
20	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

focus

maintenance, and operation in relation to available
resources; and, of course, the intended properties
of the system itself. Taken together, these diverse
interests are a system’s stakeholder concerns. But
what is a stakeholder concern? ISO/IEC 42010
defi nes it this way: “A stakeholder concern is any
interest in a system relevant to one or more of its
stakeholders.”

An Important Separation
The ISO/IEC 42010 standard further observes
that a concern can “pertain to any infl uence on a
system in its environment including: developmen-
tal, technological, business, operational, organiza-
tional, political, regulatory, or social infl uences.”
Therefore, stakeholder concerns cover any and all
the things the architect must care about in envi-
sioning the system, meeting its requirements, over-
seeing its development, and certifying it for use.
The notion of concern derives from the principle
of “separation of concerns,” which dates back to

the early history of software engineering. (See the
sidebar “A Brief History of Concerns” for more
background.) The idea is that any system should
be organized (“decomposed,” in common par-
lance) in such a manner that each of its elements
frames specifi c concerns. This principle gives us
a way to manage system complexity by breaking
the overall system challenge into well-defi ned—
ideally, loosely coupled—sub-problems.

Stakeholder concerns articulate the dimen-
sions of what the architect must consider relevant
to a software system. These usually result in spe-
cifi c requirements, design constraints, decisions,
and priorities. Software architects must identify
and manage a multitude of architectural concerns
to devise a successful architecture; Figure 1 lists
some examples of the range of concerns an archi-
tect might confront.

Within software architecture, the principle of
separation of concerns has led to the use of mul-
tiple architecture views to model and defi ne ar-

I t has long been recognized that one of the key benefi ts of architecting our sys-
tems is managing their complexity. This complexity arises from many fac-
tors: the needs and constraints of the multitude of system stakeholders (includ-
ing users, owners, future operators, and the current development team); the

political, social, and other factors from the environment in which the system is em-
bedded; the realities and constraints of the system’s development, implementation,

Patricia Lago, VU University Amsterdam

Paris Avgeriou, University of Groningen, the Netherlands

Rich Hilliard, Freelance Software Architect

Software
Architecture:
Framing Stakeholders’
Concerns

gue s t e d i t or s ’ i n t r o duc t i on

20 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

	 November/December 2010 I E E E S O F T W A R E � 21

chitectures. Each view is chosen to frame certain
stakeholder concerns and depict how the system
will address those concerns. The use of multiple
views in architecture has been popularized in
Philippe Kruchten’s 4+1 model and many oth-
ers, and is codified in IEEE Standard 1471-2000;
Table 1 lists a few such approaches. Architec-
ture frameworks such as ISO Reference Model
of Open Distributed Processing (RM-ODP), the
Open Group Architecture Framework (TOGAF),
the US Department of Defense Architecture
Framework (DODAF), and the UK Ministry of
Defence Architecture Framework (MODAF) also
frequently organize their guidance into multiple

viewpoints (although not always using that term)
to frame specific stakeholder concerns.

Deconstructing
“Nonfunctional Requirements”
Functionality—what a system does—is perhaps the
best-understood concern. What capabilities must
the system provide? What services does the system
perform? Use cases and user stories are about de-
livering functionality to a system’s users. However,
architects have realized that functional require-
ments are often not the hard part; the hard parts
are usually everything else and frequently lumped
together as “nonfunctional requirements” (NFRs).

Edsger Dijkstra, computer scientist and software engineering
pioneer, seems to have originated the phrase “separation of
concerns,” as it has come to be used in software engineering,
in 1974:1

Let me try to explain to you, what to my taste is charac-
teristic for all intelligent thinking. It is, that one is willing
to study in depth an aspect of one’s subject matter in
isolation for the sake of its own consistency, all the time
knowing that one is occupying oneself only with one of
the aspects. We know that a program must be correct
and we can study it from that viewpoint only; we also
know that it should be efficient and we can study its effi-
ciency on another day, so to speak. In another mood we
may ask ourselves whether, and if so: why, the program
is desirable. But nothing is gained—on the contrary!—by
tackling these various aspects simultaneously. It is what
I sometimes have called “the separation of concerns”,
which, even if not perfectly possible, is yet the only avail-
able technique for effective ordering of one’s thoughts,
that I know of. This is what I mean by “focusing one’s
attention upon some aspect”: it does not mean ignoring
the other aspects, it is just doing justice to the fact that
from this aspect’s point of view, the other is irrelevant. It
is being one- and multiple-track minded simultaneously.

Programming techniques such as David Parnas’ informa-
tion hiding2 can be understood as an application of the prin-
ciple of separation of concerns to guide the modularization of
programs. Information hiding, a foundation of both struc-
tured design and object-oriented design, advocates the idea
of secrets, by which design and implementation decisions are
hidden in one module from the rest of a program. Since then,
separation of concerns has been a dominant idea in soft-
ware engineering, embodied in most, if not all, methods and
processes.

In formulating aspect-oriented programming, Gregor

Kiczales and colleagues at Xerox PARC observed that many
key properties of programs weren’t well served by top-down,
structured programming, or object-oriented paradigms.3 This
work arose out of studies of open implementation—making
explicit key parameters of programs, systems, and applica-
tion frameworks so that programmers could adjust them in a
safe, systematic fashion. Aspect-oriented programming was
based on the idea that while functional concerns were well
served by existing modularization techniques (whether pro-
cedural or object-oriented), other concerns such as memory
allocation, synchronization, persistence management, and
failure handling “cross-cut” these functional modules. Kiczales
and colleagues called these aspects, and developed ways to
specify and implement concerns by weaving them together
with functional modules. “Aspects tend not to be units of the
system’s functional decomposition, but rather to be properties
that affect the performance or semantics of the components
in systemic ways.”3 In the present context, we might say an
aspect names and then implements a cross-
cutting programming concern.

Aspect-oriented programming has become a valuable
metaphor outside of programming as well, with work in
aspect-oriented design, requirements, and even aspects in
software architecture. This work has been useful in getting
software engineers, designers, and architects to consider
the importance of stakeholder concerns as first-class entities
throughout the system life cycle.4

References
	 1.	 E.W. Dijkstra, “On the Role of Scientific Thought,” Springer-Verlag, 1974;

www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html.
	 2.	 D. Parnas, “On the Criteria to Be Used in Decomposing Systems into

Modules,” Comm. ACM, vol. 15, no. 12, 1972, pp. 1053–1058.
	 3.	 G. Kiczales et al., “Aspect-Oriented Programming,” Proc. European Conf.

Object-Oriented Programming (ECOOP), LNCS 1241, Springer-Verlag,
1997, pp. 220–242.

	 4.	 S.M. Sutton Jr. and I. Rouvellou, “Concern Modeling for Aspect-Oriented
Software Development,” Aspect-Oriented Software Development, R.E.
Filman et al., eds. Addison-Wesley, 2004, pp. 479–505.

A Brief History of Concerns

22	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

The term is troublesome in two ways: first,
“nonfunctional” bundles together many things
that are otherwise unrelated to one another. The
term implies, mistakenly, commonality to “every-
thing else”; that the architect simply has to spend
some time figuring out the NFRs for a system once
(typically after) its functionality is under control.
However, there’s no reason to assume that such
diverse concerns as design-time modifiability, run-
time performance, product time-to-market, and
architectural consistency are all amenable to the
same treatment. Second, discussions of so-called
NFRs often involve much more than stated re-
quirements: stakeholders have preferences, goals,
and needs the architect must discover. For exam-
ple, consider latency—in a real-time audio proces-
sor for musicians in live performance situations,
reducing latency to milliseconds will be a require-
ment, whereas latency in an interplanetary com-
munications system is a design constraint likely
to be on the order of minutes or longer. In addi-
tion, there has recently been a shift from viewing
architecture as only structure to a broader view of
architectural knowledge that emphasizes the treat-
ment of architectural design decisions as first-class
entities.1 From this perspective, there’s no funda-
mental distinction between architectural decisions
and architecturally significant requirements: they
only differ by the moment in time they’re identi-
fied, discussed, and taken. Architects are actively
engaged in the delineation and negotiation of these
issues with the client, leading to possible require-
ments and possible designs, while still making
trade-offs between conflicting desires and goals of
diverse stakeholders.

For these reasons, we prefer the term “stake-
holder concerns” to NFRs.

By distinguishing and separating concerns,
we’re better able to give the architect tools for
understanding and managing those critical issues
effectively throughout the life cycle. Languages
such as UML provide notations for express-
ing functionality and structure at varying levels
of detail, but for other types of concerns, other
languages may be needed (see the Point/Coun-
terpoint on page 54). Looking again at Figure
1, how many of these stakeholder concerns can
you associate with a standard notation or com-
mon modeling approach? Alas, many of these
stakeholder concerns present architects with the
greatest challenges, uncertainties, and risks, of-
ten determining project success or failure. It’s for
this reason that NFRs have attracted so much
interest.

Stakeholder concerns fall into several catego-

ries: beyond functionality—what the system is to
do—architects must determine how it will do it.
Functionality constraints are often called system
qualities, or quality attributes, and can be further
categorized, such as by when they come into play,
at design-time or runtime. Beyond the “what” and
“how” of the system itself, the architect is often
concerned with development consequences, such
as, Can we build this? Will this development pro-
cess allow us to deliver the product to market ahead
of competitors? Are there adequate resources avail-
able to build, own, and manage the system as con-
ceived? These meta-systemic concerns even domi-
nate in many cases, as might how the system will
be operated, certified, and even retired.

The architect uses concerns to shape the prob-
lems to be solved, gather relevant requirements,
and design constraints, but still needs to solve
those problems. Rarely is this a single step (for ex-
ample, from recognizing that reliability is a con-
cern to incorporating automated backup into the
solution)—usually some modeling and analysis is
involved. Models are devised, considered, shared,
and then presented to the client and relevant stake-
holders. In line with the principle of separation of
concerns, different models help architects tackle
complexity by dealing with a subset of concerns
at one time and organizing those models into mul-
tiple views. Following the terminology of ISO/IEC
42010, the conventions for each view define an
architecture viewpoint. A viewpoint determines
what types of models, notations, and tools can be
used for a given set of concerns and stakeholder,
together with any associated operations, guid-
ance, and heuristics to aid the architect. Building
on the viewpoint idea, an architecture framework
is a coordinated set of viewpoints—prescribed
modeling resources for a particular community or
application domain’s stakeholder concerns. Simi-
larly, an architecture description language (ADL)
provides resources for framing some set of con-
cerns via one or more notations and often auto-
mated tools.

In This issue
As noted earlier, some stakeholder concerns are
well-served today by available architecture view-
points, frameworks, or ADLs, while others aren’t
expressible with current, off-the-shelf approaches.
Hence the theme of this special issue: exploring the
space of architecting in the face of multiple stake-
holder concerns and looking for solutions that help
the architect in that space.

The articles in this issue all demonstrate tech-
niques for framing one or more stakeholder con-

accuracy, adaptability,

agility, assurance,

autonomy, behavior,

completeness,

complexity, compliance

to regulation,

comprehensibility,

concurrency,

configurability, control,

cost of ownership,

customer experience,

data accessibility,

deadlock, development

cost, development time,

distribution, customer

loyalty, error handling,

evolvability, feasibility,

flexibility, functionality,

information assurance,

inter-process

communication,

learnability,

maintainability,

maintenance cost,

modifiability,

modularity, openness,

operating cost,

performance,

persistence, privacy,

project stability, quality

of service, reliability,

resource utilization,

return on investment,

reusability, security,

state change, structure,

subsystem integration,

supportability, system

features, training time,

usage

Figure 1. Architecturally
relevant stakeholder
concerns. This list is
adapted from ISO/IEC
FCD 42010.

	 November/December 2010 I E E E S O F T W A R E � 23

cerns. Some have confronted the topic within soft-
ware architecture; others are included because they
offer insights on concerns and viewpoints from
other branches of software engineering.

In “Requirements-Driven Design of Service-
Oriented Interactions,” Ayman Mahfouz, Leonor
Barroca, Robin Laney, and Bashar Nuseibeh ad-
dress a hard problem in the area of service-oriented
architectures—that of architecting interactions
with multiple stakeholders (users). This article
demonstrates a fundamental premise of this spe-
cial issue, of using multiple viewpoints to address
a particular class of concerns within a specific ap-
plication domain.

Juha Savolainen and Tomi Männistö in
“Conflict-Centric Software Architectural Views:
Exposing Trade-Offs in Quality Requirements”
argue that many architectural decisions are driven
by conflicts—between requirements, between
stakeholders, between implementation technolo-
gies—and sketch a means for modeling conflicts in
a viewpoint-based approach.

In “The Business Goals Viewpoint,” Paul Cle-
ments and Len Bass, building on the Software
Engineering Institute’s work on quality attribute
scenarios, apply the ISO/IEC 42010 viewpoint
template to present a viewpoint (notation, asso-
ciation methods) for eliciting and modeling stake-
holders’ business-related goals and constraints,
which often fall very far outside the familiar cat-
egories of functional and quality concerns yet ex-

ert considerable influence over most architectures.
A key tenet of managing diverse stakeholder

concerns through multiple viewpoints is match-
ing suitable presentations of results to each stake-
holder. Alexandru C. Telea, Lucian Voinea, and
Hans Sassenburg, in “Visual Tools for Software
Architecture Understanding: A Stakeholder Per-
spective,” survey the technologies for visualization
of a variety of system concerns.

Finally, in this month’s Point/Counterpoint,
Eoin Woods, David Emery, and Bran Selic pick up
on the theme of the special issue to debate the ef-
ficacy of UML for the wide range of stakeholder
concerns that the architect must confront.

B y paying attention to stakeholders’ con-
cerns and associating modeling tech-
niques with those concerns, the hope

is that architects can tackle diverse architectural
challenges as systematically as functionality is
handled today. The paradigm for functional-
ity is one of “stepwise refinement”: functional-
ity is specified (whether through user stories or
formal requirements), elaborated upon (whether
on paper or through models and prototypes), de-
signed and implemented, verified, and validated.
This approach—which we take for granted in
software engineering—is much more effective
than waiting until delivery to check whether the
system provides all hoped-for services. In con-

Table 1
Viewpoint-based approaches

Approach Viewpoints Notes

4+1 View Model Logical, development, process, and physical,
“plus” scenarios

P.B. Kruchten, “The ‘4+1’ View Model of Architecture,”
IEEE Software, vol. 28, no. 11, 1995, pp. 42–50

ViewPoints Stakeholder-centered; proposes a valuable
scheme for specifying viewpoints

B. Nuseibeh, J. Kramer, and A. Finkelstein, “A Framework
for Expressing the Relationships between Multiple Views in
Requirements Specification,” IEEE Trans. Software Eng., vol. 20,
no. 10, 1994, pp. 760–773

Siemens 4 Views Conceptual, module, execution, and code C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture, Addison-Wesley, 1999

SEI Views & Beyond Component and connector, module, allocation;
viewtypes can be used to construct viewpoints

P. Clements et al., Documenting Software Architectures:
Views and Beyond, Addison-Wesley, 2010

Software Systems
Architecture

Functional, information, concurrency,
development, deployment, operational;
introduces perspectives that address concerns
cross-cutting other viewpoints

N. Rozanski and E. Woods, Software Systems Architecture:
Working With Stakeholders Using Viewpoints and Perspectives,
Addison-Wesley, 2005

IEEE Std 1471-2000 No predefined viewpoints; establishes an
ontology and generic mechanism for defining
particular viewpoints in a uniform manner

Now also ISO/IEC 42010:2010, Systems and Software
Engineering—Architecture Description

24	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

trast, less familiar stakeholder concerns, when
articulated at all, don’t follow this path. More
often, what happens is that an architectural so-
lution is devised in terms of familiar views, and
the solution is then analyzed for its impact on
other concerns after the fact. Although this is
preferable to missing the concern completely,
can we do better? Can we manage critical stake-
holder concerns throughout the process, the way
we have come to manage functionality? That is
our hope for viewpoints. If so, there’s an addi-
tional benefit: viewpoints (and frameworks and
ADLs) are applicable not just once but have po-
tential as reusable assets applied to many systems.
To explore such reuse, we and our colleagues
are working to create a viewpoint repository at
www.iso-architecture.org/viewpoints, in which
we hope the community will participate.

Reference
	 1.	 P. Kruchten, “An Ontology of Architectural

Design Decisions in Software Intensive Sys-
tems,” 2nd Groningen Workshop on Software
Variability, Dec. 2004, pp. 54–61.

About the Authors
Patricia Lago is associate professor at the VU University Amsterdam. Her research in-
terests are in software- and service-oriented architecture, architectural knowledge manage-
ment, and green IT. Lago has a PhD in control and computer engineering from Politecnico di
Torino. She’s a member of the IFIP Working Group 2.10 on software architecture, IEEE, and
the ACM. Contact her at patricia@cs.vu.nl.

Paris Avgeriou is a professor of software engineering at the University of Groningen,
the Netherlands. He has received awards and distinctions for both teaching and research
and has published more than 80 articles in peer-reviewed international journals, conference
proceedings, and books. His research interests concern the area of software architecture,
with a strong emphasis on architecture modeling, knowledge, evolution, and patterns.
Contact him at paris@cs.rug.nl.

Rich Hilliard is a freelance software architect and software engineer. He’s also editor
of ISO/IEC 42010, Systems and Software Engineering—Architecture Description (the
internationalization of the widely used IEEE Std 1471:2000). Hilliard is a member of the
IFIP Working Group 2.10 on software architecture, the IEEE Computer Society, and the Free
Software Foundation, and is an officer of the League for Programming Freedom. Contact
him at r.hilliard@computer.org.

C A L L F O R A R T I C L E S

The Software Business
Publication: July/August 2011
Submission Deadline: 1 December 2010
This special issue on the software business will focus on two
questions:

■■ How do software creation and support organizations ad-
dress an enterprise’s existing business model? That is, how
does a successful enterprise embrace software products and
services to preserve or improve its competitiveness in the
marketplace?

■■ How does an enterprise whose primary focus is producing
software (components, applications, services) find a success-
ful business model for competing in the marketplace?

The answers to these questions inform any analysis of how,
when, why, and whether software should be incorporated in an
enterprise’s products, processes, and services. Any engineered
product, including software, should be viewed from a business
perspective, not just from a technological one.

This special issue will examine established and emerging
business models for building, selling, and incorporating soft-
ware into systems that have been successful in the marketplace.
We also welcome articles about lessons learned from failed busi-
ness models. All segments of the software business (services,
products, consulting) are considered in scope. Contributions
from commercial, academic, and public entities are welcome.

Possible Topics
■■ Proven and emerging business models: software as a prod-
uct, software as a service, mobile applications ecosystems,
open source

■■ The intersection of software engineering with the software
business, and business perspectives on technologies

■■ Outsourcing and offshoring: long-term economic implica-
tions, new models, strategic tradeoffs

■■ Innovation management: approaches and initiatives for
fostering creativity and product differentiation

Questions?
For more information about the focus, contact the guest editors:

■■ John Favaro, INTECS, jfavaro@gmail.com
■■ Shari Lawrence Pfleeger, Dartmouth College,
Shari.L.Pfleeger@dartmouth.edu

For the full call for papers: www.computer.org/software/cfp4

For general author guidelines:
www.computer.org/software/author.htm

For submission details: https://
mc.manuscriptcentral.com/sw-cs

