Using the UML for Architectural Description*

Rich Hilliard

Integrated Systems and Internet Solutions, Inc.
Concord, MA USA
rh@isis2000.com

Abstract. There is much interest in using the Unified Modeling Lan-
guage (UML) for architectural description — those techniques by which
architects sketch, capture, model, document and analyze architectural
knowledge and decisions about software-intensive systems. IEEE P1471,
the Recommended Practice for Architectural Description, represents an
emerging consensus for specifying the content of an architectural descrip-
tion for a software-intensive system. Like the UML, IEEE P1471 does not
prescribe a particular architectural method or life cycle, but may be used
within a variety of such processes. In this paper, I provide an overview
of IEEE P1471, describe its conceptual framework, and investigate the
issues of applying the UML to meet the requirements of IEEE P1471.
Keywords: IEEE P1471, architectural description, multiple views, view-
points, Unified Modeling Language

1 Introduction

The Unified Modeling Language (UML) is rapidly maturing into the de facto
standard for modeling of software-intensive systems. Standardized by the Object
Management Group (OMG) in November 1997, it is being adopted by many
organizations, and being supported by numerous tool vendors.

At present, there is much interest in using the UML for architectural descrip-
tion: the techniques by which architects sketch, capture, model, document and
analyze architectural knowledge and decisions about software-intensive systems.
Such techniques enable architects to record what they are doing, modify or ma-
nipulate candidate architectures, reuse portions of existing architectures, and
communicate architectural information to others. These descriptions may the be
used to analyze and reason about the architecture — possibly with automated
support. Analyses range from assessing feasibility, Can the system be built? [I7)
to certifying its implementation, Does the system as implemented conform to the
architecture? [20].

The Recommended Practice for Architectural Description (IEEE P1471) [I6)
represents an emerging consensus for the description of the architectures of
software-intensive systems.

* The published version of this paper appears in Proceedings of < UML>’99, Lecture
Notes in Computer Science, volume 1723, Springer.

In this paper, I investigate the applicability of the UML within the context
established by IEEE P1471. I begin with some background on the history and
goals for the standard. I then introduce the conceptual framework of P1471. In
the main sections of the paper, I review key requirements of IEEE P1471 which
pertain to the use of the UML and examine several approaches to using the UML
to meet the requirements of P1471. I then address a few issues pertaining to the
use of the UML for architectural description which are not specific to P1471. 1
close with a summary of the key issues and a review of some related work.
Note: This paper is based on version 1.1 of the UML specification which is the
currently approved version of the standard. Some changes have been made in
version 1.3 of the UML specification, particularly in the area of Model Man-
agement, which might affect my analysis. However, at the time of this writing,
version 1.3 is not widely available.

2 What is IEEE P14717

IEEE P1471 is the Draft Recommended Practice for Architectural Description.[]
It was developed by the IEEE’s Architecture Working Group, chartered and
sponsored by the Software Engineering Standards Committee of the IEEE Com-
puter Society. The draft Recommended Practice was produced between 1995 and
1998 by a group of approximately thirty participants, and over 140 international
reviewers.

2.1 IEEE Goals for P1471

Given the widespread interest in the architecture of software-intensive systems,
IEEE recognized the need for providing direction in this area, for both industry
and academic application. IEEE set the following goals for the standard:

1. To take a “wide scope” interpretation of architecture applicable
to software-intensive systems. This includes computer-based systems
ranging from software applications, information systems, embedded systems,
systems-of-systems, product lines and product families — wherever software
plays a substantial role in the development, operation, or evolution of a
system.

2. To establish a conceptual framework and vocabulary for talking
about architectural issues of systems. Despite the widespread interest in
architecture in both the systems and software engineering communities, there
is no common frame of reference for practitioners and researchers in these
communities to talk with one another. There are no agreed-upon definitions
for terms such as “architecture,” “architectural description,” and “view.”

1 At the time of this writing, IEEE P1471 has been balloted by the IEEE, and is
expected to be approved for use by the time this paper appears. Up-to-date infor-
mation about IEEE P1471 can be obtained from the IEEE Architecture Working
Group (http://www.pithecanthropus.com/~awg).

3. To identify and promulgate sound architectural practices. There are
already a wide range of software and systems architecture practices. It is a
goal of IEEE P1471 to provide a basis on which all of these practices may
be defined, contrasted and applied.

4. To allow for the evolution of those practices as relevant technolo-
gies mature. The IEEE recognized that software systems architectural
practices are rapidly evolving, both in industrial use and in the research
arena, with respect to architecture description languages, architectural meth-
ods, analysis techniques, and architecting processes. It is hoped these prac-
tices can be communicated, documented and shared via the framework of
P1471. For this reason, the framework should be general enough to encom-
pass current techniques and flexible enough to evolve.

2.2 Using P1471

IEEE P1471 is a recommended practice — which is one type of IEEE standard.f
The important ingredients of IEEE P1471 are:

1. a normative set of definitions for terms including architectural description,
architectural view, architectural viewpoint;

2. a conceptual framework which establishes these terms in the context of the
many uses of architectural descriptions for system construction, analysis and
system evolution; and,

3. a set of requirements on an architectural description of a system.

P1471 applies to architectural descriptions (ADs) — any collection of products
that purports to describe the architecture of a software-intensive system. An AD
is said to conform to IEEE P1471 if it meets the requirements of IEEE P1471. Re-
quirements in P1471 are signalled with shalls, following usual standards practice.
In this way, ADs may be readily checked for conformance to the recommended
practice. The requirements of IEEE P1471 are designed to be independent of any
individual architectural technique, and therefore should be applicable within a
variety of architectural methods and architecture frameworks. It is further hoped
that having a common frame of reference will allow greater understanding and
sharing between different approaches.

P1471 neither describes nor requires any kind of conformance of systems,
projects, organizations, processes, methods, or tools — which are the province of
individual methods, frameworks and practicing organizations.

2.3 The P1471 Conceptual Framework

Figure [, adapted from IEEE P1471, depicts the major conceptual entities re-
ferred to by the standard. The conceptual framework is presented as a UML

2 There are three types of IEEE standard: (i) standards, (ii) recommended practices
and (iii) guides.

class diagram. I will further discuss the conceptual framework below, emphasiz-
ing elements specific to the UML discussion herein. (For a complete discussion
of the framework, please refer to the standard.)

The central abstraction, and primary focus, of the standard is Architectural
Description. In P1471, an Architectural Description is a collection of products
to document the architecture of a system. P1471 does not specify the format
or media for an architectural description. What P1471 does specify is certain
minimal required content of an AD reflecting current practices and industry
consensus.

A key tenet of that consensus is the notion of multiple views. In P1471, an
Architectural Description is organized into one or more architectural Views. Most
architectural methods and frameworks advocate the use of one or more views of
the system as a part of the architectural description. However, the exact views
used vary from technique to technique. Rather than require a particular set of
views, P1471 leaves this selection to users of the standard.

One of P1471’s contributions is to make explicit the notion of an architec-
tural Viewpoint to embody the rules governing a view. It is anticipated that this
will allow the definition and reuse of viewpoints, so that varying approaches to
architecture may better be able to exchange results, and that in general the
growth of the discipline will be facilitated by codifying certain useful patterns
of description.

influences haz an
Enuir Archi e
inhabits
4
has 1. described by
1
isimportartto | _ idertifies 1..* Architectural
Description

iz addressed to

idertifies 1..% organized b
1.*has 1.5
selects 1.*

Concern Vi int View

conforms to

*
uzed to cowver 1. participates in
1.

conzists of
1.

establishes methads for 1.* Model

Fig. 1. The P1471 Conceptual Model

IEEE P1471 has been developed to be “notation-independent” — it does not
specify any particular notations to be used in an architectural description, leav-
ing this to individual architectural methods or practices. Thus, the question
arises, How does the UML apply in the context of IEEE P14717 After examining
the requirements of IEEE P1471 I will return to this in section f.

3 P1471 Requirements on Architectural Descriptions

IEEE P1471 establishes requirements on what it means to be a “conforming”
architectural description [16]. In this section I highlight those requirements with
special implications for the use of the UML. The leading ideas in the IEEE P1471
requirements are bolded, and the requirements are paraphrased within the text
which follows. For the full set of normative requirements on ADs, readers should
refer to the standard.

3.1 Stakeholders and Concerns

As shown in figure [, P1471 posits two key abstractions in the system envi-
ronment that influence an architectural description: Stakeholders and Concerns.
Stakeholders are any individual, class, organization or role that has an interest
in the system. Those interests P1471 refers to as Concerns — the architecturally
relevant areas of interest on the part of the stakeholders for the system. Concerns
capture considerations including the “ilities” (e.g., security, reliability, maintain-
ability) and other system characteristics that influence the architecture.

ADs are interest-relative: A conforming AD identifies the system’s stake-
holders and their concerns.

In developing the architecture for a system, the Architect will seek to un-
derstand who are its stakeholders and what are their concerns. Stakeholders
typically include a Client for the system, Users, Maintainers, Operators, System
Developers, Vendors, and so on [d]. The stakeholders form an upper bound on
the potential audiences for the architectural description.

Concerns are the basis for completeness: In P1471, the content of an ar-
chitectural description is bounded by the identified concerns of the stakeholders
for the system of interest. A conforming AD addresses all stakeholders’ con-
cerns identified under the above requirement. An architectural description is
incomplete if it does not at least address all such identified concerns. Individual
architectural methods may specify additional completeness criteria.

3.2 Architectural Views

P1471 codifies the practice, found throughout software and systems architec-
ture, of using multiple views of a system to document an architecture. Views
are recognized as a mechanism to separate concerns, both to reduce perceived
complexity and to address the needs of diverse audiences [R].

Multiple views: An AD consists of one or more views. In IEEE P1471, a
view is a representation of a whole system from the perspective of a related set
of concerns.

Views are modular: A view consists of one or more architectural models.
Each model may use a different representational scheme. In the example be-
low, a capability view is developed using two representational schemes: UML
component diagrams and class diagrams.

Inter-view consistency: A conforming AD documents any known inconsis-
tencies among the views it contains. IEEE P1471 does not prescribe any specific
consistency-checking techniques between views, which are the realm of individual
methods or organizations. It only requires that any inconsistencies, discovered
by whatever means, be documented.

3.3 Architectural Viewpoints

The perspective from which a view is constructed is called a viewpoint.

Views are well-formed: Each view in a conforming AD is governed by
exactly one viewpoint. Viewpoints define the rules for creating and using views.
In the IEEE Architecture Working Group, the slogan we have used to relate
views and viewpoints is this:f{

views : viewpoint :: programs : programming language

Concerns drive viewpoint selection: In a conforming AD, each concern
is addressed by one or more architectural views. Furthermore, a conforming AD
identifies the selected viewpoints and provides the rationale for their selection.

No fixed set of viewpoints: Various architectural methods prescribe a
fixed, or starting set of viewpoints, such as Kruchten’s 441 view model [19], ISO’s
Reference Model for Open Distributed Processing [[7], Siemens [26]. IEEE P1471
does not require any specific viewpoints; leaving this to individual methodologi-
cal (or religious!) considerations. Instead, P1471 provides mechanisms for insur-
ing that whatever viewpoints are used in a conforming AD, these are documented
and understandable. IEEE P1471 does not take a position on where views come
from. In the literature, one finds several stances toward views [[1]. One stance
treats views as projective: a view is a partial projection of a full architectural
description; another stance is constructive: the architectural description is con-
structed from one or more separate views.

Viewpoints are first-class: Fach viewpoint used in an AD is declared
before use. Like a legend on a map or chart, a viewpoint provides a guide for
interpreting and using a view, and appears in a conforming AD together with
the view it defines.

3 The notation = : i :: z : w is read “z is to y as z is to w.”

3.4 Viewpoint Example

The remainder of this section presents a brief example of declaring and using a
viewpoint conforming to IEEE P1471. The example is drawn from an architec-
tural description for the InternetEngine—a product line architecture for electronic
cominerce.

Declaring a Viewpoint. IEEE P1471 establishes the minimal information that
a conforming AD must contain for each viewpoint used therein. Each viewpoint
is specified by:

— the viewpoint name;
the stakeholders addressed by the viewpoint;

— the stakeholder concerns to be addressed by the viewpoint;

the viewpoint language, modeling techniques, or analytical methods used;
and,
— the source, if any, of the viewpoint (e.g., author, literature citation).

A viewpoint definition may additionally include:

— any formal or informal consistency or completeness checks associated with
the underlying method to be applied to models within the view;

— any evaluation or analysis techniques to be applied to models within the
view; and

— any heuristics, patterns, or other guidelines which aid in the synthesis of an
associated view or its models.

The Capability Viewpoint. This is a brief example of a viewpoint declara-
tion and a resulting view. The Architect of a large, enterprise-wide, distributed
information system needs to devise a strategy for the organization of system ca-
pabilities and the rules by which those capabilities are constructed and fielded.
The “capabilities” are small to mid-sized components intended to encourage
reuse across the enterprise and facilitate “plug-and-play” composition.

Viewpoint Name: Capability

Stakeholders: the client, producers, developers and integrators

Concerns: How is functionality packaged? How is it fielded? What interfaces
are managed?

Viewpoint language: Components and their dependencies (< provides>,
<Krequires>>, <client-server>>) (using enhanced UML component diagrams);
interfaces and their attributes (using UML class diagrams).

Sources: Also known as: Static, Application, Conceptual [I4]

A Capability View. An application of the capability viewpoint might look
like figure B. The capability view covers all system functionality for operating
on data; it is therefore intended as a reference model (template) for new con-
struction and integration. What the cartoon does not show are the assertions
associated with each element. Capabilities are constructed using a 5-tier, layered
organization with interfaces at each pair of layers. Each layer is a capability. Ca-
pabilities can serve other capabilities (horizontal integration). The entire stack
is a deployable capability. Rules for interaction among layers, and rules for al-
lowed “content” of a layer are stated in terms of this diagram using OCL. All
capabilities must provide certain basic operations, conforming to the Generalized
Capability Interface, which is used for the dynamic discovery of capabilities. The
Data Access Interface conforms to an XML document type description (DTD).
Other interfaces are constrained by well-known, off-the-shelf APIs.

g . Wind5 or
Presentation | Jvm

S wcelient-servers»

1 User Interface],
- <<client-server=>

ccinterface>> | C'Rﬂ;\-:r
Generalized [apability . 0
Capability [., =cclient-servers>

"4, <<conforms>> <interfaces>
Data Access [—poea Acsass T DAl
-, Interface (XML DTD)

. <<client-servers>

Data Store 436
S0L

Fig. 2. A Capability View

This capability viewpoint is defined in terms of two existing UML diagram
types (class diagrams and component diagrams), stereotype extensions to the
component diagram, and certain relations between the diagrams. This ensemble
constitutes the viewpoint language part of a viewpoint declaration.

Viewpoint Reuse. Unlike a system’s stakeholders and its views, viewpoints
are not particular to a system. Since they are first-class, it should be possible
to keep viewpoints “on-the-shelf” for (re)use. Thus, the architect may be able

to reuse viewpoint descriptions; in IEEE P1471, these are referred to as library
viewpoints.

So the Architect, instead of defining a capability viewpoint from scratch as
above, ought to be able to go to the library and find a viewpoint to meet her
needs. One candidate, well-known from Software Architecture, is the structural
viewpoint.

Viewpoint Name: Structural

Stakeholders:H

Concerns: Define the computational elements of a system and their organi-
zation. What elements comprise the system? What are their interfaces? How do
they interconnect? What are the mechanisms for interconnection?

Viewpoint Language: Components, connectors, ports and roles, attributes

Analytic Methods: Attachment, type consistency.

Sources: There is general agreement within the field known as Software Ar-
chitecture, on the usefulness of the ontology of components, connectors, etc. See
for example [25]. The ACME architecture description language (ADL) represents
a consensus ADL embodying this ontology [I0]. See those works for citation of
many other ADLs with a similar basis.

4 Using the UML in the Context of IEEE P1471

The UML is nicely suited to P1471 in several ways. Both address a similar
scope: software-intensive systems. Like the UML, IEEE P1471 is “intentionally
process-independent” [23, §4.2]. It neither defines a life cycle nor an architectural
process. Finally, both take as a starting point the need for multiple views in the
modeling of software-intensive systems.

Using P1471, the Architect selects architectural viewpoints based on the
stakeholders’ concerns to be addressed in the architectural description. Ideally,
these viewpoints are taken “off-the-shelf” — it is desirable to use predefined view-
points, when such viewpoints are available. Individual architectural methods and
architectural frameworks typically espouse a set of predefined architectural view-
points (even if they are not referred to as “viewpoints”). For example, the UML
User Guide [d] advocates a “user-case driven, architecture-centric, iterative, and
incremental process” which employs five view(point)s:

[T]he architecture of a software-intensive system can best be described
by five interlocking views. Each view is a projection into the organiza-
tion and structure of the system, focused on a particular aspect of that
system. [@, p31]

There are a range of approaches one might take to applying the UML. In light
of the requirements discussed in section B, we now examine four approaches to
using the UML within the context of IEEE P1471.

4 Not in library, to be filled in at use time.

(1) “Out of the Box” The Architect can adopt the UML as a tool kit of
useful notations to be applied to architectural subjects, using it “out of the
box.” Each of the nine predefined diagram (techniques) is potentially applicable
to architectural description. The easiest way to use the UML within the P1471
context is to develop viewpoints which utilize one or more predefined diagram
types as viewpoint languages. IEEE P1471 offers a way to understand, and
therefore reuse, existing diagram types, as shown in table [I.

Table 1. Predefined UML Diagram Types as Viewpoint Languages

Architectural Viewpoint|UML Diagram Type(s)

structural component diagrams and class diagrams
behavioral interaction diagrams, activity, state diagrams
user use case diagrams, interaction diagrams
distribution deployment diagrams, interaction diagrams

(2) “Lightweight Extension” The Architect can exploit the UML’s “lightweight
extension mechanisms” (tagged values, stereotypes and constraints) [@] to cre-
ate new vocabularies for architectural description. Either by creating a UML
extension or a variant:

— A UML extension is a predefined set of stereotypes, tagged values, and con-
straints that extend and tailor the UML for a specific domain of application.
See [23, §4.1.1]

— A UML variant is language built on top of the UML metamodel, specializing
that metamodel, without changing any UML semantics. See [23, §4.1.1]

The key point is that such extensions will be developed on a per-viewpoint
basis — potentially each viewpoint will necessitate its own extension. It would be
useful to have a standard way to document viewpoint declarations in the UML,
such that they may be notationally depicted, stored and manipulated by tools.
Once viewpoints are represented in this form, more interesting uses are possible,
such as specialization and combination of viewpoints. It seems such a mechanism
needs to be more than what is defined by an extension, since it needs to refer to
diagram types; but less than a UML profile [I] — which appears to be much too
heavy a mechanism for individual architects, if it has to be applied individually
to viewpoints.

(3) “UML as Integration Framework” The Architect, or more likely the
architecture team, or firm, might adopt the UML (and its metamodel) as an
integrating framework for architectural description. At this level of commitment,
one would seek a close correspondence between the P1471 conceptual framework
and the UML metamodel.

As noted, the UML and P1471 are philosophically compatible on the matter
of multiple views; however, while views and viewpoints are “first-class” citizens
in the P1471 conceptual framework (figure 1), these concepts appear only infor-
mally in the UML specification.f] For example,

Every complex system is best approached through a small set of nearly
independent views of a model; No single view is sufficient. [23, §4.1.2]

The notion of viewpoint appears in the definition of model:

A model is an abstraction of a modeled system, specifying the modeled
system from a certain viewpoint and at a certain level of abstraction. A
model is complete in the sense that it fully describes the whole modeled
system at the chosen level of abstraction and viewpoint. [22, §12.2]

Perhaps closest in spirit to IEEE 1471’s notion of a view is the UML notion of
a diagram:

In terms of the views of a model, the UML defines the following graphi-
cal diagrams: [use case diagram; class diagram; behavior diagrams: stat-
echart diagram, activity diagram; interaction diagrams: sequence dia-
gram, collaboration diagram; implementation diagrams: component dia-
gram, deployment diagram.]

These diagrams provide multiple perspectives of the system under anal-
ysis or development. ... [23, §4.1.2]

To be precise, we are less interested in individual diagrams than in the rules
governing diagram instances. In the UML specification, these are referred to
variously as a diagram type, a diagram kind, or a diagram techmique. Although
there are nine predefined instances of this entity in the UML specification, it has
no status in the metamodel either. The “standard diagram types” are defined
not in UML itself, but by external rules.

One way to fully support P1471 is to introduce representatives of diagram
technique, view and viewpoint into the UML metamodel. This would support
both end-user extensiblity by architects and could simplify the specification of
the UML. One way to do this is shown in figure B.

By reifying Diagram Technique we provide a way to document existing dia-
gram types; provide a substrate for differential expression and extensions; and
give the end user a means to define new diagram techniques.

Now we may complete the integration of IEEE P1471 and the UML. An
architectural description is a model; a model composed of one or more views.
Diagram techniques are candidate viewpoint languages which may be referenced
in the declaration of viewpoints, and then used to guide the construction of
well-formed diagrams which make up the view. A View is one kind of Model,

5 The entity ViewElement does occur in the UML metamodel (vintage 1.1), but pertains
to the graphical presentation (rendering) of ModelElements.

Model

e ievwpoint
gowems

uses

Dimgram
Technigue

Dizgram
quides

Model Ele mernt

Fig. 3. Enhanced Metamodel Fragment

governed by a well-defined (declared) Viewpoint. A view may be documented
with one or more diagrams. Each diagram is guided by the rules of a diagram
technique. Diagrams are made up of (owned) ModelElements and references to
ModelElements (which may occur in other views).

A useful consequence of the reification of views and viewpoints would be
the ability to map out the set of viewpoints employed by an AD and their
relationships. A “big picture” notation for this would allow the Architect to
sketch and document the expected content of an AD. Figure |l suggests what
a big picture might include: stakeholders (icons), concerns (arrows), viewpoints
(triangles) and views (packages). Relationships between packages can be used
to express traceability relations and other linkages. In some methods, there is a
need to be able to articulate precedence among views — e.g., the requirements
view is developed before the design view.

The notions above are useful outside of the realm of architecture. Similar
distinctions are useful in requirements and design, as well. A generalized view
and viewpoint mechanism would be valuable throughout the UML.

(4) “Outside The UML Ontology”

The ideal architect should be a man of letters, a skillful draftsman, a
mathematician, familiar with historical studies, a diligent student of phi-
losophy, aquainted with music, not ignorant of medicine, learned in the
responses of jurisconsults, familiar with astronomy and astronomical cal-

culations.
— Vitruvius, De Architectura (25 BC)

How Is data shared?

How to uxid this? .
How to defiver it? Client

- How is mctionality
procured and packaged?
i Data
Lapabili ' view
IE::Data /

concem(s)\ viewpoint

Producer |IE::Capability
L Can this he buiit?
What to haiid it with?
inter-view relationship
b (e.g.,traceahility relations)

stakeholder] onstruction

IE::Construction

Fig. 4. Fragment of a Big Picture

So far, I have stayed within the subject matters of viewpoints to which the
UML is well-suited: the structure, organization and behaviors of a software-
intensive system. But architecture — even software-intensive systems architecture
— is a multi-disciplinary endeavor [Z], and many diverse disciplines may be
brought to bear on the Architect’s challenge.

There are many existing system disciplines — each with their own existing
notations, models and analytic methods. Table B suggests a few. For these cases,
it is perhaps more efficient to use existing techniques than to recast them in
the UML. This does, however, exacerbate the view-integration problem (see
section f).

Table 2. Other Viewpoints

Architectural Viewpoint|Notations or Techniques

Management GANTT charts, budgets, organization charts
Reliability block models, failure models, ...

Performance discrete-event models, queueing models ...
Security (see below)

Information security is a good example. In previous work [B], a security view
was developed using a viewpoint language based on the Bell-LaPadula security
model [2]. This model provides a viewpoint language along the lines of table .
Recent approaches adopt other security models e.g., [3]. It would not be efficient
to build each such approach into UML.

Table 3. A Security Viewpoint Language (from [G])

(Security) Objects |The resources being protected
(Security) Subjects|Active objects which can perform operations on objects

Policy The set of rules which specify, for each object and each subject,
what operations that subject is allowed to perform on that object

Operations The ways in which subjects interact with objects

Info domains Subjects and objects live in domains.

Domains may have different security levels,
and interconnect with other domains

5 General Issues

There are a number of other issues with the use of the UML for architectural
description that are not particular to IEEE P1471. Many of these issues pertain
to the generality of the UML ontology of concepts (and its metamodel) — which
has been developed for object-oriented analysis and design applications — and
the adequacy of that ontology for architectural concerns. For a discussion of
expressiveness in architectural description, not specific to the UML, see [I3].
In this section, I highlight two issues: view integration and the fixed nature of
certain UML “built ins”.

View Integration Multiple views necessitate means for view integration: main-
taining consistency among views. At present, the UML provides only minimal
mechanisms of this kind, such as the trace and refine relationships. The trace
relationship is used to represent historical deriviations of an element. The refine
relationship is used to represent the same element at different levels of abstrac-
tion. The assumption of identity for each of these relations is too restrictive for
architectural view integration. Within the P1471 framework, one would like to
be able to state such relations as:

1. the viewpoint level; e.g., subjects and objects in a security viewpoint are
always components in a structural viewpoint;

2. the view level: Data access interfaces in the data view are implemented as
capabilities (or, components) in the structural view;

3. the element level: element a in view X and element b in view) are descrip-
tions of the same thing.

Notations for view integration can be built as relationship stereotypes, to
handle the first two cases. For the third case, element-to-element mapping, ad-
ditional work would be needed, whether in UML, OCL or elsewhere.

Built-In Features Some of the built-in features of the UML, inspired by anal-
ogous programming language mechanisms, are not sufficiently general for archi-
tectural use, but cannot be overridden in the metamodel, because they are not

first-class. For example, the built-in model of visibility only allows a fixed set
of values (public, private, protected). Architecturally, one might like to tailor
the visibility model, e.g., to support a particular security model, or for a partic-
ular distributed systems paradigm (such as the Distributed Systems Annex of
Ada 95).

6 Closing

The UML is well-suited for use with IEEE P1471, providing a ready-made suite
of notations to model many of the aspects of the architectures of systems. The
predefined diagram techniques are all applicable within commonly used archi-
tectural viewpoints (see table [l]).

The “lightweight extension mechanisms” — stereotypes, tagged values, and
constraints — provide the means to develop specialized vocabularies which the
Architect may use as viewpoint languages to address specific areas of concern.
For example, the structural viewpoint, well-studied within academic software
architecture, is readily captured in this way via component and class diagrams
and a set of extensions. Most existing architecture description languages fall
within this viewpoint, while other architectural concerns fall outside the current
ontology of UML.

By reifying views, viewpoints and diagram techniques, the Architect has the
basis to more flexibly specify and manipulate viewpoints than with the proposed
profile mechanism. This generality is applicable outside of architecture, as well.

Relation to Other Work. Although first-class views and viewpoints are somewhat
new to the architecture community with IEEE P1471, these concepts are found
in requirements engineering [7] and aspect-oriented programming [Ig].

Kruchten was probably the first to use UML for architectural description
(even before it was UML!) [9]. Medvidovic and Rosenblum show how to sup-
port an architectural style (the C2 style) using the UML’s lightweight extension
mechanisms [20]. Much of the work on architectural styles in Software Archi-
tecture takes place within the Structural Viewpoint. An interesting question is
whether the UML can support a “layered” approach to extensions, such that the
C2 style “extension” could be defined atop the Structural Viewpoint, as defined
above. Hofmeister et al. at Siemens define several viewpoints (which they call
“views”) using UML [I5]. As proposed above, each viewpoint uses more than
one diagram technique for its expression: their Conceptual Viewpoint comprises
UML class, state and sequence diagrams (with the ROOM extensions); their
Module Viewpoint comprises class and package diagrams; their Execution View-
point comprises class, sequence and state diagrams; and their Code Viewpoint
uses component diagrams and a supplementary table [I5]. Egyed is using the
UML as an integration framework for architectural views [h]. Most work on gen-
eral ontologies for architecture outside of the system ontology provided by the
UML metamodel is qualitative, rather than model-based.

Acknowlegments. This paper is based on a talk given in April 1999 at the Work-
shop on Architecture and UML in Denver, sponsored by Rational. Comments
on that presentation by the participants have improved the presentation here. I
would also like to thank the members of the IEEE Architecture Working Group
for many useful discussions on views and viewpoints. Thanks to the reviewers for
useful suggestions and to D. Emery (The MITRE Corporation) for comments
on an earlier version of this paper.

References

[1]
2]

3]

(4]

[5]

[10]

[11]

[12]

OMG Analysis and Design Platform Task Force. White paper on the profile
mechanism (version 1.0). OMG Document ad/99-04-07, April 1999.

D. Bell and L. J. LaPadula. Secure computer systems: unified exposition and
Multics interpretation. Technical Report MTR-2297, The MITRE Corporation,
Bedford, MA, 1976.

Christophe Bidan and Valérie Issarny. Dealing with multi-policy security in large
open distributed systems. In Proceedings of the 5th European Symposium on Re-
search in Computer Security, number 1485 in Lecture Notes in Computer Science,
pages 51-66, Belgium, September 1998. Springer-Verlag.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley, 1999.

Alexander Egyed. Integrating architectural views in UML. Technical Report
USC/CSE-99-TR-514, Center for Software Engineering, University of Southern
California, Los Angeles, CA, 1999.

David E. Emery, Rich Hilliard, and Timothy B. Rice. Experiences applying a
practical architectural method. In Alfred Strohmeier, editor, Reliable Software
Technologies—Ada-FEurope 96, number 1088 in Lecture Notes in Computer Science.
Springer, 1996.

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. View-
points: a framework for integrating multiple perspectives in system develop-
ment. International Journal of Software Engineering and Knowledge Engineering,
2(1):31-57, March 1992.

A. Finkelstein and I Sommerville. The viewpoints FAQ. Soft-
ware Engineering Journal, 11(1):2-4, 1996. Also available from
ftp://cs.ucl.ac.uk/acwf/papers/viewfaq.ps.gz.

Cristina Gacek, Ahmed Abd-Allah, Bradford Clark, and Barry W. Boehm. On the
definition of software system architecture. In Proceedings of the First International
Workshop on Architectures for Software Systems, Seattle, WA, 1995.

David Garlan, Robert T. Monroe, and David Wile. Acme: An architecture de-
scription interchange language. In Proceedings of CASCON ’97, pages 169183,
November 1997.

Rich Hilliard. Views and viewpoints in software systems architecture. Position
paper from the First Working IFIP Conference on Software Architecture, San
Antonio, 1999.

Rich Hilliard, Michael J. Kurland, and Steven D. Litvintchouk. MITRE’s Archi-
tecture Quality Assessment. In 1997 MITRE Software Engineering and Economics
Conference, 1997.

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]
[23]
[24]
[25]

[26]

Rich Hilliard and Timothy B. Rice. Expressiveness in architecture description
languages. In Jeff N. Magee and Dewayne E. Perry, editors, Proceedings of the
8rd International Software Architecture Workshop, pages 65—68. ACM Press, 1997.
1 and 2 November 1998, Orlando FL.

C. Hofmeister, R. L. Nord, and D. Soni. Architectural descriptions of software
systems. In D. Garlan, editor, Proceedings of the First International Workshop on
Architectures for Software Systems, pages 127-137, Seattle, WA, 1995. Published
as CMU-CS-TR-95-151.

C. Hofmeister, R. L. Nord, and D. Soni. Describing software architectures with
UML. In Patrick Donohoe, editor, Proceedings of the First Working IFIP Con-
ference on Software Architecture, pages 145-160. Kluwer Academic Publishers,
1999.

IEEE Architecture Working Group. IEEE P1471/D5.0 Information Technology—
Draft Recommended Practice for Architectural Description, August 1999. Avail-
able by request from http://www.pithecanthropus.com/ awg/.

International Organization for Standardization. ISO/IEC 10746 1-4 Open Dis-
tributed Processing — Reference Model — Parts 1—4, July 1995. ITU Recommen-
dation X.901-904.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. Xe-
rox Palo Alto Research Center, 1997.

Philippe B. Kruchten. The 441 view model of architecture. IEEFE Software,
28(11):42-50, November 1995.

David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan,
and Walter Mann. Specification and analysis of system architecture using Rapide.
IEEE Transactions on Software Engineering, 21(4), April 1995.

Nenad Medvidovic and David S. Rosenblum. Assessing the suitability of a stan-
dard design method for modeling software architectures. In Patrick Donohoe,
editor, Proceedings of the First Working IFIP Conference on Software Architec-
ture, pages 161-182. Kluwer Academic Publishers, 1999.

Object Management Group. Unified Modeling Language — Semantics (version
1.1), September 1997. OMG ad/97-08-04.

Object Management Group. Unified Modeling Language — Summary (version 1.1),
September 1997. OMG ad/97-08-03.

Eberhard Rechtin and Mark Maier. The art of systems architecting. CRC Press,
1996.

Mary Shaw and David Garlan. Software Architecture: Perspectives on an emerging
discipline. Prentice Hall, 1996.

D. Soni, R. L. Nord, and C. Hofmeister. Software architecture in industrial ap-
plications. In Proceedings of the 17th International Conference on Software En-
gineering, Seattle, Washington, 1995.

