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Abstract—A central aspect of architecting is architecture
description. Architecture descriptions take many forms and
serve many purposes throughout the life cycle of development,
operation and maintenance activities. The use of multiple views
– diverse representations for distinct audiences and uses – has
been a major tenet of architecture description since the earliest
work in software architecture. This tenet has been codified in
various ways. Most practising software architects must operate
within the confines of a prescribed architecture framework
(AF) or architecture description language (ADL) as dictated
by their organization or client. Current AFs and ADLs are
defined with varying degrees of rigour and offer varying levels
of tool support; furthermore, these resources are often closed,
making it difficult for the architect to tailor a representational
solution to the specific challenges of the project at hand.

In this paper we propose an automated infrastructure to
support the architecture description-related activities of the
architect. This infrastructure facilitates customization, compo-
sition and reuse of the architect’s representational resources
(AFs, ADLs and their constituents) to meet project-, domain-
and organization-specific needs. The proposed approach builds
upon the conceptual foundations of ISO/IEC/IEEE 42010 for
architecture description. The approach has been evaluated in
the context of a complex, real-world, public transportation
system.

Keywords-software architectures; architecture description
language; architecture framework; model-driven engineering;
megamodelling; viewpoints

I. INTRODUCTION

The use of multiple views has become standard practice
in industry [1], [2], [3]. A survey we recently conducted
on the industrial needs from architectural languages [4]
revealed that 85% of the 48 interviewed practitioners use
multiple views when architecting a software system, with
a total of nine different views and a predominant use of
structural, behavioral, and physical views reported. One
consequence of the tenet of using multiple views is a grow-
ing body of viewpoints that have become available (such
as [1], [5], [6]) and supported by Architecture Description
Languages (ADLs). A second consequence is the rise of
architecture frameworks as coordinated sets of viewpoints.
Most practising software architects must operate within an
architecture framework prescribed for them by their organi-
zation or client. Current frameworks are defined with varying
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degrees of rigor and offering varying levels of automated
tool support. However, architecture frameworks tend to be
closed; that is, architecture frameworks mainly focus on a
closed set of stakeholder concerns, viewpoints, ADLs, etc.
Thus, (i) it is difficult to re-use viewpoints when defining
new frameworks to be used in different organizations or
domains; and (ii) it is difficult to define consistency rules
among viewpoints once and forever, since such rules are
not re-usable as first-class artefacts. Based on our survey [4],
although automated consistency checking between views is
advocated as an important feature for future ADLs, about
50% of the respondents check view consistency manually
(i.e., with no formalized method). Moreover, (iii) current
ADLs do not provide systematic mechanisms for adding
new views (about 48% of the respondents to our survey
had to extend their ADLs for adding new views). Similarly,
architectural frameworks can be difficult to extend, and most
do not provide mechanisms to handle architecture concerns
not anticipated by the framework’s creators.

With the aim of taking a step towards addressing
these current limitations, the goal of this paper is to
provide an infrastructure, called MEGAF (MEGamodel-
ing Architecture Frameworks), for building reusable archi-
tecture frameworks. Using the conceptual foundations of
ISO/IEC/IEEE 42010 [7], we show how automated support
for viewpoints, as first-class entities, can provide architects
with improved support for architectural modelling and its
application to the analysis of architecture descriptions. Our
approach also provides a basis for sharing and reuse of
such capabilities across projects (and the community) as an
interface to a repository of reusable architectural knowledge.
More precisely, MEGAF allows software architects to create
new architecture frameworks by means of mechanisms: i) to
store architecture descriptions and their constituents (includ-
ing views, viewpoints, stakeholders and system concerns);
ii) to define correspondences among views, viewpoints,
stakeholders, system concerns and their elements; iii) to en-
force consistency and completeness checks based on defined
architectural relationships and rules among elements.

MEGAF is realized by means of megamodeling tech-
niques [8] that provide appropriate ways for handling dif-
ferent type of models. Intuitively, a megamodel is a model
of which at least some elements represent and/or refer to
models or metamodels. By considering viewpoints, stake-



holders, and concerns as first-class elements of a meg-
amodel, MEGAF allows software architects to define, store,
and combine them in order to define the desired architecture
framework. By representing architecture descriptions as sets
of models we are able, for instance, to define links among
different views, to define links between the models that
constitute each view, to create and store views in libraries,
and check adherence of the architecture description to the
framework. The viability of MEGAF is demonstrated via its
application to a real-world case study called BusOnAir.

This work elaborates on the arguments discussed in a
previous position paper [9] by (i) presenting a detailed
description of the MEGAF model-driven infrastructure (i.e.,
its underlying megamodel), (ii) describing how MEGAF
allows one to perform consistency and completeness checks
on architecture descriptions, (iii) applying MEGAF on a real-
world case study, (iv) discussing in detail its benefits and
drawbacks, and (v) illustrating related work in-depth. The
remainder of this paper is structured as follows. Section II
introduces architecture frameworks, the conceptual founda-
tions of ISO/IEC/IEEE 42010 for architecture description,
and highlights the main existing problems that represent the
motivation of this paper. Section III and IV represent the
heart of this paper and present our approach for realizing
architecture frameworks and its implementation. Section V
applies the approach to the BusOnAir case study, while ben-
efits and drawbacks are discussed in Section VI. Section VII
compares MEGAF with related work and the paper concludes
with Section VIII.

II. ARCHITECTURE DESCRIPTION

In this paper, we build upon the conceptual foundations
of ISO/IEC/IEEE 42010:2011, Systems and software engi-
neering — Architecture description [7] to investigate the
essential elements of architecture description and support
the architect’s architecture description-related activities.

ISO/IEC/IEEE 42010 is the joint ISO and IEEE revision
of IEEE Std 1471, first published in 2000 [3]. The standard is
method-neutral: it is intended for use by architects employ-
ing various architecting1 methods. The standard addresses
architecture description (AD): the practices of recording
software, system and enterprise architectures so that ar-
chitectures can be understood, documented, analysed and
realized. Architecture descriptions are created by architects
and used by architects and other stakeholders throughout all
stages of a system’s life cycle, from development through
operation and maintenance. Architects create ADs for many
purposes (see [7, §4.4]). To achieve these purposes and
to meet the diverse needs of a system’s stakeholders, ar-
chitecture descriptions take on many forms, from informal
(sketches on the back of an envelope or drawings on a

1When we refer to architecture or architecting in this paper, we intend
to include equally software architecture, system architecture and enterprise
architecture, unless otherwise qualified.

whiteboard) to rigorously specified models. Because an
architecture must typically address a variety of issues for a
variety of stakeholders, many conventions (notations, kinds
of model, analysis techniques) are utilized.

The standard defines three mechanisms for architecture
description:

1) architecture viewpoints: common ways of express-
ing recurring architectural concerns reusable across
projects and organizations;

2) architecture frameworks (AFs): coordinated set of
viewpoints for use within a particular stakeholder
community or domain of application;

3) architecture description languages (ADLs): any mode
of expression used in an architecture description.

Architects then apply these mechanisms to produce archi-
tecture descriptions of specific systems of interest (such as
software applications, enterprises, product lines, etc.).

These three mechanisms are each built on a few basic
elements defined by the standard. The standard specifies
requirements on each of these primitive elements used to
create architecture descriptions with the further goal of
promoting understandability, interoperability and overall im-
provement of the field of architecting by having a common
terminology and conceptual basis.

An architecture viewpoint encapsulates model kinds fram-
ing particular concerns for a particular audience of system
stakeholders. The concerns determine what the model kinds
must be able to express: e.g., functionality, security, relia-
bility, cost, deployment, etc. A model kind determines the
notations, conventions, methods and techniques to be used.
Viewpoints, defining the contents of each architecture view,
are built up from one or more model kinds and correspon-
dence rules linking them together to maintain consistency.

Viewpoints, like patterns and styles, are a form of reusable
architectural knowledge for solving certain kinds of archi-
tecture description problems derived from best practices.
Viewpoints originated in the 1970s (in Ross’ Structured
Analysis) and refined in [10]. Architecting methods often
define one or more viewpoints, e.g. [1], [5], [11], [12].

A. Architecture Frameworks and ADLs

Building on the viewpoint mechanism, an architecture
framework is a coordinated set of viewpoints, conventions,
principles and practices for architecture description within a
specific domain of application or community of stakehold-
ers. Architecture frameworks originated in the 1970s; Zach-
man popularized the term through his information systems
architecture framework [13]. Since then, many frameworks
have been proposed, published and used, in a variety of
domains and defined with varying degrees of formality. Re-
cent frameworks include the ISO Reference Model for Open
Distributed Processing, GERAM, TOGAF, and MODAF. For
an extensive survey of frameworks, see [14].



Figure 1. Content model of an architecture framework (following
ISO/IEC/IEEE 42010)

An architecture framework is a prefabricated knowledge
structure that architects use to organize an architecture
description into complementary views. For further discus-
sion of the content model and architecture frameworks
mechanism, see [15]. The content model for an architecture
framework is illustrated in Figure 1.

An architecture description language is a collection of
model kinds selected to frame one or more concerns. The
model kinds may or may not be organized into viewpoints.
Some ADLs are very simple, defining a single model kind.
For example, Acme provides one model kind suited for spec-
ifying components, connectors, ports and roles [16]. Other
“classical” ADLs (from the 1990s) include Darwin [17],
RAPIDE [18] and Wright. More recent ADLs can be quite
elaborate with numerous model kinds and viewpoints (such
as AADL [19], ArchiMate [20], SysML and xADL [21]).

Beyond these minimal requirements linking stakeholders
and concerns to model kinds and viewpoints, and corre-
spondence rules linking views and models together, creators
of frameworks and ADLs are free to add other content to
aid architects, such as tools, guidelines, principles, patterns,
styles, heuristics and so on.

B. Current Limitations and Challenges

Existing architecture frameworks and architecture descrip-
tion languages have been defined in a variety of ways
with varying degrees of rigor. Using the primitive elements
described in the previous section, the standard provides a
basis for specifying diverse frameworks and ADLs in a
uniform manner as first-class entities.

Furthermore, current AFs and ADLs are for the most part
closed: their developers expect each framework or ADL
is all that an architect will ever need. E.g., frameworks
may be tailored downward, some viewpoints or model kinds
omitted in use, but rarely are means for extension provided.
Usually, the metamodel of a framework is a fixed system.
As a consequence, if a framework or ADL does not frame a
particular concern (e.g., safety), there may be no provisions

for addressing it. Since any framework or ADL is finite, this
is a common occurrence.

Uniform definitions offer several opportunities:
• improved basis for consistency and model checking;
• to allow architects to compare and contrast AF and

ADL offerings and choose from among them the best
approaches to the problem at hand;

• customization of AD mechanisms to the project or
organization;

• to compose new AFs and ADLs by mixing-and-
matching of existing mechanisms;

• to interoperate across mechanisms (e.g., using a tool for
one model kind to analyze a model of another under
translation;

III. THE SOLUTION

As mentioned in the introduction, and further discussed
in Section VII, although many architecture frameworks have
been proposed in recent years, they are too rigid to perfectly
match all stakeholder’s needs. Moreover, these architectural
frameworks are not consistently defined and cannot be
extended.

A. Conceptual overview of MEGAF

In this section we present MEGAF, which is an infras-
tructure that enables software architects to realize their
own architecture frameworks specialized for a particular
application domain or community of stakeholders. It offers
an effective way of managing, storing, retrieving, and com-
bining existing viewpoints, by properly selecting and reusing
models previously defined and resident in MEGAF. Archi-
tecture frameworks that can be realized by using MEGAF
conform to ISO/IEC/IEEE 42010 [7]. Once an architecture
framework has been defined within MEGAF, it can be used
to create architecture descriptions of systems-of-interest.
Architecture descriptions are easily made to adhere to the
architecture framework used to realize them. For instance,
the realized architecture models adhere to the conventions of
their model kinds as defined by the architecture framework
and its viewpoints.

Moreover, the MEGAF infrastructure enables the archi-
tect to express and enforce relations both between various
elements within an architecture description and across archi-
tecture descriptions. This would be particularly useful while
producing an architecture description for systems of systems
and Cyber Physical Systems [22].

To better understand the characteristics of MEGAF we
describe two usage scenarios:
• Realizing architecture descriptions: architects (and

their organizations) are most likely to use a predefined
architecture framework. These end-users do not create
new viewpoints, but use an existing framework “out
of the box”; however, they may need to customize
the presentation of architecture descriptions for various



stakeholder audiences or integrate that framework with
existing project tools or artifacts.

• Realizing a new architecture framework: architects
create new viewpoints and model kinds to handle
particular system concerns (e.g., fault-tolerance) not
addressed by their current framework. They would then
integrate those by linking them with other existing
representations.

B. Consistency Checks

An important aspect of MEGAF is the support that it offers
to define conformance checks. These checks can be defined
using OCL,2 at different levels, as explained here:
• Conformance of an architecture framework with

ISO/IEC/IEEE 42010: requirements from the standard
are encoded within MEGAF and they are enforced
through the mechanisms for models and metamodels in
the model-driven engineering context. Additional rules
have been defined to check constraints other than those
imposed by the ISO/IEC/IEEE 42010. For instance, a
rule may be added to ensure that for each model kind,
suitable conventions have been defined (see Listing 1).

Listing 1. A conformance check for ISO/IEC/IEEE 42010
1context ModelKind
2inv is_convention_defined :
3Convention.allInstances()->exists(e | e.modelKind =

self)

• The standard also specifies other desired checks that
have been encoded and automated in MEGAF. For
instance, even though an architecture description could
conform to zero, one or more architecture frameworks,
it is useful to have automation to check the adherence
of an architecture description to a particular architecture
framework. The standard defines requirements (cf. [7,
§6.2]) to ensure that each stakeholder, concern, and
viewpoint identified in the architecture framework has
been considered in the architecture description, and
moreover that each correspondence rule identified in
the architecture framework holds in the architecture
description.

• Additional rules can be defined as part of a specific
architecture framework. For instance, Listing 2 shows a
correspondence rule checking that for each component
defined within a UML model used in a specific view-
point, a state machine is defined in another UML model
used in another viewpoint (due to space limitations,
we do not show the isLinkedToStateMachine auxiliary
function in the listing).

Listing 2. Example of framework-specific rule
1context ArchitectureModel
2inv check_comp_stateMachine :
3Component.allInstances->select(e | not e.

isLinkedToStateMachine()).isEmpty()

2OMG Object Constraint Language: http://www.omg.org/spec/OCL

• Finally, architects can define correspondence rules, us-
ing OCL, within the architecture description particular
to the system-of-interest. For instance, rules can be
defined to ensure the consistency among specific views
or among models defined inside a view.

IV. REALIZATION OF THE APPROACH

A. Megamodeling: modeling in the large

Megamodeling has been proposed with the aim of sup-
porting modeling in the large, i.e. dealing with models, meta-
models, and their properties and relations. Intuitively, a meg-
amodel is a model in which some elements represent and/or
refer to models or metamodels [23]. While a metamodel
specifies properties and rules governing model construction
for a specific model kind, a megamodel specifies properties
and rules governing model construction, including multiple
models and metamodels. Megamodeling operations support
the management of large libraries of artifacts that, as said
before, could be models and metamodels.

Megamodeling offers the possibility to handle model (and
metamodels) as first-class entities, to specify relationships
between them and to navigate among them. This is funda-
mental in MEGAF since architecture views generally have
important relations (correspondences) defined among them.
Furthermore, we treat all heterogeneous architecture artifacts
as models and assume that each model has a metamodel, in
order to have a homogeneous infrastructure. This enables
the management of complex artifacts since that complexity
is defined and encoded in their metamodels, thus enabling
programmatic management of (even complex) models. This
assumption follows a basic tenet of ISO/IEC/IEEE 42010:
each view conforms to a viewpoint, and each architecture
model conforms to a model kind. The assumption also seems
reasonable in light of the recent Doc2Model (Document to
Model3) Eclipse project for parsing structured documents to
produce EMF4 models.

Figure 2. Basic megamodeling conceptual framework

Figure 2 shows an excerpt of the megamodeling concep-
tual framework, as presented in [24]. In the following, we
will refer to a metamodel of a megamodel as a metameg-
amodel. The main types of models are:
• Terminal Models, which represent the real system ar-

chitecture and conform to some metamodels;

3http://eclipse.org/proposals/doc2model
4http://www.eclipse.org/modeling/emf



• MetaModels, which define domain-specific concepts
and conform to metametamodels;

• MetaMetamodels, which provide generic concepts for
metamodels specification and conform to themselves.

MetaModels and MetaMetaModels are called Reference
Models since they define the concepts that can be instantiated
in other models; so they can be considered as a reference for
all the models conforming to them. Figure 2 shows different
kinds of terminal models:
• Transformation Models, which are used to define trans-

formations between models;
• Weaving Models, which are used to define relationships

among models;
• MegaModels, which are used to support the megamod-

eling process.
The basic megamodeling conceptual framework described

above has been extended in many ways for different pur-
poses. One recent extension proposes the use of megamodels
in combination with weaving models [25] for coordinating
sets of models. In that work, a megamodel represents all
models involved in a given context and the various rela-
tionships between them, while weaving models are used
to represent different kinds of fine-grained relationships
between the elements contained in the models. The nav-
igability and traceability extension in [25] had a strong
impact on our work since it allows software architects to
define relations between architectural models at two levels
of abstraction: model-level and model element-level, thus
promoting a definition of more accurate correspondences
between the architectural elements involved in MEGAF.

As a concrete implementation of megamodeling, we refer
to the AMMA platform,5 as presented in [26]. In particular,
a dedicated component of the AMMA platform handles
megamodel management, it is called AM3 [24]. In AM3,
a megamodel records all available resources and acts as
an MDE repository. AM3 is extensible, and thus it allows
developers to extend its base metamegamodel by providing
new concepts in a separate metamegamodel. Under this
perspective, architecture concepts can be defined as an
extension of the base metamegamodel; in so doing, it is
possible to navigate architecture models and establish typed
correspondences among them by reusing the AM3 extensible
platform.

B. Megamodeling Architecture Frameworks

As discussed in Section II, ISO/IEC/IEEE 42010 de-
fines a conceptual model of architecture description. In
this work we exploit megamodeling techniques to put in
a concrete form the concepts and requirements expressed
in ISO/IEC/IEEE 42010. MEGAF is built upon a generic
metamodel for software architecture megamodels; this meta-
model is called GMM4SA (Global Model Management

5http://www.sciences.univ-nantes.fr/lina/atl/AMMAROOT

for Software Architectures). The relationships expressed in
ISO/IEC/IEEE 42010 have been encoded in GMM4SA, so
that each megamodel conforming to it must satisfy those
relationships in order to be valid. Additional relationships
and rules are defined via OCL.

Models conforming to GMM4SA contain other models
as first-class entities, including: architecture descriptions,
architecture models and their model kinds, correspondences
and correspondence rules, views and their viewpoints, stake-
holders, and concerns. Developing a metamegamodel allows
one to:

• represent architecture elements as model instances,
• define relationships and correspondences among archi-

tecture elements in a natural and straightforward way,
• provide a suitable engine for automating consistency

checks among architectural elements.

As shown in Figure 3, relationships expressed in
ISO/IEC/IEEE 42010 have been modeled in GMM4SA, so
that each megamodel conforming to it must satisfy those
relationships in order to be valid. Additional relationships
and rules, specific to an architecture framework or orga-
nization are defined by means of weaving models and
OCL; these implement correspondences and correspondence
rules, respectively. Therefore, each architecture description
(AD) element (e.g. view, viewpoint, stakeholder, concern,
etc.) can be explicitly represented via a model or a model
element depending on its granularity (e.g. Concern becomes
a metaclass that can be instantiated as many times as needed
to model different concerns, whereas ArchitectureModel
becomes a metaclass that references an external resource, so
its instances are externally defined models). In GMM4SA six
metaclasses extend concepts belonging to the base metameg-
amodel, i.e., those that are colored in Figure 3. Moreover,
in GMM4SA there are five metaclasses whose instances are
external models, they are:
(i) ADElement is an abstract metaclass representing
generic architecture description elements as defined in
ISO/IEC/IEEE 42010. All metaclasses within the GMM4SA
metamodel extend ADElement (for the sake of readability
this relationship is omitted from the figure). ADElement
inherits from IdentifiedElement and Entity of AM3, so that
it has a unique identifier, may be linked to other identified
elements and may be navigated via the AM3 entities navi-
gator.
(ii) ArchitectureDescriptionLanguage inherits from Meta-
model in AM3 since an architecture description language
can be represented as a metamodel to which an Architecture-
Model may conform. By doing this, we can reuse standard
model-driven mechanisms to check whether an architecture
model conforms to its corresponding architecture description
language. In GMM4SA, architecture frameworks, view-
points and model kinds can have an associated metamodel
as well; for the sake of simplicity we did not include



Figure 3. Extract of GMM4SA

the corresponding association reference in the GMM4SA
metamegamodel represented in Figure 3.

(iii) ArchitectureModel inherits from TerminalModel in
AM3. This allows to store ADLs and architecture models
as external models, thus promoting their reuse.

(iv) CorrespondenceRule inherits from LocatedElement of
AM3 since in MEGAF a correspondence rule is specified
with OCL rules defined in an external (and so to be located)
file.

(v) Finally, Correspondence inherits from the ModelWeaving
metaclass of the basic metamegamodel since a correspon-
dence is a specific kind of weaving relationship; it refers to a
weaving model linking two or more architecture description
elements.

As described above, GMM4SA supports two mechanisms
to define correspondences among AD elements: the first
is Correspondence that allows architects to define weaving
relationships between any elements in the megamodel; the
second is CorrespondenceRules expressed in OCL. These
rules govern the various correspondences that have been
defined between types of element within the megamodel.
Correspondences are extremely important to enable the con-
sistency and completeness checks described in Section III.

V. THE BUSONAIR CASE STUDY

In this chapter we focus on the application of MEGAF
to a real-world case study called BusOnAir. The project is
about a generic information system for managing real-time
information about public transportation systems and making
them available to the user by means of a set of web services
and a dedicated mobile application.6

Fundamentally, this case study can be divided into two
main phases:

1) Architecture Framework definition. In this phase a
dedicated architecture framework for the BusOnAir
project is created in order to precisely focus on its
specific peculiarities and technological aspects. Sec-
tion V-A will focus on this part of the case study.

2) Architecture Description development. In this phase
the defined architecture framework is used to create an
architecture description of the BusOnAir system. So,
architecture views are developed in accordance with
each required viewpoint in the framework and corre-
spondences between views are checked with respect
to the correspondence rules defined in the framework,
Section V-B will focus on this part of the case study.

6BusOnAir prototype: http://www.busonair.eu



A. The BOAAF Framework

In this section we use MEGAF to define BOAAF, the Bu-
sOnAir Architecture Framework. It is specifically intended
for developing the architecture descriptions of systems
which are similar to BusOnAir. Figure 4 shows an overview
of the resulting architecture framework. For simplicity, we
do not show the various relationships that exist among
elements within the BOAAF architecture framework (e.g.,
which concerns are held by a specific stakeholder, which
ADLs belong to a given architecture viewpoint, etc.); the
interested reader can refer to [27] for further details on the
BOAAF architecture framework.

Figure 4. Overview of BOAAF

The upper part of the figure shows the BusOnAir system
stakeholders and their concerns which drive the BusOnAir
architecture. The following stakeholders are considered and
identified: software architect, system engineer, end-user,
and developer. The various concerns shown in the figure
represent a subset of the actual concerns held by stakeholders
with respect to the BusOnAir system; here we mainly focus
on: modularity, distribution, concurrency, dependability, and
the use of the REST paradigm for data communication.

The BusOnAir system uses three architecture viewpoints.
The System viewpoint is used to break down the BusOnAir
system into a set of components, to show how they relate
to each other, and to identify which components are “more
sensible” with respect to dependability. The Behaviour view-
point is used to reason about how the various components
of BusOnAir can be executed concurrently, and to check
some properties related to dependability (such as deadlock
freedom of the components, and their reliability). The Web-
Services viewpoint is used to describe the RESTful API of
BusOnAir.

In the lower part of Figure 4 we show the ADLs we

selected for describing the BusOnAir architecture. More
specifically, the architecture view governed by the System
viewpoint will contain two model kinds: the first one uses
UML component diagrams for describing the various com-
ponents of the BusOnAir system, the second one uses Di-
aspec, a declarative language for describing applications that
orchestrate entities interacting with an environment (i.e., all
the components which will be deployed on the buses) [28].
Diaspec provides a Structural model kind with facilities
for code generation and simulation, while UML provides
a Component model kind which may be used for sharing
architectural knowledge among the different stakeholders
involved in the project. UML was chosen also as a good
starting point for defining the behaviour of the system
(via state machine diagrams) and for natively associating
behavioural specifications to the UML components of the
system.

The Behaviour viewpoint has two model kinds as well: the
first is called Dynamic model kind and utilizes a Finite State
Process (FSP, [29]) language for describing the behaviour of
the components of BusOnAir from a more formal perspec-
tive, which allows architects to perform property checks and
deadlock freedom analysis. The second model kind, called
State Machine, utilizes UML state machine diagrams; in this
case also UML is chosen for communication purposes. A
correspondence rule is defined in the BOAAF framework for
checking that each UML component in the System viewpoint
contains a state machine describing its behaviour in the
Behaviour viewpoint.

The WebServices viewpoint will comprise a single model
kind called REST for specifying REST services (REST-
LANG in the figure).

It should be noted that MEGAF provides a built-in mecha-
nism for performing some checks. Indeed, MEGAF contains
rules that help architects in establishing whether an archi-
tecture framework conforms to ISO/IEC/IEEE 42010. For
example, those rules can check if each concern is framed
by at least one viewpoint, or if by mistake there is some
stakeholder who does not have any associated concerns,
etc. In MEGAF those kind of checks are defined once-
and-for-all for architecture viewpoints and, since they have
been formalized as OCL constraints running on the MEGAF
megamodel, their execution is a one-click action for the
architect. In this context, our next step is the definition of a
set of correspondence rules that help architects in enforcing
project- or system- specific relations that must hold when
creating the architecture description.

Finally, we note that we could also have chosen different
strategies for architecting BusOnAir: for example, we could
have used an existing architecture framework; we could have
used different ADLs; we could have focused on other con-
cerns; etc. We created a dedicated framework for BusOnAir
for three main reasons: (i) because this is the first time we are
developing a system which falls in the GPS-enabled service-



based system domain (and thus we did not have at hand
suitable viewpoints for this kind of systems), (ii) because we
wanted to test the applicability of MEGAF in a real-world
scenario, in which each aspect of the approach is exercised
in the context of a complex development process and in
combination with other aspects of MEGAF, and (iii) because
we expect to use BOAAF more than once to describe many
architectures in the domain of GPS-enabled service-based
systems.

B. The BusOnAir Architecture Description
Once established, we can use the BOAAF architecture

framework to create architecture descriptions of BusOn-
Air systems. Fundamentally, each viewpoint defined in the
framework has been instantiated into an architecture view,
and the architecture models of each view have been defined.
Figure 5 shows the used architecture views and their archi-
tecture models.

Figure 5. Architecture views for the BusOnAir architecture description

Due to space limitations, we will not describe each archi-
tecture view of the BusOnAir system; the interested reader
can refer to [27] for details on the BusOnAir architecture
views.

As already explained in Section V-A, MEGAF has built-
in mechanisms for performing some checks on the defined
architecture views. MEGAF contains rules that help archi-
tects in establishing if the current architecture description
adheres to the BOAAF architecture framework, and con-
forms to ISO/IEC/IEEE 42010. For example, those rules
check if each UML component defined in the System view
is associated to a UML state machine in the Behaviour view,
if each stakeholder concern is addressed by at least one
architecture view, if an architecture view does not contain
any architecture models, etc. These checks are possible using
the megamodel underlying MEGAF since it allows to keep
track of all the various relationships between AD elements
within the megamodel and to predicate on them by means
of generic conformance rules.

VI. DISCUSSION AND EVALUATION

In Section V we showed how MEGAF can be used to
(i) define a project- or system-specific architecture frame-
work in order to precisely focus on the particulars of a given

domain of systems, and (ii) use that architecture framework
to develop architecture descriptions adhering to it, where
each viewpoint defined by the framework has been instanti-
ated with an architecture view, and correspondences between
views have been checked with respect to the correspondence
rules of the framework.

The BusOnAir case study demonstrates an example of a
framework that cannot be found “on the shelf” but must
be created. This demonstrates the need for being able to
create a framework via composition of available resources:
viewpoints, model kinds and ADLs. MEGAF addresses this
by allowing architects to create their own frameworks by
reusing AD elements (including ADLs, architecture model
kinds, viewpoints and correspondence rules) previously de-
fined in MEGAF. As MEGAF is populated with additional
resources, reuse becomes more effective. As the MEGAF
repository grows, more advanced features for searching the
repository will be warranted; this is part of future work.

Within MEGAF, reuse is possible at different levels
of granularity: from the reuse of a complete architecture
framework to the reuse of a single concern definition. For
example, in order to integrate an existing ADL into the
MEGAF infrastructure, its corresponding metamodel must be
imported into the MEGAF megamodel and suitable relations
to other AD elements (e.g., concerns and viewpoints) must
be provided. Further details on the specifics of integration
steps can be found in [27, §4.2]. More powerful mechanisms
for supporting reuse are also under study. At the moment,
an AD element can be reused as is. Modifications can be
made by hand, possibly starting from a copy of the existing
element. We are currently investigating automatic extension
and customization mechanisms, following our work in [2],
[30], which, by means of composition operators, enables the
customization and extension of ADLs. Note that extensibility
in this setting is not simple. Even the semantics of extensi-
bility is not completely clear for all types of architecture
elements. This is a very special case of extension that
can be supported by suitable extension mechanisms. In
future work, we are investigating how to provide finer-grain
mechanisms that could be used by architects to realize their
own extensions.

Focusing on how we used MEGAF to create the BOAAF
architecture framework, it is obvious that BOAAF is specif-
ically oriented to describing architectures of systems which
are similar to BusOnAir. This use of MEGAF is reminiscent
of what architects usually refer to as a software product line
(SPL). With this perspective, if we consider the BusOnAir
as an individual within a specific family of systems S, the
BOAAF framework can be seen as a partial solution for
architectures of systems in S. However, MEGAF focusses on
the architectural aspects of the family of systems (i.e., on
their typical stakeholders, their concerns, and viewpoints),
whereas an SPL-based approach presents a fixed architec-
ture (the “reference architecture” of the software family)



and focusses on the product being developed, its specific
features, and their configuration, in order to assemble the
product. Both MEGAF and SPL-based approaches share the
principle of software artifacts reuse. In MEGAF, reuse is
considered as being opportunistic, i.e., AD elements like
concerns definitions and viewpoints are put into the MEGAF
repository, opening opportunities for future reuse. On the
other hand, SPL-based approaches are built on the concept
of predictive reuse, i.e., a software artifact resides in an
SPL only when its reuse can be predicted for one or more
products in a well-defined product line (when there is no
means to reuse an artifact, it is not part of the SPL).

Another area requiring further investigation is that an ex-
tension to an architecture framework could create problems
with architecture descriptions already realized following the
framework. This aspect recalls “co-evolution” work that
aims to modify models in order to keep the conformity
to their metamodels as those metamodels change [31]. This
is possible since a megamodel defined within MEGAF is
itself a model. This implies that a megamodel can be
manipulated through standard MDE techniques, like model
transformation, composition, model weaving, merging, co-
evolution, and so on.

Finally, MEGAF enables the possibility to compare
frameworks, such as to detect overlaps between two ex-
isting frameworks. Specifically, an overlap could occur at
the conceptual level; such as two frameworks addressing
the same concerns (e.g. performance) or in the model
kinds used to frame those concerns. By comparing their
respective metamodels, one could determine whether the
two frameworks are treating performance in the same way,
overlapping ways, or different ways, based on reconciling
elements of their metamodels to whatever necessary degree.
The browsing tools of MEGAF can assist this and there
may be future possibilities for automated support in such
comparisons.

VII. RELATED WORK

A discussion of existing architecture frameworks, together
with their limitations and challenges, is provided in Sec-
tion II. Most architecture frameworks in use are closed
(i.e. they cannot be easily extended or adapted to new
needs), and tool support for architecture frameworks exhibits
this limitation as well: automated support, where it exists,
follows the predefined viewpoints and models; support for
developing extensions of architecture frameworks in terms
of new viewpoints is non-existent.

Some contemporary ADLs allow for limited forms of
extension to support new viewpoints. Two OMG projects:
SysML7 and UPDM (Unified Profile for DoDAF/MoDAF),8

both built upon UML, provide stereotypes for Stakeholder,

7http://www.sysml.org
8http://www.updm.com

Concern, View and Viewpoint, following IEEE 1471:2000,
but do not require the rules of that standard be followed in
applying these stereotypes.

There is also related work applying megamodeling tech-
niques to model-driven performance engineering [32]. In this
work the core metamegamodel has been extended with three
concepts: annotation model, trace model, and transforma-
tion chains. This paper testifies that megamodeling can be
successfully used in contexts in which models need to be
navigated, composed, managed and represented in different
ways. In our paper the situation is more complex since
we deal with the wider domain of architectures with an
underlying conceptual model (i.e. ISO/IEC/IEEE 42010) that
imposes constraints to be respected.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes an infrastructure, called MEGAF, to
realize architecture frameworks specialized for a particular
application domain or community of stakeholders. Realized
frameworks can be then used to produce architecture de-
scriptions of systems of interest. The main characteristic of
MEGAF is reuse. It offers effective mechanisms for manag-
ing, storing, retrieving, and combining existing viewpoints,
as well as mechanisms to reuse any artifact already defined
and resident within MEGAF. Megamodeling and model-
driven techniques are the technology used to realize MEGAF.

In the future, we plan to overcome the limitations pre-
sented in Section VI, especially on the extensibility side.
An additional interesting area for future investigation is un-
derstanding how procedures and other kinds of knowledge,
which may be associated with viewpoints (and therefore
frameworks), can be exploited for the creation and analysis
of views and models, beyond the (structural) conventions we
have started with.
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