
Views as Modules∗

Rich Hilliard†

February 21, 2000

Abstract

Views are a much talked about, frequently misunderstood, notion in current software architecture. Views
are used to separate concerns and increase understandability of architectural descriptions, but there is a tradeoff
between increased understandability and the need to integrate multiple views for consistency. This paper
explores applying the metaphorViews as modulesto this problem.

1 Introduction

Views are one of the most talked about, least understood notions in current work on software architecture. Aview

is a model which allows a stakeholder to address specific concerns about a system of interest. For a given system,

there are typically multiple stakeholders, therefore multiple views are often useful. For example, anarchitectural

descriptiontypically consists of a set of views to address the architectural concerns of a system.1

One of the tensions in the practice of architectural description is the tension between (i) expressivity of

multiple views and (ii) the efficiency of establishing and maintaining consistency among those views. Branch

(i) has been well explored: views are an essential construct for expression of architectural descriptions [7, 8, 9].

Branch (ii) – insuring consistency or integration of views – is an area of active investigation (see for example

[3, 6]).

In this paper, I explore one approach to addressing this by using the metaphora view is a module, or the

analogy: views : architectural description :: modules : program. Read this as:Views are to architectural

descriptions as modules are to programs.The notion ofmodulehas been around since the earliest days of

software engineering. Modules have these characteristics: (i) they facilitate separation of concerns; (ii) they

promote encapsulation; and (iii) module integration can defined in terms of modules’ interfaces. These notions

date back at least to Parnas [10].

The basic goal of modularization in programs and designs is separation of concerns. To the extent one can do

this independently of other modules, each module hides or encapsulates one or more concerns that it addresses.

The analogy embodies these ideas: that views, like modules, address separate concerns; that to the extent

that views can be non-interfering, those views “encapsulate” concerns; and that if we had some notion of “view

interface,” it might be meaningful/useful to talk about view integration via interfaces.
∗Submission to the Fourth International Software Architecture Workshop (ISAW–4), 4 and 5 June 2000, Limerick, Ireland
†Integrated Systems and Internet Solutions, Inc., 150 Baker Avenue Extension, Concord, Massachusetts 01742 USA,

email: rh@isis2000.com,voice:+1 978 318 0000
1Views are also of interest in other parts of software engineering from requirements engineering through software design. Although

my interest is the use of views for architectural description, very little here is limited in applicability to architecture.

1

This suggests a concept of operations wherein the architect develops individual views of a system, relatively

separately of other views, and then has mechanisms for integrating, or composing, them.

The remainder of the paper suggests one realization of these ideas.

Concepts. This discussion is founded upon the conceptual framework of the draft IEEERecommended Practice

on Architectural Description[7]. In IEEE P1471, aview is a particular model of a system, addressing a well-

defined set of concerns. Every view is governed by aviewpoint. For our present purposes, the viewpoint can be

thought of the “type” of the view. Like a type, it defines a predicate on the well-formedness of a view. In P1471,

there is a way todeclare(define and document) viewpoints prior to their use in constructing particular views.

A viewpoint declaration specifies: concerns to be addressed by the view; the modeling vocabulary or viewpoint

language to be used in its representation; and any associated analytic techniques (ATs) or methods which can be

applied to the resulting representation.

2 Elaboration of the Metaphor

In this section we pursue the metaphor suggested above within the framework outlined.

Checking. Just as we unit test modules before we expend time and resources trying to integrate them, we

would like to be able to maximize the stand-alone checking of views prior to attempting to integrate them into a

complete architectural description. This is facilitated by the notion ofviewpointintroduced above, as follows. A

view is well-formedif (i) it addresses the concerns of its governing viewpoint; (ii) it conforms to the viewpoint

language of its governing viewpoint; and, (iii) any applicable ATs have been applied. If the view is well-formed,

then it is a candidate for integration.

Encapsulation. The notion of encapsulation in programming and design is based on a luxury of linguistic

expression we do not necessarily have access to in generalized models such as views. In design, we encapsulate

features like data structure, state, algorithm. Weexportfeatures like invocation protocol, possible exceptions, etc.

Are there principles of what makes sense to encapsulate/export for generalized models such as views? Consider

a reliability view of a system. It makes decisions about many aspects of the system (processing, data structures,

communications, error handling) to address a set of reliability concerns. Potentially, each of these aspects may

impact other views. Is there anything to encapsulate? It seems at best we encapsulate by omission – anything not

explicitly exported is encapsulated. Therefore, the interfaces of a view must be negotiated with other views, just

as module interfaces are negotiated during system development.

To the extent that one view is independent of other views within an architectural description, that view

encapsulatescertain decisions. That is, it should not be affected by changes to other views.

Integration. As noted above, one of the tensions in using multiple views is inconsistencies or mismatches.

Egyed and Gacek write: “Mismatches often occur because the subsystems have different characteristics for some

particular features.” [2]

To the extent that we can minimize the overlap of features dealt with in different views, we can minimize

mismatches. There are two ways to do this: (1) attempt to make views orthogonal; (2) encapsulate decisions such

2

that they do not effect other views. By introducing the notion of a view’s interface, we can potentially limit the

computational overhead of calculating such mismatches.

In fact, we mightdefinethe interface of a view in this way – it is only those elements which participate

in constraints with other views. If we can articulate these, then we can check them, and build the means to

enforce them. Ideally, one would like to exploit “type information” – the viewpoint declaration – as the basis

for interfaces. Unfortunately, this doesn’t get us everything. Sometimes there are instance-level constraints that

must be taken into account. In previous work, the following levels have been encountered:

• Viewpoint-Level: ∀p : Process, ∃n : Node such thatp link c (all processes must be assigned to run on a

node).

• View-Level: everything in viewV must be mapped to something in viewW.

• Element-level: p123 link N839 (processp123 is assigned to run on nodeN839).

The following is a very compressed example (due to length limitations) of what I have in mind.

2.1 Example of View Integration using Modules

Consider an architectural description for an web-based, “ecommerce” system consisting of three views – devel-

oped using three viewpoints defined as follows:

Capability Viewpoint. Concerns:What is the structural organization of the system? How do its components

interact?

Viewpoint Language:TheCapability Viewpoint capturescomponents, connectorsand theirdependencies;

and theinterfaces of those components and connectors (sometimes called ports and roles, respectively). This

viewpoint is widely studied in the software architecture literature (although under that name). ACME (CMU, ISI)

is a cannonical implementation of theCapability Viewpoint.

Commerce Viewpoint. Concerns:How does the system enable commercial activities? What business models

does it support? What transactions? What services are provided? Who participates in transactions, and what are

their roles? How does one interact with system to conduct business?

Viewpoint Language:The primary elements of theCommerce Viewpoint areactors (participants in ex-

changes such as buyers, sellers, customers, intermediaries);values(resources such as products, services, money);

andvalue exchanges(i.e., transactions of value among actors). These elements are inspired by [5]. A notation

like UML collaboration diagrams could be appropriated to represent models in this viewpoint.

Trust Viewpoint. Concerns:What security and privacy principles are enforced? How are they implemented?

Viewpoint language:The elements of theSecurity Viewpoint include objects (the resources being pro-

tected),subjects(entities which act on objects),policies (rules by which subjects behave, relative to objects),

andtrust domains (ensembles of subjects and objects which interact at the same level of trust).

3

Figure 1: View Integration using Modules

View Integration.

“... structuring a large collection of modules to form a ‘system’ is an essentially distinct and

different intellectual activity from that of constructing the individual modules” F. DeRemer and H.

H. Kron. [1]

Figure 1 depicts the architectural description in terms of three views, their interfaces and some dependencies

between them. (Other relations, such as between theTrust andCommerce view are not discussed due to space

limitations.) There are two kinds of interfaces: aprovides interface exports viewpoint elements to be used by

other views. Arequires interface identifies formal parameters of the view which must be supplied by another

view. TheCapability View provides a set of components, connectors, and interfaces. TheCommerce View

requires that actors and values be instantiated from outside the view.

An interface of either kind may have aninterface theory(cf. Goguen’s requirement theories). For arequires

interface, the interface theory states conditions on what may be used to instantiate the interface. For aprovides

interface, the interface theory states conditions on the ways the exported elements may be used.

Here I give a few examples (in informal text) of interface theories:

• TheTrust View partitions classes into subjects and objects. Any operations owned by a component instan-

tiating a subject or object must be compatible with its trust role.

• TheTrust View partitions components into trust domains. The components and connectors used to instan-

tiate a domain must be accessible (navigable) to one another.

• Operations on components instantiating subjects within theTrust View must not violate the specified levels

of trust.

4

3 Conclusion

Use of multiple views in architectural description, and in other branches of software engineering, suffers the

conflicting tensions of expressivity and consistency. I have outlined an approach to dealing with the latter, using

the metaphor,views as modules, wherein views are separately constructed to address stakeholders’ concerns, and

then integrated, to eliminate mismatches and inconsistency, by defining a view’s interfaces.

Egyed and Gacek argue for the similarity of view integration and component integration, relative to detecting

feature mismatch [2]. The present position paper makes the further claim, that by introducing view interface we

can further relate the two notions and reduce the complexity of view integration.

Fradet, Le Ḿetayer and Ṕerin demonstrate an approach to consistency checking of multiple view architectural

descriptions based on treating views as typed graphs, annotated with constraints. They present a constraint-

checking algorithm for checking consistency [4].

I wish to thank Alexander Egyed (USC) for helpful comments on an earlier version of this position paper.

References

[1] F. DeRemer and H. H. Kron. Programming-in-the-large versus programming-in-the-small.IEEE Transac-
tions on Software Engineering, SE-2:80–86, June 1976.

[2] A. Egyed and C. Gacek. Automatically detecting mismatches during component-based and model-based
development. InProceedings of the 14th IEEE International Conference on Automated Software Engineer-
ing, pages 191–198, Cocoa Beach, Florida, October 1999.

[3] Alexander Egyed. Automatically detecting modeling mismatches between heterogeneous views. Submitted
to 22nd International Conference on Software Engineering, Limerick, Ireland 2000.

[4] Pascal Fradet, Daniel Le Ḿetayer, and Michäel Ṕerin. Consistency checking for multiple view software
architectures. InProceedings ESEC/FSE’99, 1999.

[5] J. Gordijn and H van Vliet. On the interaction between business models and software architecture in
electronic commerce. Case study presented at ESEC/FSE’99.

[6] Rich Hilliard. Views and viewpoints in software systems architecture. Position paper from theFirst Working
IFIP Conference on Software Architecture, San Antonio, 1999.

[7] IEEE Architecture Working Group.IEEE P1471/D5.2 Draft Recommended Practice for Architectural De-
scription, December 1999.

[8] International Organization for Standardization.ISO/IEC 10746 1–4 Open Distributed Processing—
Reference Model (Parts 1–4), July 1995. ITU Recommendation X.901–904.

[9] Philippe B. Kruchten. The 4+1 view model of architecture.IEEE Software, 28(11):42–50, November 1995.

[10] D. L. Parnas. On the criteria to be used in decomposing systems into modules.CACM, 15:1053–58,
December 1972.

5

	Introduction
	Elaboration of the Metaphor
	Example of View Integration using Modules

	Conclusion

