
Views and Viewpoints in Software Systems Architecture∗

Rich Hilliard

Integrated Systems and Internet Solutions, Inc.

Concord, Massachusetts USA

rh@isis2000.com
+1 978 318 0000

Abstract

Although the use of multiple views is a virtual holy
grail of software and systems engineering, its sta-
tus appears less secure in the field known as Soft-
ware Architecture. Yet, practicing architects need
views to manage the inherent complexity of the large,
software-intensive systems they specify and build.
This paper begins with a brief survey of the topic
from its historical origins through current usage and
issues, and ends with an overview of an approach to
treating views as first-class entities within architec-
tural description with respect to their usage in archi-
tectural specification, analysis and evolution.

Keywords: architectural description, multiple
views, viewpoints

1 Introduction

The notion of multiple views has a long history in
software engineering and related fields (such as re-
quirements engineering, data engineering and systems
engineering), where views are introduced to separate
concerns and therefore to control descriptive com-
plexity.

Despite these precursors, their role is less secure in
the field known as Software Architecture. This ap-
pears to be the case for a couple of reasons. First,
there are no coherent foundations for their use in
architecture. Second, some researchers regard their
introduction as problematic because multiple views
introduce problems of view integration and view con-
sistency.

Yet, practicing software systems architects rou-
tinely deploy multiple views in the description of com-
plex systems, albeit on an informal basis. It would

∗Position paper for the First Working IFIP Conference on
Software Architecture (WICSA 1), San Antonio, TX, 22–24
February 1999. It is part of a larger work on architectural
views and viewpoints.

be useful if there were ways to conceptualize multiple
views in a manner that (1) would meet the needs of
practitioners and (2) make the problems of address-
ing them tractable to researchers in architectural de-
scription.

The purpose of this paper is to suggest the begin-
nings of a theory and practice of views suitable for
software systems architecture.

2 A Brief History of Views

Multiple views have a long history in software en-
gineering dating back to at least the 1970s in work
such as Ross’ Structured Analysis (henceforth RSA,
or SADT) [27]. The motivation for multiple views
is separation of concerns. Thus, views were intro-
duced as a construct for managing the complexity of
software engineering artifacts (such as requirements
specifications and design models). In the earliest ap-
proaches, the multiple views of a model were based
upon fixed perspectives or viewpoints – most first-
generation software engineering techniques embodied
functional and data viewpoints.1

By 1980, one sees much traffic in the definition of
various views and movement away from fixed view-
points. See [4] for a cross-disciplinary, representative
survey from that time.

More recently, much work on views and viewpoints
appears in the biennial International Workshop on

Software Specification and Design (IWSSD). Recog-
nition of the importance of these notions is reflected
in the occurrence of a conference, Viewpoints’96, fo-
cused on this topic.

The most recent and widely available incarnation of
multiple viewpoint modeling is the Unified Modeling
Language (UML). The UML defines eight types of
diagrams, where each diagram type has an implicit

1I use the terms “view” and “viewpoint” casually until sec-
tion 4 where I will distinguish and define these terms.

Page 1

Rh


Rh
Current email: r.hilliard@computer.org



viewpoint [23]. The UML also provides extension
mechanisms for allowing users to define additional di-
agram types (and thus, indirectly, new viewpoints).

In Requirements Engineering, there is a significant
trend of work on viewpoints. For a good survey with
a useful bibliography, see [9]. This work is motivated
by the recognition that systems have multiple stake-
holders with varying concerns; a notion reflected in
Ross’ earliest work on Structured Analysis [27].

We conclude this brief survey with an identification
of some issues raised in the use of multiple views.
These are:

1. fixed v. first-class viewpoints

2. constructive v. projective views

3. view integration

Until Ross, viewpoints were regarded as fixed items
– i.e., not first-class entities. In RSA, Ross associated
with each model a model orientation which declared
the purpose, context, and viewpoint of a model. A
model orientation was documented in a textual form.
Although informal, this could be considered a primi-
tive form of an extension mechanism for viewpoints.

Recent work in Requirements Engineering, treats
viewpoints as first-class entities, with associated at-
tributes and operations [22].

The second issue reflects two different stances to-
ward how views are created. Taking the constructive

stance, separate views of a subject or system are in-
dividually constructed. The overall model of the sys-
tem is a synthesis of those individual views. To un-
derstand the whole model is to understand the sum
of the views and their interrelationships. Under the
projective stance, various views of interest are derived
from some overall model of the system of interest.

The third issue, view integration, most usually
arises as a consequence of the constructive stance:
if views are individually developed, they may need
to be reconciled (or, integrated) to insure consistency
and coherence of the overall model.

I return to these issues below, in the context of
architecture.

3 Views in Architecture

Scope. The architectural level of concern for
software-intensive systems is the subject of much in-
terest at present in industry and the research commu-
nity [14]. I use the term software systems architecture

to convey a wide-spectrum interpretation of architec-
ture. This is in contrast with software architecture.
As currently represented in the literature, software

architecture is equated with “high level design” [29]
– a valuable, but narrower, scope than what is dis-
cussed here. The wider interpretation of the term
is motivated by the analogy with traditional (civil,
building) architecture [26].

What’s an Architect to Do? At the architec-
tural level, numerous system stakeholders have vari-
ous concerns for a system. Typical concerns include
system implementability, its development and operat-
ing costs, data management, security, fault-tolerance,
distribution, ease of migration, interoperability, and
maintainability, among others. Some of these clearly
fall into the realm of “high level design” while others
do not, although they are no less critical for the ar-
chitect to decide, record, manage and communicate
to others.

Such concerns ought to be accessible to architec-
tural specification and analysis. Indeed, various views
have appeared in the literature or arisen in practice to
address such concerns; one finds distinct views with
similar or overlapping purposes as well as similarly
named viewpoints with quite different purposes. Con-
sequently, it is difficult to discern what a given view
addresses or when two viewpoints are addressing re-
lated topics. If architecture is to progress as a disci-
pline, it would be desirable to bring some degree of
order to this chaos.

Approaches to Views. There are a number of ex-
isting approaches utilizing multiple views in software
systems architecture. Before outlining a theory in-
tended to encompass this range of practices, it is use-
ful to review some of these approaches for their salient
characteristics.

Meszaros explains an architectural view as: “a way
of looking at an architecture. Each view may have
a different concept of components and relationships”
[19].

Although the notion of view is not defined there,
multiple views appear in one of the earliest papers on
Software Architecture, Perry and Wolf’s classic [24].

Three important views in software architec-
ture are those of processing, data, and con-
nections ... all three views are necessary and
useful at the architectural level.

These views derive from Perry and Wolf’s selec-
tion of what constitute architectural elements; one
key term of their architectural “equation”.2 Perry
and Wolf identify three classes of Elements:

2 SoftwareArchitecture = {Elements, Form, Rationale}

Page 2



processing elements: “those components
that supply the transformation of data el-
ements;”

data elements: “those that contain the in-
formation that is used and transformed;”

connecting elements: those “elements
(which at times may be either processing or
data elements, or both) are the glue that
holds the different pieces of the architecture
together.”

It is unclear whether these elements are intended
to constitute “different concept[s] of components and
relationships” for each view or have independent ex-
istence across views.

Existing approaches to architectural views reflect
a range of choices relative to the issues found at the
end of the previous section.

A number of approaches are based on a predefined
set of fixed views that must be created to conform
to the approach. [30] presents an extensive set of
constructs called columns which appear to correspond
to views. The Reference Model for Open Distributed

Processing defines exactly five viewpoints [15].
Sometimes a set of views is taken to be a starting

point, for example, [10] states an architecture descrip-
tion “should be comprised of alternate views, includ-
ing at least a behavioral/operational view, a static
topological view, and a dataflow view. It is impor-
tant to have formal architectural notation(s) that are
capable of capturing not only these views but also
other views that are concerned with other stakeholder
needs.” [my emphasis]

Kruchten’s 4+1 View Model takes four views as its
starting point [17]. Viewpoint integration is accom-
plished via a “fifth view” which is a set of scenarios
used to validate the other views and their interac-
tions.

The Practical Architecture Method [7] prescribes
no particular views; instead the determination of use-
ful views is part of the architect’s work and is driven
by concerns related to the specific system.

The IEEE Architecture Working Group is devel-
oping a Recommended Practice for Architectural De-

scription [14] to support the range of practices de-
scribed above.

Within Software Architecture, most work has been
centered on structural concerns – to paraphrase
Meszaros, “on a way of looking at an architecture”
in terms of its structural “components and relation-
ships.” – in terms of components such as procedures,
filters, and databases, together with connectors such
as procedure calls, pipes, and shared data [29].

Within Software Architecture, the structural view
is often equated with the architecture of the software
system, as suggested by the following rationale for the
design of the architecture description language Acme
[20]:

[A]n examination of existing ADLs reveals
that there is, in fact, considerable agreement
about the role of structure in architectural
description. ... [V]irtually all ADLs take as
their starting point the need to express an
architectural design as a hierarchical collec-
tion of interacting components. On top of
this structural skeleton different ADLs then
add various kinds of additional information,
such as run-time semantics, code fragments,
protocols of interaction, design rationale, re-
source consumption, topological invariants,
and processor allocations.

Conversely, we might say Software Architecture
has been focused on a single implicit structural view.
Thus, in Shaw and Garlan’s An Introduction to Soft-

ware Architecture [29], the desiderata for architec-
tural description do not mention views at all (in fact,
“views” does not appear in the index)! This implicit
structuralism is also in evidence in surveys of ADLs
such as [5, 18].

For some in Software Architecture, the problems
created by introducing multiple views and their sub-
sequent integration, is sufficiently worrisome as to
lead them away from consideration of full-fledged
multiple views at all. For example:

Complex specifications require structure,
such as different segments for different con-
cerns. However, different concerns also lead
to different notations. ... [T]his leads to
a multiple-view problem: different specifica-
tions describe different, but overlapping is-
sues. [28] [my emphasis]

Researchers have accommodated stakeholders’
needs for views in various ways. The two most com-
mon approaches might be described this way:

1. Treat views as projective (rather than construc-
tive).

2. Decorate a primary representation with at-
tributes pertaining to other concerns (rather
than separate concerns).

I have described the projective stance above. The
second alternative to full, constructive views, I call
the decorative stance. In the decorative stance, a base

Page 3



representation is annotated (or, decorated) with addi-
tional information. Adopting this stance, one needs
something to decorate – within Software Architecture
this base is frequently what I referred to as the struc-

tural view above. As suggested by the Acme quota-
tion above, a consequence of implicit structuralism
is that much current research in Software Architec-
ture is devoted to how, when and where to capture
non-structuralist information within that structural-
ist paradigm.

For example, [2], investigating the composition of
heterogeneous styles, characterizes a style in terms of
“a collection of constraints on the structure, behav-
ior, and resource usage of the components and con-
nectors in a software system.” While each is “viewed”
separately, note the primacy of the structural – the
behavioral view depends on the structural for its vo-
cabulary, as does the resource usage view:

The structural view of a style describes the
components and allowed interconnections
between them. All possible data and control
transfers are explicitly identified. The be-

havioral view places constraints on the types
and order of actions which the components
and connectors may engage in. The resource

usage view places constraints on a variety of
systems integration issues such as network
protocols, CPU type, etc. [my emphasis]

Other recent examples include: Abd-Allah’s work
on reliability [1]; Allen’s dissertation on integrating
behavioral semantics with a structural formalism [3];
and much work on the topic of “dynamic architec-
tures.” In each case, researchers are tackling the anal-
ysis of non-structural properties by adding attributes
to a structural model. While there are often strong
correlates between system characteristics and system
structure, these system characteristics are often bet-
ter specified and analyzed in their own right. I discuss
this in the next section.

4 Practice and Theory of Views

In this section I sketch the beginnings of a theory
of views and viewpoints, applicable to architecture
within the context of practical use. The theory has
evolved from experience with large information sys-
tems for command and control and other domains [7].

I adopt the constructive stance described above.
This stance is the hardest to support, but the mech-
anisms proposed are equally applicable to the projec-
tive or decorative stances.

To motivate the exposition, we set it within a typ-
ical architecture development process – other pro-
cesses (architectural analysis, system migration, sys-
tem reengineering) could also utilize the results. In
this setting, the job of the architect is to understand
client and system stakeholder needs and begin to con-
struct an architectural description (AD) which cap-
tures the key decisions the architecture embodies to
meet those needs. The AD consists of one or more
views.

A view is a description of the system relative
to a set of concerns from a certain viewpoint.

A view generalizes the notion of a model, diagram,
or other form of focused representation. Instead of at-
tempting to say everything about an architecture in
a single model, a view addresses a subset of the con-
cerns for the whole system (architecture). This subset
of concerns may be oriented toward a particular class
of stakeholders (e.g., maintainers, thus a maintenance
view) or toward specific system characteristics which
may be of interest to several types of stakeholders
(e.g., a reliability view for hardware suppliers, data
designers, and software developers) or perhaps from
other considerations or organizing principles.

A view may be characterized as follows:

Purpose: the concerns the view is intended
to address;

Scope: the boundaries of what is in the
view and what is not; and

Elements: the elements which comprise
the view and the relations among them.

Traditional practice, in which an “architecture” is
typically an informal block diagram, is a degenerate
case of this. One way of introducing rigor into this
model is to introduce well-defined languages underly-
ing the elements and their relations. Languages sup-
port stakeholders’ shared discourse. By introducting
language mechanisms such as typing of elements, we
can both improve understandability and provide a ba-
sis for automation support.

In most views, there are non-trivial rules of com-
bination among elements; e.g., joining pipe–pipe, or
filter–filter are ill-formed, whereas filter–pipe–filter is
meaningful. Much of such information is not depen-
dent on the particular architecture being modeled,
but can be reasonably factored out. Such informa-
tion constitutes a viewpoint, which is reusable for any
number of views.

A viewpoint is a way of looking at a system.

Page 4



It is therefore a pattern for making particular
views, just as a programming language is a pattern
for making particular programs. The notions of view
and viewpoint are interrelated as follows:

view : viewpoint :: program : programming language

A viewpoint can be thought of as a domain-specific
language. The purpose of a viewpoint is to codify
a specific set of concepts and relations for talking
about a particular set of concerns. As our knowledge
of architecture increases we might imagine a growing
palette of viewpoints available to the architect.

This notion of viewpoint has much in common with
the ISO/IEC Reference Model for Open Distributed

Processing defines viewpoint this way:

Viewpoint (on a system): a form of abstrac-
tion achieved using a selected set of archi-
tectural concepts and structuring rules, in
order to focus on particular concerns within
a system. [15]

There are various ways one could characterize view-
points, suggested by work such as [6, 22]; I will char-
acterize a viewpoint in terms of its syntax, semantics
and usage (or, pragmatics) as follows:

Name: an identifying name or phrase by
which the viewpoint is known;

Addressable Concerns: the range of con-
cerns it can address; its domain of discourse;

Viewpoint language: the elements or vo-
cabulary which can occur in a view to which
the viewpoint applies;

Construction rules: the rules by which
elements are selected and combined within
a view (i.e., its syntactic or well-formedness
rules);

Interpretive rules: the rules for interpre-
tation of (well-formed) views conforming to
the viewpoint;

Analytic techniques: any methods or
procedures associated with the viewpoint by
which resulting views may be analyzed.

The viewpoint language may be an informal or for-
mal language. By adding interpretive rules, one ob-
tains a modeling language.3 The role of the rules
of interpretation is to establish a correspondance be-
tween well-formed combinations of elements and the

3For our purposes, M is a model of a subject, S, if M can be
used to answer questions about S. This definition dates back
to Ross and Minsky, circa 1971.

subject of interest. Analytic techniques give us ways
to operate on descriptions to yield answers to further
questions about a subject. These procedures may be
informal, rigorous, formal, automated, deductive, etc.
Most analytical techniques will be lifted from a par-
ticular, existing notation or language, although noth-
ing precludes defining them at this level. By adding
these operations on descriptions, one obtains what
Curry called a formal system [6].

This model may be summarized as shown in the
figure below (rendered in UML).

Properties of Views. A view is an useful level at
which to impose methodological principles about a
model. E.g., views might be regarded as individual
artifacts of the architect, upon which to exercise ver-
sion and configuration management.

One interesting principle (from traditional archi-
tecture) is the wholeness principle: a view ought to
address the whole system with respect to the con-
cerns of interest. This principle is nearly implicit in
traditional architecture, perhaps because it follows
from our intuitions about space. E.g., an elevation
drawing does not omit every other floor. In software
systems architecture, this principle provides a rudi-
mentary bound on completeness.

Despite the large number of imaginable views, ex-
perience and intuition suggest a fairly smaller set of
recurring concerns, such as those pertaining to sys-
tem structure, behavior, etc. I would not suggest that
this set is closed, or even finite: new implementation
technologies, and new design paradigms create new
concerns (recent ones include multiple threads; event-
based systems led to event and behavioral views; mo-
bile processes, ...). Sometimes new paradigms “shut
down” traditional ways of viewing a system. The
object-oriented paradigm appears to have had this ef-
fect on previously separate functional and data views.

Example: Defining A Structural Viewpoint
The structural viewpoint has developed in the field
of Software Architecture over the past six years and
is in widespread use. This viewpoint is often im-
plicit in contemporary Architecture Description Lan-
guages. It is implicit in the earliest papers on Soft-
ware Architecture such as [24] and Garlan and Shaw
[11]:

The framework we will adopt is to treat an
architecture of a specific system as a col-
lection of computational components – or
simply components – together with a de-
scription of the interactions between these
components – the connectors. Graphically

Page 5



Figure 1: ADF’97 Metamodel for Architectural Description

speaking, this leads to a view of an abstract
architectural description as a graph in which
the nodes represent the components and the
arcs represent the connectors. As we will
see, connectors can represent interactions as
varied as procedure call, event broadcast,
database queries, and pipes.
An architectural style, then, defines a fam-
ily of such systems in terms of a pattern of
structural organization. More specifically,
an architectural style determines the vocab-
ulary of components and connectors that
can be used in instances of that style, to-
gether with a set of constraints on how they
can be combined. These can include topo-
logical constraints on architectural descrip-
tions (e.g., no cycles). Other constraints –
say, having to do with execution semantics
– might also be part of the style definition.

The structural viewpoint is characterized by the
following data:

Viewpoint Name: Structural
Purpose: Define the computational ele-
ments of a system and the organization of
those elements.
Concerns: What software elements com-
prise the system? What are their interfaces?
How do they interconnect? What are the
mechanisms for interconnection?

Viewpoint Language: The structural
viewpoint depends on the following entities:
components (individual units of computa-
tion); components have ports (interfaces);
connectors (represent interconnections be-
tween components for communication and
coordination); and connectors have roles
(where they attach to components). Com-
ponents and connectors may be typed. All
of the previously listed entities may have at-
tributes of varying kinds.

Analytic Techniques: The structural
viewpoint supports the following kinds of
checking: attachment (are connectors prop-
erly connecting components?); type consis-
tency (are the types of components and con-
nectors used consistent with their attach-
ments and any style or other constraints?);
and reachability. Most ADLs which sup-
port the structural viewpoint provide some
kind of syntax checking of the entities above
(component to component, etc.).

A calculus of views. Insofar as views are a con-
struct for management of complexity of descriptions,
much as modules, packages or subsystems are for soft-
ware systems, we might aspire to the following:

views : architectural description :: modules : system

Each view is constructed as a self-contained arti-
fact, semi-independent of the others, although inter-

Page 6



related. Views are then composed or integrated to
yield the overall architectural description; each dis-
tinct because their purposes differ – after all that was
the whole point of separation of concerns – but over-
lapping because they share a common subject, the
system.

To achieve this style of view construction, one
needs some way to relate views on the element level.
The approach we have taken is to define a basic set
of primitives upon which to construct or describe
any view. These primitive were documented as a
part of the metamodel for the Architecture Descrip-
tion Framework (ADF). The metamodel represents
a theory of what constitutes core architectural syn-
tax and semantics. Each class represents a descrip-
tive construct. Associated with each class are at-
tributes which represent information associated with
those constructs.

A view is constructed out of three primitive types of
elements: components, connections, and constraints.
The use of components and connections generalizes
current usage in Software Architecture. It also builds
upon the intuition embodied in a graph-like structure
of nodes (components), edges (connections), with the
addition of constraints.

The element level gives us a way to revisit the no-
tion of a viewpoint as the reusable portion of a view.
If we can characterize a viewpoint in a suitably ab-
stract manner, we can use it as the basis for “plugging
in” multiple viewpoint languages. A good example
of this is the Structural Viewpoint suggested above.
Many existing ADLs are “homomorphic” to this view-
point, therefore usable for the Structural Viewpoint.

The suggested framework provides a way to for-
mulate various problems in architectural description.
One of these is a unified approach to model checking.
Our definitions of view and viewpoint support various
kinds of checking. E.g.,

• Is the purpose of the view consistent, or achiev-
able given the addressable concerns?

• Does a view conform to the viewpoint language?

• If we have a well-formed view, then we may use-
fully apply analytic methods to it. We may use
analytic techniques in various ways:

1. Calculate properties of the architecture
based on the AD. E.g., [31] provide a queu-
ing technique for the structural viewpoint.
Many techniques will arise in this way –
“lifted” from existing engineering practices
and applied to ADs;

2. Synthesize a design from the AD, or trans-
form an AD to another form, e.g., to refine
an AD into a possible realization [21];

3. Translate, link, or combine one or more
views with new information to yield a new
derived view.

Integrating multiple views is a special case of item
3 above, of particular interest. As noted, once one
has multiple views, arising from semi-independent
sources, one has to deal with their consistency. The
viewpoints literature identifies several forms of incon-
sistency [8, 22]:

Confusion – The same concept appears with
different names in distinct views.

Conflation – Two different concepts appear
with the same names in distinct views.

Overlap – One view may violate the con-
straints of another.

To achieve a consistent set of descriptions, one
must model the relations between elements of var-
ious views. Many possible relations exist and are
usefully applied to architectural views. The calcu-
lus outlined above provides a basis for doing that; by
introducing constructs for referring to individual ele-
ments, their types, and the viewpoints they “inhabit”
one can specify a rich set of relations at the instance
level, in terms of their types, or at the viewpoint level.
Recent work in requirements traceability suggests an
implementation approach [25, 12].

5 Conclusion

I have sketched the beginnings of a theory of views
and their viewpoints, applicable to practical ‘archi-
tecting’ and, hopefully, suggesting a basis for further
research.

The theory is based on making views first-class en-
tities which are governed by type-like entities called
viewpoints. Viewpoints are characterized in terms of
a set of properties pertaining to their application, a
viewpoint language and techniques for manipulating
inscriptions in that language.

The theory sketched above was prototyped in
the Architecture Description Framework (ADF) [13].
The ADF forms the basis for current work on the
Architect’s Studio, including a XML-based doc-
ument type description (DTD) for Architectural De-
scriptions.

The work closest in spirit to this concept of views
is recent work on aspect-oriented programming ; which

Page 7



Figure 2: View Elements

begins with the observation that there are “many
programming problems for which neither procedural
nor object-oriented programming techniques are suffi-
cient to clearly capture some of the important design
decisions the program must implement.” These deci-
sions are difficult to capture because “they cross-cut

the system’s basic functionality.” Consequently, “the
implementation of those design decisions [is] scattered
throughout the code, resulting in ‘tangled’ code that
is excessively difficult to develop and maintain.” “[A]
property [of a system] that must be implemented is ...
an aspect , if it can not be cleanly encapsulated ... As-
pects tend not to be units of the system’s functional
decomposition, but rather to be properties that af-
fect the performance or semantics of the components
in systemic ways.” [Quotations from [16].]

Aspects might be thought of as lightweight view-
points for programming.

Acknowledgments. I thank the members of the
IEEE Architecture Working Group for discussions
of views and viewpoints: the ideas here are very
much influenced by those discussions. In addition,
I thank the participants in the weekly Architecture
Firm meetings at MITRE (February 1996 – May
1998) for their contributions (R. Baldwin, R. Eachus,
W. Farmer, M. Kokar, T. Rice, and V. Sovinsky).

References

[1] Ahmed Abd-Allah. Extending reliability block
diagrams to software architectures. Techni-
cal Report USC–CSE–97–501, Center for Soft-
ware Engineering, Computer Science Depart-
ment, University of Southern California, 1997.

[2] Ahmed Abd-Allah and Barry W. Boehm. Rea-
soning about the composition of heterogeneous
architectures. Technical Report USC–CSE–95–
503, University of Southern California, 1995.

[3] Robert J. Allen. A Formal Approach to Soft-

ware Architecture. PhD thesis, Carnegie Mellon
University, May 1997. Distributed as CMU-CS-
97-144.

[4] M. L. Brodie and S. L. Zilles, editors. Proceedings

of the Workshop on data abstraction, databases,

and conceptual modeling, Published as special is-
sue of SIGPLAN Notices 16(1) 1980.

[5] Paul C. Clements. A survey of architecture de-
scription languages. In Proceedings of the Eighth

International Workshop on Software Specifica-

tion and Design. IEEE Computer Society Press,
1996.

[6] Haskell B. Curry. A theory of formal decidability.
Notre Dame, 1966.

[7] David E. Emery, Rich Hilliard, and Timothy B.
Rice. Experiences applying a practical archi-

Page 8



tectural method. In Alfred Strohmeier, editor,
Reliable Software Technologies–Ada-Europe ’96,
number 1088 in Lecture Notes in Computer Sci-
ence. Springer, 1996.

[8] Gregor Engels, Reiko Heckel, Gabi Taentzer, and
Hartmut Ehrig. A view-oriented approach to sys-
tem modeling based on graph transformations.
In Mehdi Jazayeri and Helmut Schauer, editors,
6th European Software Engineering Conference

(ESEC/FSE’97). Springer, 1997.

[9] A. Finkelstein and I Sommerville. The view-
points FAQ. Software Engineering Jour-

nal, 11(1):2–4, 1996. Also available from
ftp://cs.ucl.ac.uk/acwf/papers/viewfaq.ps.gz.

[10] Cristina Gacek, Ahmed Abd-Allah, Bradford
Clark, and Barry W. Boehm. On the definition
of software system architecture. In Proceedings

of the First International Workshop on Architec-

tures for Software Systems, Seattle, WA, 1995.

[11] David Garlan and Mary Shaw. An introduction
to software architecture. In V. Ambriola and
G. Tortora, editors, Advances in Software En-

gineering and Knowledge Engineering, pages 1–
39, Singapore, 1993. World Scientific Publishing
Company.

[12] O. Gotel and A. Finkelstein. Extending re-
quirements traceability: Lessons learned from
an industrial case study. In IEEE International

Symposium on Requirements Engineering, Los
Alamitos, California, January 1997. IEEE Com-
puter Society Press.

[13] Rich Hilliard. Representing software systems
architectures or, components, connections and
(why not?) first-class constraints and views. In
Joint Proceedings of the SIGSOFT ’96 Work-

shops, 1996.

[14] IEEE Architecture Working Group. Information

Technology—Recommended Practice for Archi-

tectural Description (Draft 4.1), December 1998.

[15] International Organization for Standardization.
ISO/IEC 10746 1–4 Open Distributed Processing

– Reference Model – Parts 1–4, July 1995. ITU
Recommendation X.901–904.

[16] Gregor Kiczales, John Lamping, Anurag Mend-
hekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented pro-
gramming. Xerox Palo Alto Research Center,
1997.

[17] Philippe B. Kruchten. The 4+1 view model
of architecture. IEEE Software, 28(11):42–50,
November 1995.

[18] Nenad Medvidovic. A classification and compari-
son framework for software architecture descrip-
tion languages. Technical Report UCI-ICS-97-
02, Department of Information and Computer
Science, University of California, Irvine, Febru-
ary 1997.

[19] Gerald Meszaros. Software architecture in BNR.
In Proceedings of the First International Work-

shop on Architectures for Software Systems,
1995.

[20] R. Monroe, D. Garlan, and D. Wile. Acme
StrawManual. Available from the ACME Web
site at CMU.

[21] Mark Moriconi and Xiaolei Qian. Correctness
and composition of software architectures. In
Proceedings of ACM SIGSOFT ’94: Symposium

on Foundations of Software Engineering, New
Orleans, LA, December 1994.

[22] B. Nuseibeh, J. Kramer, and A. Finkelstein. A
framework for expressing the relationships be-
tween multiple views in requirements specifica-
tion. IEEE Transactions on Software Engineer-

ing, 20(10):760–773, 1994.

[23] Object Management Group. Unified Model-

ing Language – Notation Guide (version 1.1),
September 1997. OMG ad/97–08–05.

[24] Dewayne E. Perry and Alexander L. Wolf. Foun-
dations for the study of software architecture.
ACM SIGSOFT Sofware Engineering Notes,
17(4), October 1992.

[25] Francis A. C. Pinheiro and Joseph A. Goguen.
An object-oriented tool for tracing requirements.
IEEE Software, pages 52–64, March 1996.

[26] Eberhard Rechtin and Mark Maier. The art of

systems architecting. CRC Press, 1996.

[27] Douglas T. Ross. Structured Analysis (SA):
a language for communicating ideas. IEEE

Transactions on Software Engineering, SE-3(1),
January 1977. Also appears in Programming

methodology : a collection of articles by mem-

bers of IFIP WG2.3 edited by David Gries. New
York : Springer-Verlag, 1978.

Page 9



[28] Mary Shaw and David Garlan. Formulations and
formalisms in software architecture. In Jan van
Leeuwen, editor, Computer Science Today: Re-

cent Trends and Development, volume 1000 of
Lecture Notes in Computer Science, pages 307–
323. Springer-Verlag, 1996.

[29] Mary Shaw and David Garlan. Software Archi-

tecture: Perspectives on an emerging discipline.
Prentice Hall, 1996.

[30] J. F. Sowa and J. A. Zachman. Extending
and formalising the framework for information
systems architecture. IBM Systems Journal,
31(3):590–616, 1992.

[31] Bridget Spitznagel and David Garlan.
Architecture-based performance analysis.
In Yi Deng and Mark Gerken, editors, Pro-

ceedings of the 10th International Conference

on Software Engineering and Knowledge En-

gineering, pages 146–151. Knowledge Systems
Institute, 1998.

Page 10


	Introduction
	A Brief History of Views
	Views in Architecture
	Practice and Theory of Views
	Conclusion

