unit treatment value (SUTVA), which can be thought of
as logical consistency, so that each potential value is fixed
even if T changes (or conceptualized differently, this as-
sumption requires no interference between units, and no
hidden versions of treatment; VanderWeele and Hernan
2012). If overlap holds but SUTVA does not, then Yi (0)
and TEi exist but are not fixed quantities to be estimated.

Quantities of Interest

From the basic definitions given above, we can compute
many quantities, based on the average of TE over given
subsets of units. We focus on two in this article. We first
define these theoretically and then explain how they work
in practice, followed by the assumptions necessary for
identification.

First is the sample average treatment effect on the
treated, SATT = meani∈{T=1}(TEi ), which is TE averaged
over the set of all treated units {T = 1} (Imbens 2004).2 If
matching only prunes data from the control group, SATT
is fixed throughout the analysis.

Second, since many real observational data sets con-
tain some treated units without good matches, analysts
often choose to compute a causal effect among only those
treated observations for which good matches exist. We
designate this as the feasible sample average treatment ef-
fect on the treated (FSATT).3 Other possibilities include

2Formally, for set S with cardinality #S, define the average over i
of function g (i) as meani∈S [g (i)] = 1

#S

∑#S
i=1 g (i).

3Using FSATT is common in the matching literature but may be
seen as unusual elsewhere because the quantity of interest is de-
fined by the statistical procedure. In fact, this approach follows the
usual practice in observational data analysis of collecting data and
making inferences only where it is possible to learn something. The
advantage here is that the methodology makes a contribution to a
step previously considered outside the statistical framework (e.g.,
Crump et al. 2009; Iacus, King, and Porro 2011a), just as mea-
surement error, missing data, selection bias, and other issues once
were. As Rubin (2010, 1993) puts it, “In many cases, this search for
balance will reveal that there are members of each treatment arm
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TE averaged over all observations, as well as population
average treatment effects.

Although the distinction between SATT and FSATT
is clear given a data set, the distinction can blur in practice
because in observational data analysis there often exists no
“correct” or canonical definition of the target population.
Usually, if observational data analysts have access to more
relevant data, they use it; if a portion of the data is not
helpful or too difficult to use, because of measurement
problems or the extreme nature of the counterfactual
inferences required, they drop it. If we have a new, more
powerful telescope, we observe more—for that reason.
Thus, since observational data analysis is, in practice, an
opportunist endeavor, we must recognize first that even
the choice of SATT as a quantity of interest always involves
some feasibility restriction (quite like FSATT), either
explicitly where we choose to make a SATT inference
in a chosen subset of our data, or implicitly due to the
choice of our data set to begin with. Thus, regardless of
the definition of the units over which an average will take
place, researchers must always be careful to characterize
the resulting new estimand, for which we offer some tools
below.

Suppose we insist on choosing to estimate SATT even
though some counterfactuals are so far from our data that
they have no reasonable matches and require model-based
extrapolation. If SATT really is the quantity of interest,
this situation cannot be avoided, except when it is possible
to collect more data. To understand this problem, we
follow Iacus, King, and Porro (2011a) and partition the
N treated units into N f treated units that can be well
matched with controls (a “feasible estimation set”) and
Nn f remaining treated units that cannot be well matched
(a “nonfeasible estimation set”), such that N = N f +
Nn f . In this case, we express SATT as a weighted average
of an estimator applied to each subset separately:

SATT = FSATT · N f + NFSATT · Nn f

N
. (1)

When estimating SATT in this unfortunate, but com-
mon, situation, it is often worthwhile to compute its two
subcomponents separately since only FSATT will be esti-
matable without (much) model dependence. We refer to
the subsets of observations corresponding to FSATT and

who are so unlike any member of the other treatment arm that they
cannot serve as points of comparison for the two treatments. This
is often the rule rather than the exception, and then such units must
be discarded . . . . Discarding such units is the correct choice: A gen-
eral answer whose estimated precision is high, but whose validity
rests on unwarranted and unstated assumptions, is worse than a
less precise but plausible answer to a more restricted question.”

NFSATT, respectively, as the overlap set and nonoverlap
set.4

Statistical Assumptions

To establish statistical properties for estimators of these
quantities, statisticians typically posit an extra layer
of complication by imagining a superpopulation from
which the observed data are drawn repeatedly and then
attempting to infer fixed population quantities from the
average over hypothetical applications of an estimator to
repeated hypothetical draws from the population.5 We
first explain the assumption necessary in this hypothet-
ical situation, simplified for SATT, but then go a step
further and establish conditions under which we would
get the correct answer in our one sample, without an extra
layer of complication. As it turns out, these conditions are
simpler and easier to understand.

First, for formal statistical identification, we make
an ignorable treatment assignment (ITA) assumption,
which for SATT requires that the mechanism that pro-
duced the treatment assignment (i.e., the values of T)
be independent of the potential outcome Yi (0) given
X : Ti⊥Yi (0)|X for all treated units (Barnow, Cain, and
Goldberger 1980; Rosenbaum and Rubin 1983). This in-
dependence assumption can be weakened in ways that are
not usually crucial distinctions in practice (Imbens 2004).
(This assumption has also been referred to as “selection
on observables,” “unconfoundedness,” and “conditional

4Although these definitions borrow language from the related over-
lap assumption introduced in the previous subsection, the two are
distinct: Regardless of whether a matching counterfactual obser-
vation exists to estimate Yi (0), we need to ensure that the ex ante
probability of an alternative treatment assignment would have been
possible for observation i . However, if the overlap assumption is
violated, it would be impossible to find a suitable counterfactual
observation.
In all cases, ways of estimating the overlap set (see above) necessarily
depend on substantive characteristics of the data, but methodol-
ogists usually attempt to offer some guidance on the basis of the
data alone. The simplest and most stringent existing definition for
the overlap region is exact matching (Manski 1995). However, in
part because in most applications this definition would result in
almost all observations being in the nonoverlap set and in part
because reasonable smoothness assumptions make extrapolating
small distances over continuous space relatively safe (Zhao 2004),
most scholars choose more relaxed definitions. Some others include
definitions based on nonparametric estimation of the propensity
score, the quality of the worst individual matches (Imbens 2004),
and the convex hull (King and Zeng 2006). In the next subsection,
we offer approaches that seem naturally implied by each imbalance
metric. In this way, we reduce the number of adjustable parameters
to be chosen or assumed while using our methodology.

5Other, alternative sampling and modeling frameworks are some-
times suggested instead, but all add an extra imaginary layer of
some kind.
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independence”; special cases of it are referred to as “exo-
geneity” and “no omitted variable bias,” among others.)
Perhaps the simplest way to satisfy this assumption is to
include in X any variable that from prior research or the-
ory is known to cause either Y or T , since if any subset of
these variables satisfies ITA, this set will too (VanderWeele
and Shpitser 2011).

Second, for clarity, we pare down ITA and its su-
perpopulation sampling framework to its essentials nec-
essary for getting the correct answer in the sample:
̂SATT = SATT. We retain the counterfactual framework
inherent in the definition of causality so that Yi (0) is
unobserved but defined for treated units. However, for
point estimates, imagining infinite random draws from
an invented population is unnecessary. And if we wish
to consider this (e.g., for some types of uncertainty es-
timates), we shall follow the principle of privileging the
sample in hand so that SATT is defined over the treated
units in the only data set we actually observe.

The idea of matching is to replace the unob-
served Yi (0) for each treated unit i with an observed
Y j (0) ≡ Y j for a control unit (i.e., Tj = 0) with match-
ing covariate values (Xi = X j ). A sufficient (but not

necessary) condition for ̂SATT = SATT is (Yi (0)|Ti =
1, Xi ) = (Y j (0)|Tj = 0, Xi ) for all treated units i (with
matching controls j ). However, if any Y j (0) from indi-
vidual matches does not equal Yi (0), we can still esti-
mate SATT correctly so long as the estimates of Yi (0)
are right on average over treated units. Note that this
sounds like, but is distinct from, the concept of “un-
biasedness,” which refers to averages over hypotheti-
cal repeated draws from an imaginary superpopulation,
rather than our need for being correct on average over
the real in-sample treated units. We formalize this idea
with the less restrictive uncorrelated treatment assignment
(UTA) assumption, which is that Y (0) is uncorrelated
with T , within strata of X , or equivalently but more sim-
ply: meani (Yi (0)|T = 0, X) = mean j (Y j (0)|T = 1, X),
which means that within strata defined by X , the average
of Yi (0) for (unobserved) treated and (observed) control
units is the same.

An even easier way to understand the UTA assump-
tion is to consider the case with a data set composed
of one-to-one exact matches. Exact matching is equiv-
alent to conditioning on X , and one-to-one matching
means that weighting within strata is not required (see
the next section). In this simpler situation, X is irrele-
vant and the assumption is simply mean(Yi (0)|T = 1) =
mean(Y j (0)|T = 0), which reduces to meani (Yi (0)|Ti =
1) = mean j (Y j |Tj = 0) since the second term is fully
observed.

When used in practice, applying UTA (or ITA) re-
quires both (a) choosing and measuring the correct vari-
ables in X and (b) using an analysis method that controls
sufficiently for the measured X so that T and Y (0) are
sufficiently unrelated that any biases that a relationship
generates can be ignored (e.g., such as if they are much
smaller than the size of the quantities being estimated).
Virtually all observational data analysis approaches, in-
cluding matching and modeling methods, assume (a)
holds as a result of choices by the investigator. This in-
cludes defining which variables are included in X and
ensuring that the definition of each of the variables has a
meaningful scaling or metric. Then, given the choice of
X , the methods distinguish themselves by how they im-
plement approximations to (b) given the choice for the
definition of X .

Matching Frontier Components

The matching frontier (defined formally in the next sec-
tion) requires the choice of options for four separate com-
ponents. In addition to the quantity of interest, they in-
clude and we now describe fixed- versus variable-ratio
matching, a definition for the units to be dropped, and
the imbalance metric.

Fixed- or Variable-Ratio Matching

Some matching methods allow the ratio of treated to con-
trol units to vary, whereas others restrict them to have a
fixed ratio throughout a matched data set. Matching with
replacement usually generates variable-ratio matching.
Examples of fixed-ratio matching include simple 1-to-1,
1-to- p (for integer p ≥ 1), or j -to-k (for integer j ≥ 1
and k ≥ 1) matching. Fixed-ratio matching can be less ef-
ficient than variable-ratio matching because some prun-
ing usually occurs solely to meet this restriction. However,
an important goal of matching is simplicity, so the ability
to match without having to modify subsequent analysis
procedures remains popular. Fixed-ratio matching is also
useful in large data sets where observations are plentiful
and the primary goal is reducing bias. In practice, most
analysts opt for the even more restrictive requirement of
one-to-one matching.

In fixed-ratio matching, SATT can be estimated by
a simple difference in means between the treated and
control groups: meani∈{T=1}(Yi ) − mean j∈{T=0}(Y j ).

In variable-ratio matching, we can estimate the TE
within each matched stratum s by a simple differ-
ence in means: meani∈s ,{T=1}(Yi ) − mean j∈s ,{T=0}(Y j ).
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However, aggregating up to SATT requires weighting,
with the stratum-level TE weighted according to the num-
ber of treated units. Equivalently, a weighted difference in
means can be computed, with weights W such that each
treated unit i receives a weight of Wi = 1, and each control
unit j receives a weight of Wj = (m0/m1)[(ms1 )/(ms0 )],
where m0 and m1 are, respectively, the number of control
and treated units in the data set, and ms1 and ms0 are
the number of treated and control units in the stratum
containing observation j .6

Defining the Number of Units

The size and construction of a matched data set influ-
ence the variance of the causal effect estimated from it.
Under SATT, the number of treated units remains fixed,
and so we measure the data set size by the number of
control units. For FSATT, we measure the total number
of observations.

For both quantities of interest, we will ultimately use
an estimator equal to or a function of the difference in
means of Y between the treated and control groups. The
variance of this estimator is proportional to 1

nT
+ 1

nC
,

where nT and nC are the number of treated and con-
trol units in the matched set. Thus, the variance of the
estimator is largely driven by min(nT , nC ), and so we
will also consult this as an indicator of the size of the
data set.

To simplify notation in these different situations, we
choose a method of counting from those above and let
N denote the number of these units in the original data
and n the number in a matched set, with n ≤ N. In our
graphs, we will represent this information as the number
of units pruned, which is scaled in the same direction as
the variance.

Imbalance Metrics

An imbalance measure is a (nondegenerate) indicator of
the difference between the multivariate empirical densi-
ties of the k-dimensional covariate vectors of treated X1

and control X0 units for any data set (i.e., before or af-
ter matching). Our concept of a matching frontier, which
we define more precisely below, applies to any imbalance
measure a researcher may choose. We ease this choice by
narrowing down the reasonable possibilities from mea-
sures to metrics and then discuss five examples of con-
tinuous and discrete families of these metrics. For each

6See j.mp/CEMweights for further explanation of these weights.
Also, for simplicity, we define any reuse of control units to match
more than one control as variable-ratio matching.

example, we give metrics most appropriate for FSATT
and SATT when feasible.

Measures versus Metrics. To narrow down the possible
measures to study, we restrict ourselves to the more spe-
cific concept of an imbalance metric, which is a function
d : [(m0 × k) × (m1 × k)] → [0, ∞] with three proper-
ties, required for a generic semi-distance:

1. Nonnegativeness: d(X0, X1) ≥ 0.
2. Symmetry: d(X0, X1) = d(X1, X0) (i.e., replac-

ing T with 1 − T will not affect the calculation).
3. Triangle inequality: d(X0, X1) + d(X1, Z) ≥

d(X0, Z), given any k-vector Z.

Imbalance measures that are not metrics have been pro-
posed and are sometimes used, but they add complica-
tions such as logical inconsistencies without conferring
obvious benefits. Fortunately, numerous imbalance met-
rics have been proposed or could be constructed.

Adjusting Imbalance Metrics for Relative Importance.
Although one can always define a data set that will pro-
duce large differences between any two imbalance met-
rics, in practice the differences among the choice of
these metrics are usually not large or at least not the
most influential choice in most data analysis problems
(Imbens 2004; Zhao 2004). Although we describe contin-
uous and discrete metrics below, more important is the
choice of how to scale the variables that go into it. In-
deed, every imbalance metric is conditional on a defini-
tion of the variables in X , and so researchers should think
carefully about what variables may be sufficient in their
application.

Analysts should carefully define the measurement of
each covariate so that it makes logical sense (e.g., ensuring
interval-level measurement for continuous distance met-
rics) and, most crucially, reflects prior information about
its “importance” in terms of its relationship with Y |T . In
almost all areas of applied research, the most important
covariates are well known to researchers—such as age,
sex, and education in public health, or partisan identi-
fication and ideology in political science. Since bias is a
function of both importance and imbalance, and match-
ing is intended to affect the latter (Imai, King, and Stuart
2008), researchers should seek to reduce imbalance more
for covariates known to be important. This is easy to do
by choosing the right scale for the variables or, equiva-
lently, adjusting weights used in continuous metrics (e.g.,
the standardization in average Mahalanobis distance or
the raw variable scaling in Euclidean distance; see Greevy
et al. 2012) or the degree of variable-specific coarsening
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used in discrete metrics (e.g., H in L 1). We now offer
more detail on these continuous and discrete metrics.

Continuous Imbalance Metrics. The core building
block of a continuous imbalance metric is a (semi-)
distance D(Xi , X j ) between two k-dimensional vectors
Xi and X j , corresponding to observations i and j .
For example, the Mahalanobis distance is D(Xi , X j ) =√

(Xi − X j )S−1(Xi − X j ), where S is the sample co-
variance matrix of the original data X . The Euclidean
distance would result from redefining S as the identity
matrix. Numerous other existing definitions of continu-
ous metrics could be used instead. In real applications,
scholars should choose variables, the coding for the vari-
ables, and the imbalance metric together to reflect their
substantive concerns. With this method as with most oth-
ers, the more substantive knowledge one encodes in the
procedure, the better the result will be.

For example, consider data designed to predict the
Democratic proportion of the two-party vote in a cross-
section of Senate elections (“vote”), with incumbency
status as the treatment, controlling for covariates popu-
lation and the vote in the prior election (“lagged vote”).
Clearly, lagged vote will be highly predictive of the current
vote, whereas the effect of population will be tiny. Thus,
in designing an imbalance metric, we want to be sure to
match lagged vote very well, and should only be willing
to prune observations based on population when we see
gross disparities between treatment and control. For ex-
ample, if we used Euclidean distance, we could code vote
and lagged vote on a scale from 0 to 100 and population
on a smaller scale, such as log population. In computing
the Euclidean distance between two observations, then,
population differences would count as equivalent to rel-
atively small vote differences.

To produce the overall imbalance metric, we
must move from the distance between two individual
observations to a comparison between two sets of
observations, by aggregating binary distance calculations
over all the observations. One way to do this is with
the average Mahalanobis imbalance (AMI) metric,
the distance between each unit i and the closest
unit in the opposite group, averaged over all units:
D = meani [D(Xi , X j (i))], where the closest unit in the
opposite group is X j (i) = arg minX j | j∈{1−Ti }[D(Xi , X j )]
and {1 − Ti } is the set of units in the (treatment or
control) group that does not contain i .

Finally, for SATT, it is helpful to have a way to identify
the overlap and nonoverlap sets. A natural way to do
this for continuous metrics is to define the nonoverlap
region as the set of treated units for which no control
unit has chosen it as a match. More precisely, denote the

(closest) treated unit i that control unit j matches to
by j (i) ≡ arg mini |i∈{T=1}[D(Xi , X j )]. Then define the
overlap and nonoverlap sets, respectively, as

O ≡ { j (i) | j ∈ {T = 0}} (2)

and

NO ≡ {i | i ∈ {T = 1} ∧ {i �∈ O}}, (3)

where ∧ means “and,” connecting two statements re-
quired to hold.

Discrete Imbalance Metrics. Discrete imbalance met-
rics indicate the difference between the multivariate his-
tograms of the treated and control groups, defined by
fixed bin sizes H . The results of this calculation depend
on the scale of the input covariates, and so the scale can
be used to adjust the variables for their likely impact on
the outcome variable.

To define these metrics, let f�1···�k be the relative
empirical frequency of treated units in a bin with co-
ordinates on each of the X variables as �1 · · · �k so
that f�1···�k = nT�1 ···�k

/nT , where nT�1 ···�k
is the number of

treated units in stratum �1 · · · �k and nT is the number
of treated units in all strata. We define g�1···�k similarly
among control units. Then, among the many possible
metrics built from these components, we consider two:

L 1(H) = 1

2

∑
(�1···�k )∈H

| f�1···�k − g�1···�k | (4)

and

L 2(H) = 1

2

√ ∑
(�1···�k )∈H

( f�1···�k − g�1···�k )2. (5)

To remove the dependence on H , Iacus, King, and Porro
(2011a) define L 1 as the median value of L 1(H) from
all possible bin sizes H in the original unmatched data
(approximated by random simulation); we use the same
value of H to define L 2. The typically numerous empty
cells of each of the multivariate histograms do not affect
L 1 and L 2, and so the summation in (4) and (5) each have
at most only n nonzero terms.

When used for creating SATT frontiers, these discrete
metrics suggest a natural indicator of the nonoverlap re-
gion: all observations in bins with either one or more
treated units and no controls or one or more control
units and no treateds.

With variable-ratio matching, and the correspond-
ing weights allowed in the calculation of L 1, the metric
is by definition 0 in the overlap region. With fixed-ratio
matching, L 1 will improve as the heights of the treated
and control histogram bars within each bin in the over-
lap region equalize. (In other words, what the weights,



480 GARY KING, CHRISTOPHER LUCAS, AND RICHARD A. NIELSEN

included for variable-ratio matching, do is to equalize the
heights of the histograms without pruning observations.)

Constructing Frontiers

Now that we have given our notation and discussed
variable- versus fixed-ratio matching, the number of
units, and imbalance metrics, we can formally define the
frontier and describe algorithms for calculating it.

Definition

Begin by choosing an imbalance metric d(x0, x1), a quan-
tity of interest Q (SATT or FSATT), whether to use
weights (to allow variable-ratio matching) or no weights
(as in fixed-ratio matching) R, and a definition for the
number of units U . We will consider all matched data
set sizes from the original N, all the way down from
n = N, N − 1, N − 2 . . . , 2.

For quantity of interest SATT, where only control

units are pruned, denote Xn as the set of all
(

N
n

)
pos-

sible data sets formed by taking every combination of
n rows (observations) from the (N × k) control group
matrix X0. Then denote the combined set of all sets Xn

asX ≡ {Xn | n ∈ {N, N − 1, . . . , 1}}. This combined set
X is (by adding the null set) known as the power set of
rows of X0, containing (a gargantuan) 2N elements. For
example, if the original data set contains merely N = 300
observations, the number of elements of this set exceeds
current estimates of the number of elementary particles
in the universe. The task of finding the frontier requires
identifying a particular optimum over the entire power
set. Using a brute force approach of trying them all and
choosing the best is obviously infeasible even with all the
world’s computers turned to the task. A key contribution
of this article is a set of new algorithms that make possible
finding this exact same frontier in only a few minutes on
an ordinary personal computer.

To be more specific, first identify an element (i.e., data
set) of Xn with the lowest imbalance for a given matched
sample size n, and the choices of Q, U , and R:

xn = arg min
x0 ∈ Xn

d(x0, x1), given Q, R, and U (6)

where for convenience when necessary we define the
arg min function in the case of nonunique minima as
a random draw from the set of data sets with the same
minimum imbalance. We then create a set of all these
minima {xN, xN−1, . . . , 1}, and finally define the match-
ing frontier as the subsetF of these minima after imposing

monotonicity, which involves eliminating any element
that has higher imbalance with fewer observations:

F ≡ {xn | (n ∈ {N, N − 1, . . . , 1}) ∧ (dn−1 ≤ dn)},
(7)

where dn = d(xn, x1). We represent a frontier by plotting
the number of observations pruned N − n horizontally
and dn vertically.

For simplicity, we will focus on SATT here, but our
description also generalizes to FSATT by defining Xn

as the set of all combinations of the entire data matrix
(X ′

0, X ′
1)′ taken n at a time.

Algorithms

Calculating the frontier requires finding a data subset of
size n with the lowest imbalance possible, chosen from
the original data of size N for each possible n (N > n)—
given choices of the quantity of interest (and thus the
definition of the units to be pruned), fixed- or variable-
ratio matching, and an imbalance metric, along with the
monotonicity restriction.

Adapting existing approaches to algorithms for this
task is impractical. The most straightforward would in-
volve directly evaluating the imbalance of the power set
of all possible subsets of observations. For even moderate
data set sizes, this would take considerably longer than
the expected lives of most researchers (and for reasonably
sized data sets, far longer than life has been on the planet).
Another approach could involve evaluating only a sample
of all possible subsets, but this would be biased, usually
not reaching the optimum (for the same reason that a
maximum in a random sample is an underestimate of the
maximum in the population). Finally, adapting general
purpose numerical optimization procedures designed for
similar but different purposes would take many years, and
they are not guaranteed to reach the optimum.7

The contribution of our algorithms, then, is not that
they can find the optimum, but that they can find it fast.
Our solution is to offer analytical rather than numerical
solutions to this optimization problem by leveraging the
properties of specific imbalance metrics.

7We are indebted to Diamond and Sekhon (2012) for their idea of
“genetic matching,” which seeks to approximate one point on the
frontier (i.e., one matched sample size). For this point, imbalance
will usually be higher and never lower than the frontier, and so the
approach proposed here dominates. We also find, using data from
Sekhon (2011) as an example, that computing the entire (optimal)
frontier with our approach is about 100 times faster than it takes
genetic matching to compute one point (approximating, but not
guaranteed to be on, the frontier). For each individual point, our
approach is about 1,000,000 times faster.
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FIGURE 1 A Demonstration of the Continuous Metric FSATT
Algorithm
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Note: The left panel gives an example data set with two covariates, one on each axis. The num-
bers indicate the order in which observations are pruned, the arrows denote the observation in
the opposite treatment regime to which each unit is matched, and “T” or “C” denote treatment
and control, respectively. The right panel displays the frontier for this data set, where points
are labeled to correspond with the left plot.

We now outline algorithms we developed for calcu-
lating each of four families of matching frontiers, with
many possible members of each. We leave to future re-
search the derivation of algorithms for other families of
matching frontiers (defined by choosing among permu-
tations of the choices defined in the previous subsection,
and finding a feasible algorithm). In all cases with SATT
frontiers, we first remove the nonoverlap set and then
compute the remaining frontier within the overlap set.
FSATT frontiers do not require this separate step.

Continuous, FSATT, Variable Ratio. Our first family of
algorithms is based on the average continuous imbalance
metric for FSATT with variable-ratio matching. We il-
lustrate this with the AMI metric, although any other
continuous metric could be substituted. Define N as the
number of units in the original data, n as the number that
have not yet been pruned, and Dn as the current matched
data set. Then our algorithm requires five steps:

1. Begin with N = n.
2. Match each observation i (i = 1, . . . , N) to the

nearest observation j (i) in the opposite
treatment condition {1 − Ti }; this
matched observation has index j (i) =
arg min j∈{1−Ti }[D(Xi , X j )], and distance
d j (i) ≡ D(Xi , X j (i)).

3. Calculate AMI for Dn.
4. Prune from Dn the unit or units with distance

d j (i) equal to max(d j (i)|i ∈ Dn). Redefine n as
the number of units remaining in newly pruned
data set Dn.

5. If n > 2 and AMI > 0, go to Step 3; else stop.

This is a greedy algorithm, but we now prove that it is
optimal by proving two claims that, if true, are sufficient
to establish optimality. Below, we offer a simple example.

Claim 1. For each unit i remaining in the data set, the
nearest unit (or units) in the opposite treatment regime j(i)
(defined in Step 2) remains unchanged as units are pruned
in Step 4.

Claim 2. The subset Dn with the smallest AMI, among all(N
n

)
subsets of DN, is that defined in Step 4 of the algorithm.

Given Claim 1, Claim 2 is true by definition since Dn

includes the n smallest distances within DN .
We prove Claim 1 by contradiction. First assume that

the next unit to be pruned is the nearest match for a
unit not yet pruned (hence requiring the data set to be
rematched). However, this is impossible because the unit
not yet pruned would have had to have a distance to the
pruned unit lower than the maximum, in which case it
would have been matched to that unit originally, which is
not the case. This proves Claim 1. By induction, we then
have a proof of optimality.

To illustrate, consider the simple data set in the left
panel of Figure 1, with five treated units (denoted by the
letter “T”) and four control units (denoted by the letter
“C”), each measured on two covariates (one on each axis).
We denote, with an arrow coming from each unit, the
closest unit (measured in Mahalanobis distance) in the
opposite treatment regime.

The algorithm is illustrated by removing the obser-
vations in numerical order in the left panel of Figure 1,
starting with observation T1. The right panel gives the
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frontier for these data, numbered with the observation to
be removed next.

The figure also illustrates the special case of “mutual
minima,” which is a treated unit that has as its nearest
match a control unit that, in turn, has as its closest match
the same treated unit. In this situation, we remove both
(or more if they are also tied) units at the same time, as
per Step 4. This is illustrated in the left panel of Figure 1
by two arrows between the pair of observations marked
3 (and also 8, when only two units remain). Technically,
this means that some points on the frontier are not rep-
resented, such as if we wished to prune exactly three ob-
servations in this simple example. Although we could fill
in these missing points by enumerating and checking all
possible data sets this size, we find that omitting them,
and thus saving substantial computational time, is almost
costless from a practical point of view: A researcher who
wants a data set of a particular sample size would almost
always be satisfied with a very slightly different sample
size. With a realistically sized data set, the missing points
on the frontier, like discrete points in a (near) continu-
ous space, are graphically invisible and for all practical
purposes substantively irrelevant.8

Put differently, the intuition as to why the greedy al-
gorithm is also optimal is that at every point along the
frontier, the closest match for each observation in the re-
maining set is the same as that in the full set, which implies
that (1) each observation contributes a fixed distance to
the average distance for the entire portion of the frontier
in which it remains in the sample and (2) observations
do not need to be rematched as others are pruned.

Continuous, SATT, Variable Ratio. The SATT frontier
is identical to the FSATT frontier when the SATT require-
ment of keeping all treated units is not binding. This
occurs when the maxi d j (i) calculation in the FSATT algo-
rithm leads us to prune only control units. Usually, this is
the case for some portion of the frontier, but not the whole
frontier. When the calculable part of this SATT frontier is
not sufficient, part of each matched data set along the rest
of the frontier will have a nonoverlap region, requiring
extrapolation. In these situations, we recommend using
the FSATT algorithm for the overlap region, extrapolat-
ing to the remaining nonoverlap region and combining
the results as per Equation (1).

8It is important to note that the missing points on the frontier
cannot violate the monotonicity constraint. If the point after the gap
contains n observations, those n observations are the n observations
with the closest matches. Therefore, there can be no set of n + 1
observations (say, in the gap) with a lower mean distance than that
in the n observations contained at the defined point because the
additional observation must have a distance equal to or greater
than the greatest distance in the existing n observations.

Discrete, FSATT, Variable Ratio. As a third family of
frontiers, we can easily construct a discrete algorithm for
FSATT with variable-ratio matching, using L 1 for ex-
position. With variable-ratio matching in discrete met-
rics, weighting eliminates all imbalance in the overlap set,
making this frontier a simple step function with only two
steps. The first step is defined by L 1 for the original data,
and the second is L 1 after the nonoverlap region has been
removed. Within each step, we could remove observa-
tions randomly one at a time, but since imbalance does
not decline as a result, it makes more sense to define the
frontier for only these two points on the horizontal axis.

If the binning H is chosen to be the same as the
coarsening in coarsened exact matching (CEM), the sec-
ond step corresponds exactly to the observations retained
by CEM (Iacus, King, and Porro 2011a, 2011b).

Discrete, SATT, Fixed Ratio. A final family of frontiers
is for discrete metrics, such as L 1 or L 2, for quantity
of interest SATT with fixed-ratio matching. To define
the algorithm, first let bi T and biC be the numbers, and
pi T = bi T/nT and piC = biC /nC be the proportions, of
treated and control units in bin i (i ∈ {1, . . . , B}) in
the L 1 multivariate histogram, where nT = ∑B

i=1 bi T and

nC = ∑B
i=1 biC are the total numbers of treated and con-

trol units.
To prune k observations optimally (i.e., with mini-

mum L 1 imbalance) from a data set of size N, we offer
this algorithm:

1. Define p′
iC = biC /(nC − k).

2. Prune up to k units from any bin i where after
pruning p′

iC ≥ pi T holds.
3. If k units have not been pruned in Step 2, prune

the remaining k′ units from the bins with the k′

largest differences piC − p′
i T .

An optimal frontier can then be formed by applying this
algorithm with k = 1 pruned and increasing until small
numbers of observations result in nonmonotonicities in
L 1.

The discreteness of the L 1 imbalance metric means
that multiple data sets have equivalent values of the im-
balance metric for each number of units pruned. Indeed,
it is possible with this general algorithm to generate one
data set with k − 1 pruned and another with k pruned
that differ with respect to many more than one unit. In
fact, even more complicated is that units can be added,
removed, and added back for different adjacent points on
the frontier. This, of course, does not invalidate the algo-
rithm, but it would make the resulting frontier difficult
to use in applied research. Thus, to make this approach
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easier to use, we choose a greedy algorithm that is a spe-
cial case of this general optimal algorithm. The greedy
algorithm is faster, but more importantly, it by definition
never needs to put a unit back in a data set once it has
been pruned.

Our greedy algorithm, which we show to be optimal,
is as follows. Starting with the full data set N = n,

1. Compute and record the value of L 1 and the
number of units n.

2. Prune a control unit from the bin with the
maximum difference between the proportions
of treated and control units, such that there are
more controls than treateds. That is, prune a unit
from bin f (i), where

f (i) = arg max
i∈{nC >nT }

|pic − pit |. (8)

3. If L 1 is larger than the previous iteration, stop;
otherwise, go to Step 1.

To understand this algorithm intuitively, first note
that deleting a control unit from any bin with more con-
trols than treateds changes L 1 by an equal amount (be-
cause we are summing over bins normalized by the total
number of controls, rather than by the number of con-
trols in any particular bin). When we delete a control unit
in one bin, the relative size of all the other bins increases
slightly because all the bins must always sum to 1. Deleting
controls from bins with the greatest relative difference, as
we do, prevents the relative number of treated units from
ever overtaking the relative number of controls in any bin
and guarantees that this greedy algorithm is optimal.

To illustrate the greedy version of this optimal algo-
rithm, Figure 2 gives a simple univariate example. Panel
0 in the top left represents the original data set with a his-
togram in light gray for controls and dark gray for treated
units. The L 1 imbalance metric for Panel 0 is reported in
the frontier (Figure 2, bottom right) marked as “0.” The
unit marked in black in Panel 0 is the next control unit to
be removed, in this case because it is in a bin without any
treated units.

Then Panel 1 (i.e., where one observation has been
pruned) removes the black unit from Panel 0 and renor-
malizes the height of all the bars with at least some con-
trol units so that they still sum to 1. As indicated by the
extra horizontal lines, reflecting the heights of control
histogram bars from the previous panel, the heights of
each of the remaining light gray control histogram bars
have increased slightly. The “1” point in the bottom-right
panel in Figure 2 plots this point on the frontier. The
black piece of Bin 5 in Panel 1 refers to the next observa-
tion to be removed, in this case because this bin has the

largest difference between control and treateds, among
those with more controls than treateds (i.e., Equation 8).
Panels 2–4 repeat the same process as in Panel 1, until we
get to Panel 4, where no additional progress can be made
and the frontier is complete.

Applications

We now demonstrate our approach in two substantive
applications. The first uses a SATT frontier, so a direct
comparison can be made between experimental and ob-
servational data sets. The second uses an FSATT frontier
in a purely observational study, and thus we focus on
understanding the new causal quantity being estimated.

Job Training

We begin with a data set compiled from the Na-
tional Supported Work Demonstration (NSWD) and the
Current Population Survey (Dehejia and Wahba 2002;
Lalonde 1986). The first was an experimental interven-
tion, whereas the second is a large observational data col-
lection appended to the 185 experimental treated units
and used in the methodological literature as a mock con-
trol group to test a method’s ability to recover the ex-
perimental effect from observational data. Although our
purpose is only to illustrate the use of the matching fron-
tier, we use the data in the same way.

As is standard in the use of these data, we match on
age, education, race (black or Hispanic), marital status,
whether or not the subject has a college degree, earnings
in 1974, earnings in 1975, and indicators for whether or
not the subject was unemployed in 1974 and 1975. Earn-
ings in 1978 is the outcome variable. To ensure a direct
comparison, we estimate the SATT fixed-ratio frontier,
and thus prune only control units. We give the full
matching frontier in the top-left panel of Figure 3, and, in
the two lower panels, the effect estimates for every point
on the frontier (the lower-left panel displays estimates
over the full frontier, and the lower-right panel zooms in
on the final portion of the frontier). There is no risk of
selection bias in choosing a point on the frontier based
on the estimates, so long as the entire set is presented, as
we do here.

These data include 185 treated (experiment) units
and 16,252 control units, so pruning even the vast
majority of the control units will not reduce the vari-
ance much and could help reduce imbalance (see the
section “Defining the Number of Units”). In the present
data, this insight is especially important given that the
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FIGURE 2 A Demonstration of the L 1 SATT Algorithm
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largest trade-off between pruning and imbalance occurs
after most of the observations are pruned; this can be seen
at the right of the left panel of Figure 3, where the frontier
drops precipitously.

The bottom left panel gives the causal effect esti-
mates, where the apparent advantages of pruning most of
the cases can be seen. Over most of the range of the fron-
tier, causal estimates from the (badly matched) data do

not move much from the original unmatched estimate,
−$8,334, which would indicate that this job training pro-
gram was a disaster. Then after the fast drop in imbal-
ance (after pruning about 15,000 mostly irrelevant obser-
vations), the estimates rise fast and ultimately intersect
with the experimental estimate of the training program,
producing a benefit of $1,794 per trainee (denoted by
the red horizontal line). Overall, the frontier reveals the
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FIGURE 3 The Effect of a Job Training Program on Wages
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Note: The top-left panel is the L 1 frontier for the job training data, beginning at the left before pruning with n = 16, 252
(nonexperimental) control units. The top-right panel displays covariate means across the frontier. The bottom-left panel
displays causal effect estimates along that frontier, with Athey-Imbens model dependence intervals calculated at each point.
The bottom-right panel displays the final points on the frontier, effectively “zooming” in on the portion where imbalance
improves rapidly. The horizontal dashed line is the estimated treatment effect from the experimental sample.

whole range of possible conclusions as a function of the
full bias-variance trade-off. The bottom panels also gives
Athey-Imbens model dependence intervals (Athey and
Imbens 2015) around the point estimates;9 the widths of

9Athey and Imbens (2015) propose “a scalar measure of the sensi-
tivity of the estimates to a range of alternative models.” To compute
this measure, investigators estimate the quantity of interest with a
base model, after which the quantity of interest is estimated in
subsamples divided according to covariate values. The deviation of
these subsample estimates from the base estimate is then a measure
of model dependence.

these are controlled by the model dependence remaining
in the data and so decrease as balance improves across the
frontier. Correspondingly, the largest change in model
dependence occurs near the end of the frontier, where
imbalance improves the most.

Sex and Judging

For our second example, we replicate Boyd, Epstein,
and Martin (2010), who offer a rigorous analysis of the
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effect of sex on judicial decision making. They first review
the large number of theoretical and empirical articles ad-
dressing this question and write that “roughly one-third
purport to demonstrate clear panel or individual effects,
a third report mixed results, and the final third find no
sex-based differences whatsoever.” These prior articles all
use similar parametric regression models (usually logit
or probit) and related data sets. To tame this remarkable
level of model dependence, they introduce nearest neigh-
bor propensity score matching to this literature, finding
no effects of sex on judging in every one of 13 policy areas
except for sex discrimination, which makes good sense
substantively. The authors also offer a spirited argument
for bringing “promising developments in the statistical
sciences” to important substantive questions in judicial
politics, and so we follow their lead here, too. We thus
follow their inclinations but with methods developed af-
ter the publication of their article, by seeing whether our
more powerful approach can detect results not previously
possible.

Boyd, Epstein, and Martin (2010) motivate their
study by clarifying four different mechanisms through
which sex might influence judicial outcomes, each with
distinct empirical implications. First, different voice im-
plies that “males and females develop distinct worldviews
and see themselves as differentially connected to society.”
This account suggests that males and females should rule
differently across a broad range of issues, even those with
no clear connection to sex. Second, the representational
mechanism posits that “female judges serve as representa-
tives of their class and so work toward its protection in lit-
igation of direct interest.” This theory predicts that males
and females judge differently on issues of immediate con-
cern to women. Third, the informational account argues
that “women possess unique and valuable information
emanating from shared professional experiences.” Here,
women judge differently on the basis of their unique in-
formation and experience, and so they might differ from
men on issues over which they have distinct experiences,
even if not related to sex. Finally, the organizational the-
ory posits that “male and female judges undergo identical
professional training, obtain their jobs through the same
procedures, and confront similar constraints once on the
bench.” This theory predicts than men and women do
not judge differentially.

Boyd, Epstein, and Martin (2010) argue that their
results—that males and females judge differently only in
sex discrimination cases—are “consistent with an infor-
mation account of gendered judging.” Of course, their re-
sults are also consistent with representational theories. In-
deed, as Boyd, Epstein, and Martin (2010) argue, women
might judge differently on sex discrimination because

they have different information as a result of shared ex-
periences with discrimination. But it is also possible that
women judge differently on sex discrimination as a way
to protect other women, consistent with representational
accounts.

One way to use our new methodological approach is
to attempt to distinguish between these conflicting inter-
pretations of the effects of sex. To do so, we analyze cases
on an issue for which we expect to observe a difference
if and only if the informational account is true—that is,
an issue area where the unique experiences of women
might lead to informational differences between men and
women but that nonetheless does not directly concern the
interests of women. For this analysis, we consider cases
related to discrimination on the basis of race. Because
women have shared experiences with discrimination,
they have informational differences from men relevant to
this issue area. However, judgments on racial discrimi-
nation do not have direct consequences for women more
broadly. This issue area is the only such issue area that
allows us to distinguish between these two accounts and
for which we also have a suitable amount of available data.

Thus, using their data, we reanalyze race discrimina-
tion cases made on the basis of Title VII. In their original
analysis, Boyd, Epstein, and Martin (2010) found a null
effect with this issue area, both before and after match-
ing. We now show, with our method, which enables us to
analyze data with less dependence and bias than previous
matching approaches, that female judges rule differently
on race discrimination cases. We show that differences
in male and female judgments are at least in part due to
informational differences.

We arranged the data from Boyd, Epstein, and Martin
(2010) so that the unit of analysis is the appellate court
case, the level at which decisions are made. For exam-
ple, the fourth observation in our data set is Swinton v.
Potomac Corporation, which was decided in 2001 by the
Ninth Circuit Court of Appeals, at the time composed
of Judges William A. Fletcher, Johnnie B. Rawlinson, and
Margaret M. McKeown. Our treatment is whether or not
at least one female judge was included in the three-judge
panel. In Swinton v. Potomac Corporation, Judges Rawl-
inson and McKeown are female, and so this observation
is in the treatment group. For each appellate court case,
we use the following covariates: (1) median ideology as
measured by Judicial Common Space scores (Epstein et al.
2007; Giles, Hettinger, and Peppers 2001), (2) median age,
(3) an indicator for at least one racial minority among the
three judges, (4) an indicator for ideological direction of
the lower court’s decision, (5) an indicator for whether a
majority of the judges on the three-judge panel were nom-
inated by Republicans, and (6) an indicator for whether a
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FIGURE 4 The Effect of Sex on Judges in Title VII Race Discrimination Cases
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Note: Panel (a) displays the imbalance-n frontier, and Panel (b) shows estimates of the causal effect across
that same frontier. The shaded region is the Athey-Imbens model dependence interval.

majority of the judges on the panel had judicial experience
prior to their nomination. In Swinton v. Potomac Corpora-
tion, for example, the median ideology was at the 20th per-
centile in the distribution of judges who ruled on a Title
VII race discrimination case and in the 10th percentile in
the distribution of median ideologies, where lower scores
are more liberal and higher scores are more conservative.
This is unsurprising, as all three judges were nominated by
President Clinton in either 1998 or 2000. Our outcome is
the ideological direction of the decision—either liberal or
conservative—and unsurprisingly, the ruling on Swinton
v. Potomac Corporation was a liberal one. For our analy-
sis, we use these six covariates to construct a Mahalanobis
frontier for the estimation of FSATT.

We present the matching frontier in Figure 4, Panel
(a); in contrast to our previous example, most of the re-
duction in imbalance for observations pruned happens
early on, but substantial imbalance reduction continues
through the entire range. Our substantive results can be
found in Panel (b), which indicates that having a female
judge increases the probability of a liberal decision, over
the entire range. The vertical axis quantifies the substan-
tial effect we see in terms of the reduction in probability,
from about 0.05 with few observations pruned and higher
levels of model dependence to 0.25 with many pruned and
lower levels. Most importantly in this case, the point es-
timate of the causal effect increases as balance improves
and we zero in on a data subset more closely approximat-
ing a randomized experiment. Correspondingly, model
dependence, indicated by the shaded interval, decreases.

Because we pruned both treated and control units in
this example, we must carefully consider how the quantity
of interest changes as balance improves. Interestingly, the
best balance exists within more conservative courts (and
thus the effect we find in Figure 4 is among these courts).
To see this, note that in Figure 5, which plots the means
of each covariate as observations are pruned, variables
associated with the court ideology changed the most, and
all moved in a conservative direction.

More specifically, Republican majority has the largest
difference in means, followed by median ideology and me-
dian age. That makes sense, as we expect all-male panels
(those assigned to control) to be more conservative on
average, if only because Democratic presidents are more
likely to appoint women than Republicans. In our data,
7% of judges appointed by Republicans are women, com-
pared with 25% of judges appointed by Democrats. The
key issue is that liberal courts with no female judges are
rare, and so the data do not admit reasonable inferences
among this subset of data (e.g., 31% of courts with a
Republican majority have at least one woman compared
with 50% of courts without a Republican majority).

Our matching technique thus successfully identifies
a subset of data with balance, and this subset is where
women are assigned to conservative courts as well as a
suitable comparison group of conservative courts with-
out a woman. The causal effect of sex on judging in con-
servative courts is not the only question of interest in
the literature, but it is certainly one question of interest,
and, as it happens, it is one in these data that offers a
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FIGURE 5 Covariate Means Across the Title
VII Race Discrimination Frontier
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Note: The figure displays the means of each covariate as ob-
servations are pruned and balance improves. Note the large
change in variables measuring the ideology of the court.

reasonably secure answer. Thus, for example, after prun-
ing 210 appellate court cases, the difference in the me-
dian Judicial Common Space score for treated and control
units is 0.02, compared to 0.1 in the full data. However, in-
terestingly, the average median score for controls is essen-
tially constant as we prune observations, changing from
0.123 to 0.163. In contrast, the average median score for
treated units (courts with at least one woman) goes from
0.02 to 0.143, which is to say it rises to the level of conser-
vatism displayed by courts assigned to the control group.

These results suggest an especially interesting conclu-
sion to supplement the original findings in Boyd, Epstein,
and Martin (2010), namely, that the mechanism for dif-
ferences in judicial decision making is at least in part
informational, perhaps in addition to being representa-
tional, even among the most conservative courts.

Concluding Remarks

Matching methods provide a simple yet powerful way
to control for measured covariates. However, in practice,
implementing matching methods can be frustrating be-
cause they require analysts to jointly optimize balance
and sample size through a complicated, poorly guided
process of tweaking matching algorithms to obtain bet-
ter matched samples. The matching frontier we describe

here offers the first simultaneous optimization of both
balance and sample size while retaining much of the sim-
plicity that made matching attractive in the first place.

With the approach offered here, once a researcher
chooses an imbalance metric and set of covariates, all
analysis is automatic. This is in clear distinction to the best
practices recommendations for prior matching methods.
However, although the choice of a particular imbalance
metric does not usually matter that much, the methods
offered here do not free one from the still crucial task of
choosing the right set of pretreatment control variables,
coding them appropriately so that they measure what is
necessary to achieve ignorability or, in the case of FSATT,
from understanding and conveying clearly to readers the
quantity being estimated.

Our approach generalizes directly for multivalued
treatments without major changes in any of the technol-
ogy described. A larger change, and potentially fruitful
topic for future research, would be combining our ap-
proach to the frontier with formal sensitivity testing for
causal inference.
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