
A Tutorial on Online Supervised Learning with Applications to

Node Classification in Social Networks

Alexander Rakhlin
University of Pennsylvania

Karthik Sridharan
Cornell University

August 31, 2016

We revisit the elegant observation of T. Cover [Cov65] which, perhaps, is not as well-known to
the broader community as it should be. The first goal of the tutorial is to explain—through the
prism of this elementary result—how to solve certain sequence prediction problems by modeling sets
of solutions rather than the unknown data-generating mechanism. We extend Cover’s observation in
several directions and focus on computational aspects of the proposed algorithms. The applicability
of the methods is illustrated on several examples, including node classification in a network.

The second aim of this tutorial is to demonstrate the following phenomenon: it is possible
to predict as well as a combinatorial “benchmark” for which we have a certain multiplicative
approximation algorithm, even if the exact computation of the benchmark given all the data is
NP-hard. The proposed prediction methods, therefore, circumvent some of the computational
difficulties associated with finding the best model given the data. These difficulties arise rather
quickly when one attempts to develop a probabilistic model for graph-based or other problems with
a combinatorial structure.

1 The basics of bit prediction

Consider the task of predicting an unknown sequence y = (y1, . . . , yn) of ±1’s in a streaming fashion.
At time t = 1, . . . , n, a forecaster chooses ŷt ∈ {±1} based on the history y1, . . . , yt−1 observed so far.
After this prediction is made, the value yt is revealed to the forecaster. The average number of
mistakes incurred on the sequence is

1

n

n∑
t=1

1{ŷt ≠ yt} , (1)

where 1{S} is 1 if S is true, and 0 otherwise. A randomized algorithm A is determined by the
means

q̂t = q̂t(y1, . . . , yt−1) ∈ [−1,1], t = 1, . . . , n (2)

of the distributions A puts on the outcomes {±1} at time t. The expected average number of
mistakes made on the sequence y by a randomized algorithm A is

µA(y) = E [1

n

n∑
t=1

1{ŷt ≠ yt}] , (3)

1

where the expectation is with respect to the random choices ŷt, drawn from the distributions with
means q̂t(y1, . . . , yt−1), t = 1, . . . , n.

Whenever a prediction algorithm A has low expected error on some sequence y, it must be
at the expense of being worse on other sequences. Why? On average over the 2n sequences, the
algorithm necessarily incurs an error of 1/2. Indeed, denoting by ε = (ε1, . . . , εn) a sequence of
independent unbiased ±1-valued (Rademacher) random variables, it holds that

1

2n
∑
y

µA(y) = EεE [1

n

n∑
t=1

1{ŷt ≠ εt}] = 1

2
(4)

by an elementary inductive calculation, keeping in mind that q̂t = q̂t(ε1, . . . , εt−1). As a consequence,
it is impossible to compare prediction algorithms when all sequences are treated equally.

Evidently, any algorithm A induces a function µA on the hypercube {±1}n, whose average value
is 1/2. Cover [Cov65] asked the converse: given a function φ ∶ {±1}n → R, is there an algorithm A
with the property

∀y, µA(y) = φ(y). (5)

In words, if we specify the average number of mistakes we are willing to tolerate for each sequence,
is there an algorithm that achieves the goal? If such an algorithm exists, we shall say that φ is
achievable. Let us call φ stable if

∣φ(. . . ,+1, . . .) − φ(. . . ,−1, . . .)∣ ≤ 1

n
(6)

for any coordinate, keeping the rest fixed. Cover’s observation [Cov65] is now summarized as

Lemma 1. Suppose φ ∶ {±1}n → R is stable. Then

φ is achievable if and only if Eφ = 1/2,

where the expectation is under the uniform distribution.

That is, for any function φ that does not change too fast along any edge of the hypercube, there
exists an algorithm that attains the average number of mistakes given by φ if and only if φ is 1/2
on average over all 2n sequences.

As an immediate consequence, for any stable φ, Eφ ≥ 1/2 is equivalent to existence of an
algorithm with ∀y, µA(y) ≤ φ(y).
This latter version of the Lemma will be used in the sequel, and we shall say that φ is achievable
even if (5) holds with an inequality.

Perhaps, it is worth emphasizing the following message of the lemma:

Existence of a forecasting strategy with a given mistake bound for an arbitrary se-
quence can be verified by checking a probabilistic inequality.

2

The proof of the more general multi-class statement (Lemma 2) appears in the appendix; it uses
backward induction, and may be viewed as a “potential function” argument.

Example 1. Let ȳ = 1
n ∑nt=1 1{yi = 1} denote the proportion of +1’s in the sequence. Take

φ(y) = min{ȳ,1 − ȳ} +Cn−1/2.

It is an exercise to show that the mean of this function with respect to the uniform distribution is
at least 1/2 for an appropriate constant C, and that φ is stable. Hence, there exists a randomized
prediction algorithm A that takes advantage of imbalanced sequences, in the sense that

∀y, µA(y) ≤ min{ȳ,1 − ȳ} +Cn−1/2. (7)

For instance, if the sequence y ends up having 30% of 1’s, the algorithm, in expectation, will incur
roughly 30% proportion of errors (the extra term Cn−1/2 is small for large enough n). Notably, the
mistake guarantee holds for any sequence without any stochasticity assumption on its nature1 and
the imbalance of the sequence need not be known until the very end of the n rounds. The existence
of such a prediction strategy may seem rather surprising, and for the intrigued reader that attempts
to solve this problem, let us give a hint: no deterministic method will work.

2 Modeling solutions through φ

As we have seen, there is no algorithm that can predict sequences uniformly better than another
algorithm. Thankfully, we do not care about all sequences. A typical prediction problem has some
structure that informs us of the sequences we should focus on. The structure is often captured
through a stochastic description of the generative process, such as an i.i.d. or an autoregressive
assumption. The stochastic assumption, however, may not be justified in applications that involve
complex interactions and time dependencies, such as in the social network example below.

The approach in this tutorial is different: we provide a non-stochastic description of the “prior
knowledge” via the function φ. The function specifies the expected proportion of mistakes we are
willing to tolerate on each sequence. We tilt φ down towards the sequences we care about, at the
expense of making it larger on some other sequences that we are unlikely to see anyway. Lemma 1
guarantees existence of a prediction strategy with proportion of mistakes given by φ, as long as φ
is stable and at least 1/2 on average. Furthermore, given φ, the algorithm is simple to state, as we
will see below.

In 1950’s, David Hagelbarger [Hag56] and Claude Shannon [Sha53] at the Bell Labs built the
so-called “mind reading machines” to play the game of matching pennies. According to some
accounts,2 the machine was consistently predicting the sequence of bits produced by untrained
human players better than 50%.3 Of course, the only reason a machine can predict consistently
better than chance is that humans cannot enter “truly random” sequences.

How can we design such a machine? Using the approach outlined above, we would need to
capture the possible patterns of behavior we might see in the sequences and encode this knowledge
in φ. We have already seen in Example 1 how to take advantage of imbalanced sequences. Of course,

1In [Bla95], D. Blackwell draws parallels between an almost sure version of (7) (based on “approachability”) and
the corresponding i.i.d. statement.

2http://backup.itsoc.org/review/meir/node1.html
3Here is a modern version of this machine: http://www.mindreaderpro.appspot.com by Y. Freund and colleagues.

3

http://backup.itsoc.org/review/meir/node1.html
http://www.mindreaderpro.appspot.com

this may not be the only structure available, and we shall now describe a few general approaches
to building φ.

The first basic construction will be called aggregation. Suppose φ1, . . . , φN are N stable func-
tions, each satisfying Eφi ≥ 1/2. It is then possible to show that the best-of-all aggregate

φ(y) = min
j∈{1,...,N}

φj(y) +Cn,N (8)

is stable and satisfies Eφ ≥ 1/2 for

Cn,N =
√

c logN

n
,

with an absolute constant c. The penalty Cn,N for aggregating N “experts” depends only logarith-
mically on N , and diminishes when n is large. A reader familiar with the literature on prediction
with expert advice will recognize the form of Cn,N as a regret bound of the Exponential Weights
algorithm.4

Another useful (and most-studied) way to construct φ is by taking a subset F ⊆ {±1}n and
letting

φ(y) = dH(y, F) +Cn,F , (9)

the normalized Hamming distance between y and the set F , penalized by Cn,F . Recall that the
normalized Hamming distance is

dH(y, F) ≜ min
w∈F

1

n

n∑
t=1

1{yt ≠ wt} ,
where w = (w1, . . . ,wn). The definition in (9) automatically ensures stability of φ, and the smallest
Cn,F that guarantees Eφ ≥ 1/2 is

Cn,F = 1

2n
Emax

w∈F
⟨ε,w⟩ ≜ R(F),

the Rademacher averages of the set F .5 By Lemma 1, there is a randomized prediction algorithm
that incurs Cn,F proportion of mistakes on any sequence in F , and the performance degrades
linearly with the distance to the set.

Observe that the φ function in Example 1 can be written as (9) with F = {−1,1}. This is the
simplest nontrivial set F , since matching the performance of a singleton F = {w} simply amounts
to outputting this very sequence.

As one makes F a larger subset of the hypercube, the Hamming distance from any y decreases,
yet the overall penalty Cn,F becomes larger. On the extreme of this spectrum is F = {±1}n.
Insisting on a small error on this set is not possible, and, indeed,

R({±1}n) = 1

2n
E max

w∈{±1}n
⟨ε,w⟩ = 1

2
,

the performance of random guessing.
The goal is now clear: for the problem at hand, we would like to define F to be large enough

to capture the underlying structure of solutions, yet not too large. In Section 5 we come back to
this issue when discussing combinatorial relaxations of F .

4In contrast to an algorithmic proof of the regret bound, we derived Cn,N as a value necessary to ensure Eφ ≥ 1/2.
5We include the factor 1/2 in the definition of Rademacher averages.

4

3 Application: node classification

Figure 1: Two-community structure.

We now discuss an application of Lemma 1. Let G =(V,E) be a known undirected graph representing a so-
cial network. At each time step t, a user in the network
opens her Facebook page, and the system needs to decide
whether to classify the user as type “−1” or “+1”, say,
in order to decide on an advertisement to display. We
assume here that the feedback on the “correct” type is
revealed to the system after the prediction is made. The
more natural partial information version of this problem
is outside the scope of this short tutorial, and we refer
the reader to [RS16].

The prediction should be made based on all the information revealed thus far (the types of
users in the network that appeared before time t), the global graph structure, and the position
of the current user in the network. In Section 8 we will also discuss the version of this problem
where covariate information about the users is revealed, but at the moment assume that the graph
itself provides enough signal to form a prediction. A fascinating question is: what types of φ
functions capture the graph structure relevant to the problem? Below we provide two examples,
only scratching the surface of what is possible.

3.1 Community structure

Suppose we have a hunch that the type of the user (+1 or −1) is correlated with the community
to which she belongs. For simplicity, suppose there are two communities, more densely connected
within than across (see Figure 1). To capture the idea of correlating communities and labels, we
set φ to be small on labelings that assign homogenous values within each community. We make
the following simplifying assumptions: (i) ∣V ∣ = n, (ii) we only predict the label of each node once,
and (iii) the order in which the nodes are presented is fixed (this assumption is easily removed).
Smoothness of a labeling y ∈ {±1}n with respect to the graph may be computed via

∑
(u,v)∈E

1{y(u) ≠ y(v)} = 1

4
∑

(u,v)∈E
(y(u) − y(v))2 (10)

where y(v) ∈ {±1} is the label in y that corresponds to vertex v ∈ V . This function in (10) counts
the number of disagreements in labels at the endpoints of each edge. The value is also known as
the size of the cut induced by y (the smallest possible being MinCut). As desired, the function in
(10) gives a smaller value to the labelings that are homogenous within the communities. A more
concise way to write (10) is in terms of the graph Laplacian

yTLy, (11)

where L = D − A, the diagonal matrix D contains degrees of the nodes, and A is the adjacency
matrix.

Unfortunately, the function in (11) is not stable. It also has an undesirable property, illustrated
by the following example. The cut size is n − 1 for a star graph, where n − 1 nodes, labeled as +1,
are connected to the center node, labeled as −1. The large value of the cut does not capture the
simplicity of this labeling, which is only one bit away from being a constant +1.

5

Instead, we opt for the indirect definition (9). More precisely, we define

Fκ = {y ∈ {±1}n ∶ yTLy ≤ κ} (12)

for κ ≥ 0, and then set

φ(y) = dH(y, Fκ) +Cn,Fκ . (13)

Parameter κ should be larger than the value of MinCut, for otherwise the set Fκ is empty. The
function φ has the interpretation as the proportion of vertices whose labels need to be flipped to
achieve the value at most κ for the cut, compensated by the Rademacher averages of the set Fκ.
While we can give some straightforward bounds on the Rademacher averages of Fκ, the investigation
of this value for various graphs, including random ones, is an interesting research question.

While MinCut is computationally easy, the calculation of φ becomes NP-hard in general if we
allow [−1,1]-valued weights w(u,v) on the edges and define Fκ with respect to the weighted Laplacian

∑
(u,v)∈E

w(u,v)(y(u) − y(v))2. (14)

Such a definition can be used to model trust-distrust networks, and we certainly would like to
develop computationally efficient methods for this problem. Somewhat surprisingly, this is possible
in certain cases, even though evaluating φ is computationally hard. See Sections 6 and 7 for details.

3.2 Exercise: predicting voting preferences

Suppose n individuals (connected via the known social network as in the previous example) arrive
to the voting station one by one, and we are predicting whether they will vote for Grump or for
Blinton. After our prediction is made, the voter reveals her true binary preference. Suppose we
know the individual’s place in the network and the voting preferences of the individuals observed
thus far. Our task is to design an online prediction algorithm that makes as few mistakes as
possible.

Suppose we have prior knowledge that Grump supporters may be described well by a ball in
the network (a ball with center v and radius r is the set of vertices at most r hops away from v),
but the center of this ball in the network is not known. Suppose each individual has at most d
friends. We leave it as an exercise to design a φ function for this prediction problem.

4 Extension to multi-class prediction

We now extend the result of Cover to k-ary outcomes, i.e. yt ∈ {1, . . . , k}. As before, the expected
prediction error is given by

E [1

n

n∑
t=1

1{ŷt ≠ yt}] ,
but uniformly random guessing now incurs an expected cost of 1 − 1/k. By the same token, on
average over the kn sequences, any algorithm must incur the expected cost of 1 − 1/k.

Let us define a couple of shorthands. We shall use the notation a1∶t ≜ {a1, . . . , at}, [k] ≜{1, . . . , k}, and denote the set of probability distributions on k outcomes by ∆k.

6

We shall say that φ ∶ [k]n → R is stable if for any coordinate (and holding the rest fixed),

max
r∈[k]

φ(. . . , r, . . .) − 1

k

k∑
i=1

φ(. . . , i, . . .) ≤ 1

nk
. (15)

We now overload the notation and define a randomized forecasting strategy as a collection of
distribution-valued functions of histories:

q̂t = q̂t(y1∶t−1) ∈ ∆k.

Lemma 2. Suppose φ ∶ [k]n → R is stable. Then

φ is achievable if and only if Eφ = 1 − 1
k ,

where the expectation is under the uniform distribution on [k]n.

Once again, it follows from the Lemma that Eφ ≥ 1− 1
k is equivalent to existence of a strategy with

µA ≤ φ. Lemma 1 can be seen as a special case of Lemma 2 for k = 2.

5 Computation

By repeatedly referring to “existence of a prediction strategy” in the previous sections, we, perhaps,
gave the impression that these methods are difficult to find. Thankfully, this is not the case.

5.1 The exact algorithm

The proofs of Lemma 1 and 2 are constructive, and the algorithms are easy to state. For binary
prediction (k = 2), the randomized algorithm is defined on round t by the mean

q∗t (y1∶t−1) = n ⋅E[φ(y1∶t−1,−1, εt+1∶n) − φ(y1∶t−1,+1, εt+1∶n)] (16)

of the distribution on the outcomes {±1}, where the expectation is over independent Rademacher
random variables εt+1, . . . , εn. The prediction ŷt ∈ {±1} is then a random draw such that Eŷt = q∗t .

The two evaluations of φ in (16) are performed at neighboring vertices of the hypercube differing
in the t-th coordinate. If the function values are equal in expectation, the mean q∗t is equal to zero,
which corresponds to the uniform distribution on {±1}. In this case, the function φ does not provide
any guidance on which prediction to prefer. On the other hand, if the absolute difference is 1/n in
expectation (the largest allowed by stability), the distribution is supported on one of the outcomes
and prediction is deterministic. Between these extremes, the difference in values of φ measures
the influence of t-th coordinate on the potential function φ, where the past outcomes y1, . . . , yt−1

have been fixed and future is uniformly-random. We emphasize that Rademacher random variables
for future rounds are purely an outcome of the minimax analysis, as we assume no generative
mechanism for the sequence y.

7

For k > 2, the randomized algorithm is defined on round t by a distribution6 on {1, . . . , k}, and
the optimal choice is given by

q∗t (y1∶t−1) = argmin
q∈∆k

max
j∈[k]

{ − qTej − nEφ(y1∶t−1, j, ut+1∶n)} (17)

where the expectation is with respect to ut+1, . . . , un, each independent uniform on [k]. Given that
the values Eφ(y1∶t−1, j, ut+1∶n) have been computed for each j, the minimization in (17) is performed
by a simple water-filling O(k)-time algorithm which can be found in the proof of Lemma 2 (see
also [RS16]). The actual prediction is then a random draw ŷt ∼ q∗t .

5.2 Randomization

Computing the expectations in (16) and (17) may be costly. Thankfully, a doubly-randomized
strategy works by drawing a random sequence per iteration. For binary prediction, the algorithm
on round t becomes: draw independent Rademacher random variables εt+1, . . . , εn, compute

q̃∗t (y1∶t−1, εt+1∶n) = n[φ(y1∶t−1,−1, εt+1∶n) − φ(y1∶t−1,+1, εt+1∶n)] (18)

and draw ŷt from the distribution on {±1} with the mean q̃∗t . This randomized strategy was
essentially proposed in [CBS11].

For k > 2, we draw uniform independent ut+1, . . . , un, solve for

q̃∗t (y1∶t−1, ut+1∶n) = argmin
q∈∆k

max
j∈[k]

{ − qTej − nφ(y1∶t−1, j, ut+1∶n)} (19)

and then draw prediction ŷt from the distribution q̃∗t .

Lemma 3. The doubly-randomized strategies (18) and (19) enjoy, in expectation, the same
mistake bounds as, respectively, (16) and (17).

In the binary prediction case, the proof of Lemma 3 is immediate by the linearity of expectation.
The analogous argument for (19) is more tricky and follows from a more general random playout
technique introduced in [RSS12]. This technique also yields a proof of Lemma 3 (for both binary and
multi-class cases) for adaptively chosen sequences of outcomes, an issue we have not yet discussed
(see also Section 8 below).

6We hope the difference in the meaning of q∗t as a distribution (for k > 2) vs a mean of a distribution (for k = 2)
will not cause confusion.

8

6 Relaxations and the power of improper learning

In the rest of the tutorial, we focus on the binary prediction problem for simplicity. Recall that
the computation in (16) involves drawing random bits εt+1, . . . , εn and evaluating the φ function on
two neighboring vertices of the hypercube. If φ is defined as

φ(y) = dH(y, F) +Cn,F , (20)

then computing (16) or (18) involves comparing two distances to the set F , as shown in Figure 2.
Note that the knowledge of Cn,F is not needed, as this value cancels off in the difference.

(y1, . . . ,yt−1,−1,✏t+1, . . . ,✏n)

(y1, . . . ,yt−1,+1,✏t+1, . . . ,✏n)
F

Figure 2: Randomized strategy involves computing the difference of normalized Hamming distances
from neighboring vertices to F .

Since

dH(y, F) = min
w∈F

1

n

n∑
t=1

1{wt ≠ yt} = 1

2
− 1

2n
max
w∈F

wTy, (21)

we may extend the function dH(y, F) to any F ⊆ [−1,1]n by defining it as the right-hand side of
(21). The extended dH(y, F) is still stable in the sense of (6).

Suppose that calculating the distance dH(y, F) is computationally expensive, due to the combi-
natorial nature of F ⊂ {±1}n. Let F ′ ⊆ [−1,1]n be a set containing F , and suppose that dH(y, F ′)
is easier to compute. The following observation is immediate:

Observation 1. Let F ⊆ F ′ ⊆ [−1,1]n. Algorithms (16) and (18) with

φ′(y) = dH(y, F ′) +R(F ′),
enjoy a mistake bound

E [1

n

n∑
t=1

1{ŷt ≠ yt}] ≤ min
w∈F

[1

n

n∑
t=1

1{wt ≠ yt}] + α ×R(F) (22)

for α ≥ R(F ′)/R(F).
Proof. By construction, φ′ is achievable, and

µA(y) ≤ φ′(y) ≤ dH(y, F) +R(F ′) ≤ dH(y, F) + α ×R(F). (23)

9

By relaxing the set F to a larger set F ′, we may gain in computation while suffering a multiplicative
factor α in the Rademacher complexity. Crucially, this factor does not multiply the Hamming
distance but only the term R(F). The latter is typically of lower order and diminishing with n.
We may summarize the observation as

⎛⎝ online
mistakes

⎞⎠ ≤ ⎛⎝offline combinatorial
benchmark

⎞⎠ + α × ⎛⎝additive o(1)
error

⎞⎠ .

There is a reason we belabor this simple observation. In the literature on online learning, it has
been noted that one may guarantee

⎛⎝ online
mistakes

⎞⎠ ≤ α × ⎛⎝offline combinatorial
benchmark

⎞⎠ + ⎛⎝additive o(1)
error

⎞⎠ .

when one has a multiplicative approximation algorithm for the benchmark. The performance of
the algorithm in this case is compared to

α ×min
w∈F

[1

n

n∑
t=1

1{wt ≠ yt}] .
However, the bound easily becomes vacuous (say, the error rate of the offline benchmark is 5% and
the multiplicative factor is a constant or logarithmic in n). The version where α only enters the
remainder term seems much more attractive.

The key to obtaining (22) is the improper nature of the prediction methods (16) or (18): the
prediction ŷt need not be in any way consistent with any of the models in F . Informally:

Using improper learning methods, it may be possible to predict as well as a combina-
torial benchmark (plus a lower-order term) even when computing this very benchmark
given all the data is NP-hard.

To make the statement more meaningful, we will show that α can be upper bounded—for some
interesting examples—in a way that does not render the mistake guarantee vacuous. We start with
a simple example in Section 6.1, and then present a more complex machinery based on Constraint
Satisfaction in Section 7.

6.1 Example: node classification

Consider the example in Section 3.1, and suppose, additionally, that the undirected graph G =(V,E,W) has weights on edges. The weight on edge (i, j) is denoted by Wi,j , and Wi,j ≡ 0 when(i, j) is not an edge. Positive and negative edges may model friend/foe or trust/distrust networks.
We define Fκ as in (12), with the understanding that L is now the weighted graph Laplacian:

L = D −W with D the diagonal matrix, Di,i = ∑nj=1 ∣Wi,j ∣. As before, set φ(y) = dH(y, Fκ) +Cn,Fκ .
Why would evaluation of dH(⋅, Fκ) be computationally hard? First, if we can evaluate φ for any κ,
we can also find the value

min
w∈{±1}n

wTLw. (24)

10

However, if all the edge weights are −1, then (24) becomes

min
w∈{±1}n

∑
(i,j)∈E

1 +wiwj , (25)

which may be recognized as the value of MinUnCut, an NP-hard problem in general. Hence, we
cannot hope to evaluate the Hamming distance to Fκ exactly. Our first impulse is to approximate
the value in (24); in the case of MinUnCut this can be done with a multiplicative factor of O(√logn).
However, it is not clear how to turn such a multiplicative approximation into a mistake bound with
the factor 1 in front of the combinatorial benchmark. Yet, such a bound is possible, as we show
next.

Following Observation 1, we set

F ′
κ = {w ∈ [−1,1]n ∶ wTLw ≤ κ} (26)

and extend

dH(y, F ′
κ) = 1

2
− 1

2n
max
w∈F ′κ

wTy, (27)

as in (21). Note that evaluating dH(y, F ′
κ) amounts to maximization of a linear function subject

to a quadratic constraint wTLw ≤ κ and a box constraint w ∈ [−1,1]n. This can be accomplished
with standard optimization toolboxes.

It remains to estimate R(F ′
κ). To this end, notice that

F ′
κ ⊂ {w ∈ Rn ∶wTw ≤ n,wTLw ≤ κ} ⊂ {w ∈ Rn ∶wTMw ≤ 1} (28)

with M = 1
2nI + 1

2κL. Hence, we can upper bound

2n ⋅R(F ′
κ) = Eε max

w∈F ′κ
wTε ≤ Eε max

wTMw≤1
wTε ≤ Eε

√
εTM−1ε ≤

¿ÁÁÀ n∑
j=1

λj(M)−1, (29)

where λj(M) is the jth eigenvalue of M . The upper bound in (29) depends on the spectrum of the
underlying network’s Laplacian with an added regularization term 1

2nI. It is an interesting research
direction to find tighter upper bounds, especially when the social network evolves according to a
random process.

To summarize, we relaxed Fκ to a larger set F ′
κ, for which computation can be performed

with an off-the-shelf optimization toolbox. Further, we derived a (rather crude) upper bound
on the Rademacher averages of this set. In our calculations, however, we did not obtain an upper
bound on the multiplicative gap α between the original Rademacher averages R(Fκ) and the larger
value R(F ′

κ). Hence, the price we paid for efficiently computable solutions remains unknown. In
the next section, we present a generic way to glean this payment from known approximations to
integer programs.

7 Computational hierarchies

Unlike the rest of the tutorial, this section is not self-contained. Our aim is to sketch the technique in
[RS15], hiding the details under the rug. We also refer the reader to the literature on approximation
algorithms based on semidefinite and linear programming (see e.g. [GM12] and references therein).

11

7.1 Relaxing the optimization problem

Consider the set

Fκ = {w ∈ {±1}n ∶ C(w) ≤ κ} (30)

for some C ∶ {±1}n → R, which we call a constraint. The definitions (12) and (14) in terms of graph
Laplacian and weighted graph Laplacian are two examples of such a definition. A more general
example is Constraint Satisfaction: let C be a collection of functions z ∶ {±1}n → R and set

C(w) = ∑
z∈C

z(w).
Recall that computing a prediction amounts to evaluating the weighted Hamming distance from

y ∈ {±1}n to Fκ, which—in view of (21)—is equivalent to finding the value

OPT1(κ,y) ≜ max
w∈Fκ, wTy≥β

β (31)

and then setting

φ(y) = 1

2
− 1

2n
OPT1(κ,y) +Cn,Fκ . (32)

Observation 1 suggests that if OPT1 cannot be easily computed for the set Fκ, we should aim to
find a larger set F ′

κ for which this optimization is easier. A twist here is that we will not write
down the definition of F ′

κ explicitly (although it can be understood as a projection of a certain
higher-dimensional object). Instead, let us replace OPT1(κ,y) in (32) by a value SDP1(κ,y) of
some other optimization problem (to be specified in a bit) and set

φ′(y) = 1

2
− 1

2n
SDP1(κ,y) +Cn,F ′κ . (33)

As before, the condition Eφ′(ε) ≥ 1/2 for achievability of this function implies that the smallest
value of the constant is

Cn,F ′κ = 1

2n
E [SDP1(κ,ε)] . (34)

Before defining SDP1, let us state a version of Observation 1:

Observation 2. If for any y ∈ {±1}n it holds that

SDP1(κ,y) ≤ OPT1(α ⋅ κ,y) (35)

for some α ∈ R, then using the algorithm (16) or (18) with φ′ in (33), we guarantee a regret
bound of

E [1

n

n∑
t=1

1{ŷt ≠ yt}] ≤ min
w∈Fκ

[1

n

n∑
t=1

1{wt ≠ yt}] +R(Fα⋅κ) (36)

for any sequence y.

12

Proof. Immediate from (34) and (35), and the fact that F ′
κ defined by SDP1 contains Fκ.

We now define SDP1, along with two more auxiliary optimization problems, and prove (35).

7.2 Setting up auxiliary optimization problems

OPT1 is an optimization of a linear objective over vertices of the hypercube, under the restrictionC(x) ≤ κ. In the literature, much effort has been devoted to analyzing a dual problem: minimization
of C(x), possibly subject to a linear constraint. Our plan of attack is to define dual auxiliary
optimization formulations, then use “integrality gap” for these problems, and pass back to the
primal objective OPT1 in order to prove (35).

Let us define the set of probability distributions on those vertices of the hypercube that yield
the value of at least β for the linear objective:

D(β,y) ≜ ∆({w ∈ {±1}n, wTy ≥ β}). (37)

Define the optimization problem

OPT2(β,y) ≜ min
w∈{±1}n, wTy≥β

C(w) = min
p∈D(β,y)

Ez∼pC(z), (38)

the minimum constraint value achievable on the vertices of the hypercube, given that the linear
objective value is at least β. The second equality in (38) holds true because the minimum of a
linear (in p) objective is attained at a singleton, a vertex of the hypercube.

Both (31) and (38) are combinatorial optimization problems, which may be computationally
intractable. A common approach to approximating these hard problems is to pass from distributions
to pseudo-distributions. Roughly speaking, a pseudo-distribution at “level r” only behaves like a
distribution for tuples of variables of size up to r. Associated to a pseudo-distribution is a notion
of a pseudo-expectation, denoted by Ê. We refer to [Bar14, CT12, Rot13] for details.

Let D̂(β,y) be the set of suitably defined pseudo-distributions with the property

D̂(β,y) ⊆ D̂(β′,y)
whenever β′ ≤ β (see [RS15] for the precise definitions of these sets in terms of semidefinite pro-
grams). Define a relaxation of (38) as

SDP2(β,y) ≜ min
p̂∈D̂(β,y)

Êz∼p̂C(z) (39)

and let

SDP1(κ,y) ≜ max
∃p̂∈D̂(β,y) s.t. Êz∼p̂C(z)≤κ

β . (40)

We write “SDP” here because relaxations we have in mind arise from semidefinite relaxations, but
the arguments below are generic and hold for other approximations of combinatorial optimization
problems.

The integrality gap of the dual formulation is

α(y) ≜ max
β

OPT2(β,y)
SDP2(β,y) , (41)

with α ≜ maxy α(y). We emphasize that we define the gap for the dual problems. Next, we show
that the gap appears when relating SDP1 to OPT1.

13

Lemma 4. For any y ∈ {±1}n,

SDP1(κ,y) ≤ OPT1(α(y) ⋅ κ,y). (42)

Proof of Lemma 4. Let us fix y and for brevity omit it from OPT and SDP definitions. First, it
holds that

SDP2(SDP1(κ)) ≤ κ. (43)

Indeed, SDP1(κ) is the value of β that guarantees existence of some pseudo-distribution p̂ in D̂(β,y)
that respects the constraint of κ on average. Hence, for this value of β, the minimum in SDP2(β)
will include this pseudo-distribution, and, hence, the value of the minimum is at most κ. By the
same token,

OPT1(OPT2(β)) ≥ β. (44)

Indeed, OPT2(β) is the value of C(w) achieved by some w ∈ {±1}n satisfying wTy ≥ β. The
maximization in OPT1 includes this w by the definition of Fκ, and, hence, the maximum is larger
than β.

Next, by the definition of the integrality gap and (43),

OPT2(SDP1(κ)) ≤ α ⋅ SDP2(SDP1(κ)) ≤ α ⋅ κ. (45)

By (44) and (45),

SDP1(κ) ≤ OPT1(OPT2(SDP1(κ))) ≤ OPT1(α ⋅ κ) (46)

because the value of OPT1(κ) is nondecreasing in κ.

It remains to provide concrete examples where α(y) is bounded in a non-trivial manner.

7.3 Back to node classification

Recall the node classification example discussed in Section 6.1. In view of Lemma 4, to conclude
the mistake bound (36) we only need to get an estimate on α. For the case C(w) = wTLw, the
integrality gap defined in (41) is the ratio of an integer quadratic program (IQP) subject to linear
constraint (38) and its relaxed version. We turn to [GS13, Theorem 6.1], which tells us that within
O(r) levels of Lasserre hierarchy one can solve the IQP subject to linear constraints with the gap
of at most

O(max{λ−1
r ,1})

where λr is the r-th eigenvalue of the normalized graph Laplacian. One can verify that R(Fκ) grows

as
√
κ, and thus we essentially pay an extra factor of O(max{λ−1/2

r ,1}) for having a polynomial-time
algorithm, with the computational complexity of O(nr).

There are several points worth emphasizing:

14

• As another manifestation of improper learning, the prediction algorithm does not need to
“round the solution.” The integrality gap only appears in the mistake analysis. This means
that any improvement in the gap analysis of semidefinite or other relaxations immediately
translates to a tighter mistake bound for the same prediction algorithm.

• It is the expected gap (with respect to a random direction ε) that enters the bound, a quantity
that may be smaller than the worst-case gap. It would be interesting to quantify this gain.

As an alternative to definition (30), one may combine the linear objective and the constraint in
a single “penalized” form. Such an approach allows one to use Metric Labeling approximation
algorithms [KT02], and we refer to [RS15] for more details.

8 Incorporating covariates

In most applications of online prediction, some additional side information is available to the
decision-maker before she makes the prediction. Consider the following generalization of the prob-
lem introduced in Section 1. At time t = 1, . . . , n, the forecaster observes side information xt ∈ X ,
makes a forecast ŷt ∈ {±1} (based on the history y1, . . . , yt−1 and x1, . . . , xt), and then the value yt
is observed.

Let φ be a function of two sequences: φ ∶ X × {±1}n → R. The function φ is stable if

∣φ(x; y1∶t−1,+1, yt+1∶n) − φ(x; y1∶t−1,−1, yt+1∶n)∣ ≤ 1/n, (47)

where x = (x1, . . . , xn). We will prove the following generalization of Lemma 1.

Lemma 5. Let φ ∶ X × {±1}n → R be stable, and suppose that xt’s are i.i.d. Then there
exists a prediction strategy such that

∀y ∈ {±1}n, E [1

n

n∑
t=1

1{ŷt ≠ yt}] ≤ Eφ(x;y) (48)

if and only if

Eφ(x;ε) ≥ 1/2. (49)

Above, the expectation on the left-hand side of (48) is over the randomization of the algorithm
and the x’s, while on the right-hand side the expectation is over the x’s. In (49), the expectation
is both over the x’s and over the independent Rademacher random variables.

An attentive reader will notice that the guarantee (48) is not very interesting because xt’s are
chosen independently while yt’s are fixed ahead of time. The issue would be resolved if yt’s could
be chosen by Nature after seeing xt. Let us call such a Nature semi-adaptive, and reserve the word
adaptive for Nature that chooses yt’s based also on the full history of {(xs, ys, ŷs)}t−1

s=1 (including
learner’s predictions).

15

Lemma 6. Lemma 5 holds for an adaptive Nature. That is, (49) is equivalent to existence
of a prediction algorithm (given in (51) below) with

E [1

n

n∑
t=1

1{ŷt ≠ yt}] ≤ Eφ(x;y), (50)

where each yt ∈ {±1} may be chosen arbitrarily by Nature based on the history {(xs, ys, ŷs)}t−1
s=1

and xt.

Inspecting the proof of Lemma 6, we see that the optimal doubly-randomized strategy is to draw
xt+1∶n and εt+1∶n and then set the mean of the distribution to be

q̃∗t (x, y1∶t−1, εt+1∶n) = n [φ(x; y1∶t−1,−1, εt+1∶n) − φ(x; y1∶t−1,+1, εt+1∶n)] . (51)

Notice that the coordinates x1∶t of x are the actual observations, while xt+1∶n are hallucinated. If
x’s are i.i.d., these hypothetical observations are available, for instance, if one has access to a pool
of unlabeled data. In fact, the statement of Lemma 6 holds verbatim for any stochastic process
governing evolution of x’s, as long as we can “roll out the future” according to this process.

Finally, we state one more extension of Cover’s result, lifting any stochastic assumptions on the
generation of the x’s.

Lemma 7. Let φ ∶ X n × {±1}n → R be stable, and assume that both xt and yt are chosen by
Nature adversarially and adaptively. Then existence of a strategy with

E [1

n

n∑
t=1

1{ŷt ≠ yt}] ≤ Eφ(x;y)
is equivalent to

∀z, Eεφ(z1,z2(ε1), . . . ,zn(ε1∶n−1);ε) ≥ 1

2
, (52)

where z = (z1, . . . ,zn) is an X -valued predictable process with respect to the dyadic filtration{σ(ε1, . . . , εt)}t≥0 generated by i.i.d. Rademacher ε1, . . . , εn.

In Section 1, we introduced a “canonical” way to define φ(y) for the case of no side information.
The analogous canonical definition that takes side information into account is as follows. Let F be
a class of functions X → {±1}. If F is chosen well, one of the functions in this class will explain,
approximately, the relationship between xt’s and yt’s. It is then natural to take the projection

F ∣x = {(f(x1), . . . , f(xn)) ∶ f ∈ F},
the set of vertices of the hypercube achieved by evaluating some f ∈ F on the given data. We may
now define

φ(x;y) = dH(y, F ∣x) +Cn,F ∣x ,

16

as before. The function φ defined in this way is indeed small if y is close to the values of some
f ∈ F on the data.

It remains to give an expression for Cn,F ∣x . For the i.i.d. side information case of Lemma 6, the
condition Eφ(x;ε) ≥ 1/2 means that the smallest value of Cn,F ∣x ensuring achievability is

1

2n
Eε,x [sup

f∈F

n∑
t=1

εtf(xt)] ,
the Rademacher averages of F . For the adversarial case of Lemma 7, condition (52) means that
the smallest value of Cn,F ∣x is

sup
z

Rseq(F ,z),
where

Rseq(F ,z) ≜ 1

2n
Eε [sup

f∈F

n∑
t=1

εtf(zt(ε1∶t−1))]
is the sequential Rademacher complexity [RST15].

9 Discussion and Research Directions

The prediction results discussed in this tutorial hold for arbitrary sequences – even for those chosen
adversarially and adaptively in response to forecaster’s past predictions. Treating the prediction
problem as a multi-stage game against Nature has been very fruitful, both for the theoretical anal-
ysis and for the algorithmic development. Even though we discuss maliciously chosen sequences, it
is certainly not our aim to paint any prediction problem as adversarial. Rather, we view the “indi-
vidual sequence” results as being robust and applicable in situations when modeling the underlying
stochastic process is difficult. For instance, one may try to model the node prediction problem
described in Section 3.1 probabilistically—e.g. as a Stochastic Block Model—but such a model
is unlikely to be true in the real world. Of course, the ultimate test is how the two approaches
perform on real data. In the node classification example, the methods discussed in this tutorial
performed very well in our own experiments, often surpassing the performance of more classical
machine learning methods. Perhaps it is worth emphasizing that the prediction algorithms devel-
oped here are very distinct from these classical methods, and, if anything, this tutorial serves the
purpose of enlarging the algorithmic toolkit.

We presented some very basic ideas, only scratching the surface of what is possible. Among
some of the most interesting (to us) and promising research directions are:

• Develop linear or sublinear time methods for solving prediction problems on large-scale
graphs.

• Run more experiments on real-world data and explore the types of functions φ that lead to
good prediction performance.

• Develop partial-information versions of the problem. Some initial steps for contextual bandits
were taken in [RS16, SLKS16].

• Analyze the setting of constrained sequences. That is, develop methods when Nature is not
fully adversarial, yet also not i.i.d.

17

• Develop efficient prediction methods that go beyond i.i.d. covariates.

For more additional questions or clarifications, please feel free to email us.

A Proofs

Proof of Lemma 2. Define functions Relt ∶ [k]t → R as

Reln(y1, . . . , yn) = −φ(y1, . . . , yn)
and

Relt−1(y1, . . . , yt−1) = Eyt∼Unif[k]Relt(y1, . . . , yt) + 1

n
(1 − 1

k
) , (53)

with Rel0(∅) being a constant. We desire to prove that there is an algorithm such that

∀y ∈ [k]n, E [1

n

n∑
t=1

1{ŷt ≠ yt}] − φ(y1, . . . , yn) = 0.

Consider the last time step n and write the above expression as

E [1

n

n−1∑
t=1

1{ŷt ≠ yt} + 1

n
1{ŷn ≠ yn} +Reln(y1, . . . , yn)] . (54)

Let En−1 denote the conditional expectation given ŷ1, . . . , ŷn−1. We shall prove that there exists a
randomized strategy for the last step such that for any yn ∈ [k],

En−1 [1

n
1{ŷn ≠ yn}] +Reln(y1, . . . , yn) =Reln−1(y1, . . . , yn−1). (55)

This last statement is translated as

min
qn∈∆k

max
yn∈[k]

{En−1 [1

n
1{ŷn ≠ yn}] +Reln(y1, . . . , yn)} =Reln−1(y1, . . . , yn−1). (56)

Writing 1{ŷn ≠ yn} = 1 − eT
ŷn
eyn , the left-hand side of (56) is

1

n
min
qn∈∆k

max
yn∈[k]

{1 − qTneyn + nReln(y1, . . . , yn)} . (57)

The stability condition (15) means that we can choose qn to equalize the choices of yn. Let
ψ(1), . . . , ψ(k) be the sorted values of

nReln(y1, . . . , yn−1,1), . . . , nReln(y1, . . . , yn−1, k),
in non-increasing order. In view of the stability condition,

k∑
i=1

(ψ(i) − ψ(k)) ≤ 1.

18

 (1)

 (k)

Figure 3: Under the stability condition, water-filling is optimal.

Hence, qn can be chosen so that all ψ(i)− qn(i) have the same value (see Figure 3). One can check
that this is the minimizing choice for qn. Let q∗n denote this optimal choice. The common value of
ψ(i) − q∗n(i) can then be written as

ψ(k) − 1

k
(1 − k∑

i=1

(ψ(i) − ψ(k))) = 1

k

k∑
i=1

ψ(i) − 1

k

and hence (57) is equal to

1

n
(1 − 1

k
) + 1

k

k∑
i=1

Reln(y1, . . . , yn−1, i). (58)

This value is precisely Reln−1(y1, . . . , yn−1), as per Eq. (53), thus verifying (56). Repeating the
argument for t = n − 1 until t = 0, we find that

Rel0(∅) = −Eφ + (1 − 1

k
) = 0,

thus ensuring existence of an algorithm with (54) equal to zero. The other direction of the statement
is proved by taking sequences y uniformly at random from [k]n, concluding the proof.

When k = 2, the solution q∗t takes on a simpler form

q∗t (y1, . . . , yt−1) = n[Eφ(y1, . . . , yt−1,−1, εt+1, . . . , εn) −Eφ(y1, . . . , yt−1,+1, εt+1, . . . , εn)],
which is found by equating the two alternatives in (57).

Proof of Lemma 6. As in the proof of Lemma 2, define functions Relt ∶ (X × {±1})t → R as

Reln(x1∶n; y1∶n) = −φ(x1∶n; y1∶n)
and

Relt−1(x1∶t−1; y1∶t−1) = Eεt,xtRelt(x1∶t−1, xt; y1∶t−1, εt) + 1

2n
, (59)

with Rel0(∅) being a constant. Having observed x1∶n−1, y1∶n−1 and xn at the present time step, we
solve

min
qn

max
yn

{E [1

n
1{ŷn ≠ yn}] +Reln(x1∶n, y1∶n)} (60)

19

The same steps as in Lemma 2 (for binary prediction) lead to the solution

q∗n(x1∶n, y1∶n−1) = n[φ(x1∶n, y1∶n−1,−1) − φ(x1∶n, y1∶n−1,+1)]. (61)

We remark that q∗n depends on xn, as given by the protocol of the problem. Then (60) equals to

EεnReln(x1∶n; y1∶n−1, εn) + 1

2n
(62)

We now take expectation over xn on both sides:

Exn min
qn

max
yn

{E [1

n

n∑
t=1

1{ŷt ≠ yt}] +Reln(x1∶n; y1∶n)} =Reln−1(x1∶n−1; y1∶n−1) (63)

The argument continues back to t = 0, with

Relt(x1∶t; y1∶t) = −Ext+1∶n,εt+1∶nφ(x1∶n; y1∶t, εt+1∶n) + n − t
2n

(64)

and

q∗t (x1∶t, y1∶t−1) = nExt+1∶n,εt+1∶n [φ(x1∶n, y1∶t−1,−1, εt+1∶n) − φ(x1∶n, y1∶t−1,+1, εt+1∶n)] . (65)

Finally,

Eφ(x1∶n; ε1∶n) = 1

2

means that Rel0(∅) = 0. The algorithm in (65) is not implementable: it requires the knowledge of
PX . However, all we need is to be able to sample xt+1∶n ∼ PX (or have access to unlabeled data),
draw independent Rademacher εt+1∶n, and define

q̃∗t (x1∶n, y1∶t−1, εt+1∶n) = n [φ(x1∶n, y1∶t−1,−1, εt+1∶n) − φ(x1∶n, y1∶t−1,+1, εt+1∶n)] . (66)

The proof that this strategy yields the same expected mistake bound against adaptive Nature relies
on the technique we term random playout. In this case the proof is not difficult. Consider (60) at
step t and use the inductive definition of Relt in (64):

min
qt

max
yt

{E [1

n
1{ŷt ≠ yt}] −Ext+1∶n,εt+1∶nφ(x1∶n; y1∶t, εt+1∶n) + n − t

2n
} (67)

In the above minimum over qt, let us choose the randomized strategy with the mean given by (66),
thus passing to an upper bound of

max
yt

{Ext+1∶n,εt+1∶nEŷt∼q̃∗t [1

n
1{ŷt ≠ yt}] −Ext+1∶n,εt+1∶nφ(x1∶n; y1∶t, εt+1∶n)} + n − t

2n
(68)

which, in turn, is upper bounded via Jensen’s inequality by

Ext+1∶n,εt+1∶n max
yt

{Eŷt∼q̃∗t [1

n
1{ŷt ≠ yt}] − φ(x1∶n; y1∶t, εt+1∶n)} + n − t

2n
. (69)

20

The choice of q̃∗t makes the two possibilities for yt{±1} identical in terms of their value (such a
strategy is called an equalizer) and is optimal. With routine algebra, the above expression is equal
to

Ext+1∶n,εt+1∶nEεtφ(x1∶n; y1∶t−1, εt, εt+1∶n) + n − t + 1

2n
. (70)

Taking expectation with respect to xt yields Relt−1(x1∶t−1; y1∶t−1), completing the recursion step.
Moreover, because of this value is optimal, so is the randomized strategy and, hence, the inequality
in the above proof is an equality.

Regarding the required stability condition on φ, we see that it is simply that (65) is within the
range [−1,1]. In particular, it is implied by the assumed stability condition.

Finally, because of the order of expectation, minimum, and maximum in (63), the choice of yt
for Nature may depend on xt (which is drawn from an unknown distribution), on qt (but not on ŷt),
and on the history. This ensures that the prediction strategy works against an adaptive Nature.

References

[Bar14] B. Barak. Sum of squares upper bounds, lower bounds, and open questions, 2014. Lecture
notes.

[Bla95] D. Blackwell. Minimax vs. bayes prediction. Probability in the Engineering and Infor-
mational Sciences, 9:pp 53–58, 1995.

[CBS11] N. Cesa-Bianchi and O. Shamir. Efficient online learning via randomized rounding. In
Advances in Neural Information Processing Systems, pages 343–351, 2011.

[Cov65] T. Cover. Behaviour of sequential predictors of binary sequences. In Proc. 4th Prague
Conf. Inform. Theory, Statistical Decision Functions, Random Processes, 1965.

[CT12] E. Chlamtac and M. Tulsiani. Convex relaxations and integrality gaps. In Handbook on
semidefinite, conic and polynomial optimization, pages 139–169. Springer, 2012.

[GM12] B. Gärtner and J. Matousek. Approximation algorithms and semidefinite programming.
Springer Science & Business Media, 2012.

[GS13] V. Guruswami and A. K. Sinop. Rounding Lasserre SDPs using column selection and
spectrum-based approximation schemes for graph partitioning and Quadratic IPs. arXiv
preprint arXiv:1312.3024, 2013.

[Hag56] D.W. Hagelbarger. Seer, a sequence extrapolating robot. Electronic Computers, IRE
Transactions on, pages 1–7, 1956.

[KT02] J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with
pairwise relationships: Metric labeling and markov random fields. Journal of the ACM
(JACM), 49(5):616–639, 2002.

[Rot13] T. Rothvoß. The lasserre hierarchy in approximation algorithms. Lecture Notes for the
MAPSP, pages 1–25, 2013.

21

[RS15] A. Rakhlin and K. Sridharan. Hierarchies of relaxations for online prediction problems
with evolving constraints. In COLT, 2015.

[RS16] A. Rakhlin and K. Sridharan. BISTRO: An efficient relaxation-based method for con-
textual bandits. In International Conference on Machine Learning, 2016.

[RSS12] A. Rakhlin, O. Shamir, and K. Sridharan. Relax and randomize: From value to algo-
rithms. In Advances in Neural Information Processing Systems 25, pages 2150–2158,
2012.

[RST15] A. Rakhlin, K. Sridharan, and A. Tewari. Sequential complexities and uniform martingale
laws of large numbers. Probability Theory and Related Fields, 161(1-2):111–153, 2015.

[Sha53] C.E. Shannon. A mind-reading machine. Bell Laboratories memorandum, 1953.

[SLKS16] V. Syrgkanis, H. Luo, A. Krishnamurthy, and R. E. Schapire. Improved regret bounds
for oracle-based adversarial contextual bandits. CoRR, abs/1606.00313, 2016.

22

	The basics of bit prediction
	Modeling solutions through
	Application: node classification
	Community structure
	Exercise: predicting voting preferences

	Extension to multi-class prediction
	Computation
	The exact algorithm
	Randomization

	Relaxations and the power of improper learning
	Example: node classification

	Computational hierarchies
	Relaxing the optimization problem
	Setting up auxiliary optimization problems
	Back to node classification

	Incorporating covariates
	Discussion and Research Directions
	Proofs

