
Partial monitoring – classification, regret bounds, and algorithms∗

Gábor Bartók
Department of Computing Science

University of Alberta

Dean Foster
Department of Statistics

University of Pennsylvania

Dávid Pál
Department of Computing Science

University of Alberta

Alexander Rakhlin
Department of Statistics

University of Pennsylvania

Csaba Szepesvári
Department of Computing Science

University of Alberta

March 27, 2013

Abstract

In a partial monitoring game, the learner repeatedly chooses an action, the environment responds
with an outcome, and then the learner suffers a loss and receives a feedback signal, both of which are
fixed functions of the action and the outcome. The goal of the learner is to minimize his regret, which is
the difference between his total cumulative loss and the total loss of the best fixed action in hindsight. In
this paper we characterize the minimax regret of any partial monitoring game with finitely many actions
and outcomes. It turns out that the minimax regret of any such game is either zero, Θ̃(

√
T), Θ(T 2/3), or

Θ(T). We provide computationally efficient learning algorithms that achieve the minimax regret within
logarithmic factor for any game. In addition to the bounds on the minimax regret, if we assume that the
outcomes are generated in an i.i.d. fashion, we prove individual upper bounds on the expected regret.

1 Introduction

Partial monitoring provides a mathematical framework for sequential decision making problems with im-
perfect feedback. Various problems of interest can be modeled as partial monitoring instances, such as
learning with expert advice [Littlestone and Warmuth, 1994], the multi-armed bandit problem [Auer et al.,
2002], dynamic pricing [Kleinberg and Leighton, 2003], the dark pool problem [Agarwal et al., 2010], la-
bel efficient prediction [Cesa-Bianchi et al., 2005], and linear and convex optimization with full or bandit
feedback [Zinkevich, 2003, Abernethy et al., 2008, Flaxman et al., 2005].

In this paper we restrict ourselves to finite games, i.e., games where both the set of actions available
to the learner and the set of possible outcomes generated by the environment are finite. A finite partial
monitoring game G is described by a pair of N ×M matrices: the loss matrix L and the feedback matrix H.
The entries Li,j of L are real numbers lying in, say, the interval [0, 1]. The entries Hi,j of H belong to an
alphabet Σ on which we do not impose any structure and we only assume that learner is able to distinguish
distinct elements of the alphabet.

The game proceeds in T rounds according to the following protocol. First, G = (L,H) is announced for
both players. In each round t = 1, 2, . . . , T , the learner chooses an action It ∈ {1, 2, . . . , N} and simulta-
neously, the environment, or opponent, chooses an outcome Jt ∈ {1, 2, . . . ,M}. Then, the learner receives

∗This article is an extended version of Bartók, Pál, and Szepesvári [2011], Bartók, Zolghadr, and Szepesvári [2012], and
Foster and Rakhlin [2012].

1

as a feedback the entry HIt,Jt . The learner incurs instantaneous loss LIt,Jt , which is not revealed to him.
The feedback can be thought of as a masked information about the outcome Jt. In some cases HIt,Jt might
uniquely determine the outcome, in other cases the feedback might give only partial or no information about
the outcome.

The learner is scored according to the loss matrix L. In round t the learner incurs an instantaneous
loss of LIt,Jt . The goal of the learner is to keep low his total loss

∑T
t=1 LIt,Jt . Equivalently, the learner’s

performance can also be measured in terms of his regret, i.e., the total loss of the learner is compared with
the loss of best fixed action in hindsight. Since no non-trivial bound can be given on the learner’s total loss,
we resort to regret analysis in which the total loss of the learner is compared with the loss of best fixed
action in hindsight. The regret is defined as the difference of these two losses.

In general, the regret grows with the number of rounds T . If the regret is sublinear in T , the learner
is said to be Hannan consistent, and this means that the learner’s average per-round loss approaches the
average per-round loss of the best action in hindsight.

Piccolboni and Schindelhauer [2001] were one of the first to study the regret of these games. They proved
that for any finite game (L,H), either for any algorithm the regret can be Ω(T) in the worst case, or there

exists an algorithm which has regret Õ(T 3/4) on any outcome sequence1. This result was later improved
by Cesa-Bianchi et al. [2006] who showed that the algorithm of Piccolboni and Schindelhauer has regret
O(T 2/3). Furthermore, they provided an example of a finite game, a variant of label-efficient prediction, for
which any algorithm has regret Θ(T 2/3) in the worst case.

However, for many games O(T 2/3) is not optimal. For example, games with full feedback (i.e., when the
feedback uniquely determines the outcome) can be viewed as a special instance of the problem of learning
with expert advice and in this case it is known that the “EWA forecaster” has regret O(

√
T); see e.g.

Lugosi and Cesa-Bianchi [2006, Chapter 3]. Similarly, for games with “bandit feedback” (i.e., when the
feedback determines the instantaneous loss) the INF algorithm [Audibert and Bubeck, 2009] and the Exp3
algorithm [Auer et al., 2002] achieve O(

√
T) regret as well.2

This leaves open the problem of determining the minimax regret (i.e., optimal worst-case regret) of any
given game (L,H). A partial progress was made in this direction by Bartók et al. [2010] who characterized
(almost) all finite games with M = 2 outcomes. They showed that the minimax regret of any “non-

degenerate” finite game with two outcomes falls into one of four categories: zero, Θ̃(
√
T), Θ(T 2/3) or Θ(T).

They gave a combinatoric-geometric condition on the matrices L,H that determines the category a game
belongs to. Additionally, they constructed an efficient algorithm that, for any game, achieves the minimax
regret rate associated to the game within poly-logarithmic factor.

In this paper, we consider the general problem of classifying partial-monitoring games with any finite
number of actions and outcomes. We investigate the problem under two different opponent models: the
oblivious adversarial and the stochastic opponent. In the oblivious adversarial model, the outcomes are
arbitrarily generated by an adversary with the constraint that they cannot depend on the actions chosen
by the learner. Equivalently, an oblivious adversary can be thought of as an oracle that chooses a sequence
of outcomes before the game begins. In the stochastic model, the outcomes are generated by a sequence of
i.i.d. random variables.

In the stochastic model, an alternative definition of regret is used; instead of comparing the cumulative
loss of the learner of that of the best fixed action in hindsight, the base of the comparison is the expected cu-
mulative loss of the action with the smallest expected loss, given the distribution the outcomes are generated
from. More formally, the regret of an algorithm A under outcome distribution p is defined as

RT (A, p) =

T∑

t=1

LIt,Jt − min
1≤i≤N

Ep

[
T∑

t=1

Li,Jt

]
.

This paper is based on the results of Bartók, Pál, and Szepesvári [2011], Bartók, Zolghadr, and Szepesvári
[2012], and Foster and Rakhlin [2012]. We summarize the results of these works to create a complete and

1The notations Õ(·) and Θ̃(·) hide polylogarithmic factors.
2We ignore the dependence of regret on the number of actions or any other parameters.

2

0 11/2

O(1) Θ(T 1/2) Θ(T)

Full informa-
tion games

Bandit
games

2/3

︷ ︸︸ ︷

No games
here

︷ ︸︸ ︷︷ ︸︸ ︷

Revealing action game

Figure 1: Diagram of the classification result. Points on the line segment represent the exponent on the time
horizon T in the minimax regret of games. The gap between 0 and 1/2 was proven by Antos et al. [2012],
while the gap between 2/3 and 1 was shown by Piccolboni and Schindelhauer [2001]. The minimax regret
of the “revealing action game” was proven to be of Θ(T 2/3) by Cesa-Bianchi et al. [2006]. The gap between
1/2 and 2/3 is the result of this work, completing the characterization.

self-contained reference for the recent advancements on finite partial monitoring. The results include a
characterization of non-degenerate games against adversarial opponents, a full characterization of games as
well as individual regret bounds against stochastic opponents.

The characterization result, in both cases, shows that there are only four classes of games in terms of the
minimax regret:

• Trivial games with zero minimax regret,

• “Easy” games with Θ̃(
√
T) minimax regret,

• “Hard” games with Θ(T 2/3) minimax regret, and

• Hopeless games with Ω(T) minimax regret.

A visualization of the classification is depicted in Figure 1.

2 Definitions and notations

Let N denote the set {1, . . . , N}. For a subset S ⊂ N we use 1S ∈ {0, 1}N to denote the vector with ones
on the coordinates in S and zeros outside. A vector a ∈ RN indexed by j is sometimes denoted by [aj]j∈[N].
Standard basis vectors are denoted by {ei}.

Recall from the introduction that an instance of partial monitoring with N actions and M outcomes is
defined by the pair of matrices L ∈ RN×M and H ∈ ΣN×M , where Σ is an arbitrary set of symbols. In each
round t, the opponent chooses an outcome jt ∈M and simultaneously the learner chooses an action it ∈ N .
Then, the feedback HIt,Jt is revealed and the learner suffers the loss Lit,jt . It is important to note that the
loss is not revealed to the learner, whereas L and H are revealed before the game begins.

The following definitions are essential for understanding how the structure of L and H determines the
“hardness” of a game. Let ∆M denote the probability simplex in RM . That is, ∆M = {p ∈ RM : ∀1 ≤
i ≤ M,pi ≥ 0,

∑M
i=1 pi = 1}. Elements of ∆M will also be called opponent strategies as p ∈ ∆M represents

an outcome distribution that a stochastic opponent can use to generate outcomes. Let `i denote the column
vector consisting of the ith row of L. Action i is called optimal under strategy p if its expected loss is not
greater than that of any other action i′ ∈ N . That is, `>i p ≤ `>i′ p. Determining which action is optimal
under opponent strategies yields the cell decomposition3 of the probability simplex ∆M :

3The concept of cell decomposition also appears in Piccolboni and Schindelhauer [2001].

3

Definition 1 (Cell decomposition). For every action i ∈ N , let Ci = {p ∈ ∆M : action i is optimal under p}.
The sets C1, . . . , CN constitute the cell decomposition of ∆M .

Now we can define the following important properties of actions:

Definition 2 (Properties of actions). • Action i is called dominated if Ci = ∅. If an action is not
dominated then it is called non-dominated.

• Action i is called degenerate if it is non-dominated and there exists an action i′ such that Ci (Ci′ .

• If an action is neither dominated nor degenerate then it is called Pareto-optimal. The set of Pareto-
optimal actions is denoted by P.

• Action i is called duplicate if there exists another action j 6= i such that `i = `j.

From the definition of cells we see that a cell is either empty or it is a closed polytope. Furthermore,
Pareto-optimal actions have (M − 1)-dimensional cells. The following definition, important for our analyses,
also uses the dimensionality of polytopes:

Definition 3 (Neighbors). Two Pareto-optimal actions i and j are neighbors if Ci ∩ Cj is an (M − 2)-
dimensional polytope. Let N be the set of unordered pairs over N that contains neighboring action-pairs.
The neighborhood action set of two neighboring actions i, j is defined as N+

i,j = {k ∈ N : Ci ∩ Cj ⊆ Ck}.

Note that the neighborhood action set N+
i,j naturally contains i and j. If N+

i,j contains some other action
k then either Ck = Ci, Ck = Cj , or Ck = Ci ∩ Cj .

Now we turn our attention to how the feedback matrix H is used. In general, the elements of the feedback
matrix H can be arbitrary symbols. Nevertheless, the nature of the symbols themselves does not matter in
terms of the structure of the game. What determines the feedback structure of a game is the occurrence of
identical symbols in each row of H. To “standardize” the feedback structure, the signal matrix is defined
for each action:

Definition 4. Let si be the number of distinct symbols in the ith row of H and let σ1, . . . , σsi ∈ Σ be an
enumeration of those symbols. Then the signal matrix Si ∈ {0, 1}si×M of action i is defined as (Si)k,l =
I {Hi,l = σk}.

Note that the signal matrix of action i is just the incidence matrix of symbols and outcomes, assuming
action i is chosen. Furthermore, if p ∈ ∆M is the opponent’s strategy (or in the adversarial setting, the
relative frequency of outcomes in time steps when action i is chosen), then Sip gives the distribution (or
relative frequency) of the symbols underlying action i. In fact, it is also true that observing HIt,Jt is
equivalent to observing the vector SIteJt , where ek is the kth unit vector in the standard basis of RM . From
now on we assume without loss of generality that the learner’s observation at time step t is the random
vector Yt = SIteJt . Note that the dimensionality of this vector depends on the action chosen by the learner,
namely Yt ∈ RsIt .

Let ImM denote the image space (or column space) of a matrix M . The following two definitions play
a key role in classifying partial-monitoring games.

Definition 5 (Global observability [Piccolboni and Schindelhauer, 2001]). A partial-monitoring game (L,H)
admits the global observability condition, if for all pairs i, j of actions, `i − `j ∈ ⊕k∈N ImS>k .

Definition 6 (Local observability). A pair of neighboring actions i, j is said to be locally observable if
`i − `j ∈ ⊕k∈N+

i,j
ImS>k . We denote by L ⊂ N the set of locally observable pairs of actions (the pairs are

unordered). A game satisfies the local observability condition if every pair of neighboring actions is locally
observable, i.e., if L = N .

4

The intuition behind these definitions is that if `i − `j ∈ ⊕k∈D ImS>k for some subset D of actions then
the expected difference of the losses of actions i and j can be estimated with observations from actions in D.
We will later see that the above condition necessary for haveing unbiased estimates for the loss differences.

It is easy to see that local observability implies global observability. Also, from Piccolboni and Schindel-
hauer [2001] we know that if global observability does not hold then the game has linear minimax regret.
From now on, we only deal with games that admit the global observability condition.

2.1 Examples

To illustrate the concepts of global and local observability, we present some examples of partial-monitoring
games.

Full-information games Consider a game G = (L,H), where every row of the feedback matrix consists
of pairwise different symbols. Without loss of generality we may assume that

H =




1 2 · · · M
1 2 · · · M
...

...
...

1 2 · · · M


 .

In this case the learner receives the outcome as feedback at the end of every time step, hence we call it
the full-information case. It is easy to see that the signal matrix of any action i is the identity matrix
of dimension M . Consequently, for any ` ∈ RM , ` ∈ ImS>i and thus any full-information game is locally
observable.

Bandit games The next games we consider are games G = (L,H) with L = H. In this case the feedback
the learner receives is identical to the loss he suffers at every time step. For this reason, we call these types
of games bandit games.

For an action i, let the the rows of Si correspond to the symbols σ1, σ2, . . . , σsi , where si is the number
of different symbols in the ith row of H. Since we assumed that L = H, we know that these symbols are real
numbers (losses). It follows from the construction of the signal matrix that

`i = S>i




σ1

σ2

...
σsi




for all i ∈ N . It follows that all bandit games are locally observable.

A hopeless game We define the following game G = (L,H) by

L =

(
1 2 3 4 5 6
6 5 4 3 2 1

)
, H =

(
α1 α2 α3 α4 ∗ ∗
β1 β2 β3 β4 ∗ ∗

)
.

We make the following observations:

1. Neither of actions 1 and 2 are dominated. Thus the game is not trivial.

2. The difference of the loss vectors `2 − `1 =
(
5 3 1 −1 −3 −5

)>
.

3. The image space of the signal matrices ImS1 = ImS2 = {` ∈ R6 : `[5] = `[6]}.

The three points together imply that the game is not globally observable.

5

Dynamic pricing In dynamic pricing, a vendor (learner) tries to sell his product to a buyer (opponent).
The buyer secretly chooses a maximum price (outcome) while the seller tries to sell it at some price (action).
If the outcome is lower than the action then no transaction happens and the seller suffers some constant loss.
Otherwise the buyer buys the product and the seller’s loss is the difference between the seller’s price and the
buyer’s price. The feedback for the seller is, however, only the binary observation if the transaction happened
(y for yes and n for no). The finite version of the game can be described with the following matrices:

L =




0 1 2 · · · N − 1
c 0 1 · · · N − 2
c c 0 · · · N − 3
...

...
. . .

. . .
...

c · · · · · · c 0




; H =




y y · · · y
n y · · · y
...

. . .
. . .

...
n · · · n y


 .

Simple algebra gives that all action pairs are neighbors. In fact, there is a single point on the probability
simplex that is common to all of the cells, namely

p =
(

1
c+1

c
(c+1)2 · · · ci−1

(c+1)i · · · cN−2

(c+1)N−1
cN−1

(c+1)N−1

)>
.

We show that the locally observable action pairs are the “consecutive” actions ({i, i + 1}). The difference
`i+1 − `i is

`i+1 − `i =
(
0 · · · 0 c −1 · · · −1

)

with i− 1 zeros at the beginning. The signal matrix Si is

Si =

(
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

)

where the “switch” is after i− 1 columns. Thus,

`i+1 − `i = S>i

(
−c
0

)
+ S>i+1

(
c
−1

)
.

On the other hand, action pairs that are not consecutive are not locally observable. For example,

`3 − `1 =
(
c c− 1 −2 · · · −2

)>
,

while both ImS>1 and ImS>3 contain only vectors whose first two coordinates are identical. Thus, dynamic
pricing is not a locally observable game. Nevertheless, it is easy to see that global observability holds.

3 Summary of results

In this paper we present new algorithms for finite partial-monitoring games—NeigborhoodWatch for the
adversarial case and CBP for the stochastic case—and provide regret bounds. Our results on the minimax
regret can be summarized in the following two classification theorems.

Theorem 1 (Classification for games against stochastic opponents). Let G = (L,H) be a finite partial-
monitoring game. Let K be the number of non-dominated actions in G. The minimax expected regret of G
against stochastic opponents is

E[RT (G)] =





0, K = 1;

Θ̃(
√
T), K > 1, G is locally observable;

Θ(T 2/3), G is globally observable but not locally observable;
Θ(T), G is not globally observable.

6

To state our classification theorem for the case of adversarial opponents, we need a definition.

Definition 7 (Degenerate games). A partial-monitoring game G is called degenerate if it has degenerate or
duplicate actions. A game is called non-degenerate if it is not degenerate.

Theorem 2 (Classification for games against adversarial opponents). Let G = (L,H) be a non-degenerate
finite partial-monitoring game. Let K be the number of non-dominated actions in G. The minimax expected
regret of G against adversarial opponents is

E[RT (G)] =





0, K = 1;

Θ(
√
T), K > 1, G is locally observable;

Θ(T 2/3), G is globally observable but not locally observable;
Θ(T), G is not globally observable.

For the stochastic case, we additionally present individual bounds on the regret of any finite partial-
monitoring game, i.e., bounds that depend on the strategy of the opponent.4

Theorem 3. Let (L,H) be an N by M partial-monitoring game. For a fixed opponent strategy p∗ ∈ ∆M ,
let δi denote the difference between the expected loss of action i and an optimal action. For any time horizon

T , algorithm CBP with parameters α > 1, νk = W
2/3
k , f(t) = α1/3t2/3 log1/3 t has expected regret

E[RT] ≤
∑

{i,j}∈N

2|Vi,j |
(

1 +
1

2α− 1

)
+

N∑

k=1

δk

+

N∑

k=1
δk>0

4W 2
k

d2
k

δk
α log T

+
∑

k∈V\N+

δk min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log T, α1/3W
2/3
k T 2/3 log1/3 T

)

+
∑

k∈V\N+

δkα
1/3W

2/3
k T 2/3 log1/3 T

+ 2dkα
1/3W 2/3T 2/3 log1/3 T ,

where W = maxk∈N Wk, V = ∪{i,j}∈NVi,j, N+ = ∪{i,j}∈NN+
i,j, and d1, . . . , dN are game-dependent con-

stants.

Theorem 3 gives a very general bound on the regret. This bound will be used to derive all the upper
bounds that concern the regret of games against stochastic environments: It translates to a logarithmic
individual upper bound on the regret of locally observable games (Corollary 1); it gives the minimax upper

bound of Õ(
√
T) for locally observable games (Corollary 3), the minimax upper bound of Õ(T 2/3) for globally

observable games (Corollary 2). Additionally and quite surprisingly, it also follows from the above bound
that even for not locally observable games, if we assume that the opponent is “benign” in some sense, the
minimax regret of Õ(

√
T) still holds. For the precise statement, see Theorem 5.

In the next section we give a lower bound on the minimax regret for games that are not locally observable.
This bound is valid for both the stochastic and the adversarial settings and is necessary for proving the
classification theorems. Then, in Sections 5 and 6, we describe and analyze the algorithms CBP and
NeigborhoodWatch. The first algorithm, CBP for Confidence Bound Partial monitoring, is shown to
achieve the desired regret upper bounds for any finite partial-monitoring game against stochastic opponents.
The second algorithm, NeigborhoodWatch, works for locally observable non-degenerate games. We show
that for these games, the algorithm achieves the desired O(

√
T) regret bound against adversarial opponents.

4Some of the notations used by the theorem is defined in the next section.

7

4 A lower bound for not locally observable games

In this section we prove that for any game that does not satisfy the local observability condition has expected
minimax regret of Ω(T 2/3).

Theorem 4. Let G = (L,H) be an N by M partial-monitoring game. Assume that there exist two neigh-
boring actions i and j that are not locally observable. Then there exists a problem dependent constant c(G)
such that for any algorithm A and time horizon T there exists an opponent strategy p such that the expected
regret satisfies

E [RT (A, p)] ≥ c(G)T 2/3 .

Proof. Without loss of generality we can assume that the two neighbor cells in the condition are C1 and C2.
Let C3 = C1 ∩ C2. For i = 1, 2, 3, let Ni be the set of actions associated with cell Ci. Note that N3 may
be the empty set. Let N4 = N \ (N1 ∪ N2 ∪ N3). By our convention for naming loss vectors, `1 and `2 are
the loss vectors for C1 and C2, respectively. Let L3 collect the loss vectors of actions which lie on the open
segment connecting `1 and `2. It is easy to see that L3 is the set of loss vectors that correspond to the cell
C3. We define L4 as the set of all the other loss vectors. For i = 1, 2, 3, 4, let ki = |Ni|.

According to the lack of local observability, `2 − `1 6∈ ImS>1 ⊕ ImS>2 . Thus, {ρ(`2 − `1) : ρ ∈ R} 6⊂
ImS>1 ⊕ ImS>2 , or equivalently, (`2 − `1)

⊥ 6⊃ KerS1 ∩ KerS2, where we used that (ImM)⊥ = Ker(M>).
Thus, there exists a vector v such that v ∈ KerS1 ∩KerS2 and (`2 − `1)>v 6= 0. By scaling we can assume
that (`2 − `1)>v = 1. Note that since v ∈ KerS1 ∩KerS2 and the rowspaces of both S1 and S2 contain the
vector (1, 1, . . . , 1), the coordinates of v sum up to zero.

Let p0 be an arbitrary probability vector in the relative interior of C3. It is easy to see that for any ε > 0
small enough, p1 = p0 + εv ∈ C1 \ C2 and p2 = p0 − εv ∈ C2 \ C1.

Let us fix a deterministic algorithm A and a time horizon T . For i = 1, 2, let R
(i)
T denote the expected

regret of the algorithm under opponent strategy pi. For i = 1, 2 and j = 1, . . . , 4, let N i
j denote the expected

number of times the algorithm chooses an action from Nj , assuming the opponent plays strategy pi.
From the definition of L3 we know that for any ` ∈ L3, `− `1 = η`(`2− `1) and `− `2 = (1− η`)(`1− `2)

for some 0 < η` < 1. Let λ1 = min`∈L3
η` and λ2 = min`∈L3

(1 − η`) and λ = min(λ1, λ2) if L3 6= ∅ and let
λ = 1/2, otherwise. Finally, let βi = min`∈L4

(`− `i)>pi and β = min(β1, β2). Note that λ, β > 0.

As the first step of the proof, we lower bound the expected regret R
(1)
T and R

(2)
T in terms of the values

N i
j , ε, λ and β:

R
(1)
T ≥ N1

2

ε︷ ︸︸ ︷
(`2 − `1)>p1 +N1

3λ(`2 − `1)>p1 +N1
4β ≥ λ(N1

2 +N1
3)ε+N1

4β ,

R
(2)
T ≥ N2

1 (`1 − `2)>p2︸ ︷︷ ︸
ε

+N2
3λ(`1 − `2)>p2 +N2

4β ≥ λ(N2
1 +N2

3)ε+N2
4β .

(1)

For the next step, we need the following lemma.

Lemma 1. There exists a (problem dependent) constant c such that the following inequalities hold:

N2
1 ≥ N1

1 − cTε
√
N1

4 , N2
3 ≥ N1

3 − cTε
√
N1

4 ,

N1
2 ≥ N2

2 − cTε
√
N2

4 , N1
3 ≥ N2

3 − cTε
√
N2

4 .

Using the above lemma we can lower bound the expected regret. Let r = argmini∈{1,2}N
i
4. It is easy to

see that for i = 1, 2 and j = 1, 2, 3,

N i
j ≥ Nr

j − c2Tε
√
Nr

4 .

8

If i 6= r then this inequality is one of the inequalities from Lemma 1. If i = r then it is a trivial lower
bounding by subtracting a positive value. From (1) we have

R
(i)
T ≥ λ(N i

3−i +N i
3)ε+N i

4β

≥ λ(Nr
3−i − c2Tε

√
Nr

4 +Nr
3 − c2Tε

√
Nr

4)ε+Nr
4β

= λ(Nr
3−i +Nr

3 − 2c2Tε
√
Nr

4)ε+Nr
4β .

Now assume that, at the beginning of the game, the opponent randomly chooses between strategies p1 and
p2 with equal probability. The the expected regret of the algorithm is lower bounded by

RT =
1

2

(
R

(1)
T +R

(2)
T

)

≥ 1

2
λ(Nr

1 +Nr
2 + 2Nr

3 − 4c2Tε
√
Nr

4)ε+Nr
4β

≥ 1

2
λ(Nr

1 +Nr
2 +Nr

3 − 4c2Tε
√
Nr

4)ε+Nr
4β

=
1

2
λ(T −Nr

4 − 4c2Tε
√
Nr

4)ε+Nr
4β .

Choosing ε = c3T
−1/3 we get

RT ≥
1

2
λc3T

2/3 − 1

2
λNr

4 c3T
−1/3 − 2λc2c

2
3T

1/3
√
Nr

4 +Nr
4β

≥ T 2/3

((
β − 1

2
λc3

)
Nr

4

T 2/3
− 2λc2c

2
3

√
Nr

4

T 2/3
+

1

2
λc3

)

= T 2/3

((
β − 1

2
λc3

)
x2 − 2λc2c

2
3x+

1

2
λc3

)
,

where x =
√
Nr

4 /T
2/3. Now we see that c3 > 0 can be chosen to be small enough, independently of T

so that, for any choice of x, the quadratic expression in the parenthesis is bounded away from zero, and
simultaneously, ε is small enough so that the threshold condition in Lemma 10 is satisfied, completing the
proof of Theorem 4.

5 The stochastic case

In this section we present and analyze our algorithm CBP for Confidence Bound Partial monitoring that
achieves near optimal regret for any finite partial-monitoring game against stochastic opponents. In partic-
ular, we show that CBP achieves Õ(

√
T) regret for locally observable games and O(T 2/3) regret for globally

observable games.

5.1 The proposed algorithm

In the core of the algorithm lie the concepts of observer action sets and observer vectors:

Definition 8 (Observer sets and observer vectors). The observer set Vi,j ⊂ N underlying a pair of neigh-
boring actions {i, j} ∈ N is a set of actions such that

`i − `j ∈ ⊕k∈Vi,j ImS>k .

The observer vectors (vi,j,k)k∈Vi,j underlying Vi,j are defined to satisfy the equation `i−`j =
∑
k∈Vi,j S

>
k vi,j,k.

In particular, vi,j,k ∈ Rsk . In what follows, the choice of the observer sets and vectors is restricted so that
Vi,j = Vj,i and vi,j,k = −vj,i,k. Furthermore, the observer set Vi,j is constrained to be a superset of N+

i,j

and, in particular, when a pair {i, j} is locally observable, Vi,j = N+
i,j must hold. Finally, for any action

k ∈ ⋃{i,j}∈N Vi,j, let Wk = maxi,j:k∈Vi,j ‖vi,j,k‖∞.

9

In a nutshell, CBP works as follows. For every neighboring action pair it maintains an unbiased estimate
of the expected difference of their losses. It also keeps a confidence width for these estimates. If at time
step t an estimate is “confident enough” to determine which action is better, the algorithm excludes some
actions from the set of potentially optimal actions.

For two actions i, j, let δi,j denote the expected difference of their losses. That is, δi,j = (`i − `j)>p∗
where p∗ is the opponent strategy. At any time step t, the estimate of the loss difference of actions i and j
is calculated as

δ̃i,j(t) =
∑

k∈Vi,j

v>i,j,k

∑t−1
s=1 I {Is = k}Ys∑t−1
s=1 I {Is = k}

.

The confidence bound of the loss difference estimate is defined as

ci,j(t) =
∑

k∈Vi,j

‖vi,j,k‖∞
√

α log t∑t−1
s=1 I {Is = k}

with some preset parameter α. We call the estimate δ̃i,j(t) confident if |δ̃i,j(t)| ≥ ci,j(t).
In every time step t, the algorithm uses the estimates and the widths to select a set of candidate actions.

If an estimate δ̃i,j(t) is confident then the algorithm assumes that the opponent strategy p∗ lies in the

halfspace defined as {p ∈ ∆M : sgn(δ̃i,j(t))(`i − `j)>p > 0}. Taking the intersection of these halfspaces for
all the action pairs with confident estimates, we arrive at a polyitope that contains the opponent strategy
with high probability. Then, the set of potentially optimal actions P(t) is defined as the actions whose cells
intersect with the above polytope. We also need to maintain the set N (t) of neighboring actions, since it
may happen that action pairs that are originally neighbors do not share an M − 2 dimensional facet in this
polytope. Then, the actions candidate for choosing by the algorithm is defined as the union of observer
action sets of current neighboring pairs: Q(t) = ∪{i,j}∈N (t)Vi,j . Finally, the action is chosen to be the one
that potentially reduces the remaining uncertainty the most:

It = argmaxk∈Q(t)

W 2
k∑t−1

s=1 I {Is = k}
,

where Wk = max{‖vi,j,k‖∞ : k ∈ N+
i,j} with fixed vi,j,k precomputed and used by the algorithm.

Decaying exploration. The algorithm depicted above could be shown to achieve low regret for locally
observable games. However, for a game that is only globally observable, the opponent can choose a strategy
that causes the algorithm to suffer linear regret: Let action 1 and 2 be a neighboring action pair that is not
locally observable. It follows that their observer action set must contain a third action 3 with C3 6⊆ C1 ∩C2.
If the opponent chooses a strategy p ∈ C1 ∩ C2 then actions 1 and 2 are optimal while action 3 is not.
Unfortunately, the algorithm will choose action 3 linearly many times in its effort to (futilely) estimate the
loss difference of actions 1 and 2.

To prevent the algorithm from falling in the above trap, we introduce the decaying exploration rule.
This rule, described below, upper bounds the number of times an action can be chosen for only information
seeking purposes. For this, we introduce the set of rarely chosen actions,

R(t) = {k ∈ N : nk(t) ≤ ηkf(t)} ,

where ηk ∈ R, f : N 7→ R are tuning parameters to be chosen later. Then, the set of actions available at
time t is restricted to

Q(t) =
⋃

{i,j}∈N (t)

N+
i,j ∪


 ⋃

{i,j}∈N (t)

Vi,j ∩R(t)


 .

10

Symbol Definition Found in/at

N,M ∈ N number of actions and outcomes
N {1, . . . , N}, set of actions
∆M ⊂M M -dim. simplex, set of opponent strategies
p∗ ∈ ∆M opponent strategy
L ∈ RN×M loss matrix
H ∈ ΣN×M feedback matrix
`i ∈ RM `i = Li,:, loss vector underlying action i
Ci ⊆ ∆M cell of action i Definition 1
P ⊆ N set of Pareto-optimal actions Definition 2

N ⊆ N2 set of unordered neighboring action-pairs Definition 3

N+
i,j ⊆ N neighborhood action set of {i, j} ∈ N Definition 3

Si ∈ {0, 1}si×M signal matrix of action i Definition 4
L ⊆ N set of locally observable action pairs Definition 6
Vi,j ⊆ N observer actions underlying {i, j} ∈ N Definition 8
vi,j,k ∈sk , k ∈ Vi,j observer vectors Definition 8
Wi ∈ R confidence width for action i ∈ N Definition 8

Table 1: List of basic symbols

We will show that with these modifications, the algorithm achieves O(T 2/3) regret on globally observable
games, while it will also be shown to achieve an O(

√
T) regret when the opponent uses a benign strategy.

Pseudocode for the algorithm is given in Algorithm 1.
It remains to specify the function getPolytope. It gets the array halfSpace as input. The array

halfSpace stores which neighboring action pairs have a confident estimate on the difference of their expected
losses, along with the sign of the difference (if confident). Each of these confident pairs define an open
halfspace, namely

∆{i,j} =
{
p ∈ ∆M : halfSpace(i, j)(`i − `j)>p > 0

}
.

The function getPolytope calculates the open polytope defined as the intersection of the above halfspaces.
Then for all i ∈ P it checks if Ci intersects with the open polytope. If so, then i will be an element of P(t).
Similarly, for every {i, j} ∈ N , it checks if Ci ∩ Cj intersects with the open polytope and puts the pair in
N (t) if it does.

For the convenience of the reader, we include a list of symbols used in this Chapter in Table 1. The list
of symbols used in the algorithm is shown in Table 2.

Computational complexity The computationally heavy parts of the algorithm are the initial calculation
of the cell decomposition and the function getPolytope. All of these require linear programming. In the
preprocessing phase we need to solve N + N2 linear programs to determine cells and neighboring pairs of
cells. Then in every round, at most N2 linear programs are needed. The algorithm can be sped up by
“caching” previously solved linear programs.

5.2 Analysis of the algorithm

The first theorem in this section is an individual upper bound on the regret of CBP.

Theorem 3. Let (L,H) be an N by M partial-monitoring game. For a fixed opponent strategy p∗ ∈ ∆M ,
let δi denote the difference between the expected loss of action i and an optimal action. For any time horizon

11

Algorithm 1 CBP

Input: L, H, α, η1, . . . , ηN , f = f(·)
Calculate P, N , Vi,j , vi,j,k, Wk

for t = 1 to N do
Choose It = t and observe Yt {Initialization}
nIt ← 1 {# times the action is chosen}
νIt ← Yt {Cumulative observations}

end for
for t = N + 1, N + 2, . . . do

for each {i, j} ∈ N do
δ̃i,j ←

∑
k∈Vi,j v

>
i,j,k

νk
nk

{Loss diff. estimate}
ci,j ←

∑
k∈Vi,j ‖vi,j,k‖∞

√
α log t
nk

{Confidence}
if |δ̃i,j | ≥ ci,j then

halfSpace(i, j)← sgn δ̃i,j
else

halfSpace(i, j)← 0
end if

end for
[P(t),N (t)]← getPolytope(P,N , halfSpace)
N+(t) = ∪{i,j}∈N (t)N

+
ij

V(t) = ∪{i,j}∈N (t)Vij
R(t) = {k ∈ N : nk(t) ≤ ηkf(t)}
S(t) = P(t) ∪N+(t) ∪ (V(t) ∩R(t))

Choose It = argmaxi∈S(t)
W 2
i

ni
and observe Yt

νIt ← νIt + Yt
nIt ← nIt + 1

end for

T , algorithm CBP with parameters α > 1, νk = W
2/3
k , f(t) = α1/3t2/3 log1/3 t has expected regret

E[RT] ≤
∑

{i,j}∈N

2|Vi,j |
(

1 +
1

2α− 1

)
+

N∑

k=1

δk

+
N∑

k=1
δk>0

4W 2
k

d2
k

δk
α log T

+
∑

k∈V\N+

δk min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log T, α1/3W
2/3
k T 2/3 log1/3 T

)

+
∑

k∈V\N+

δkα
1/3W

2/3
k T 2/3 log1/3 T

+ 2dkα
1/3W 2/3T 2/3 log1/3 T ,

where W = maxk∈N Wk, V = ∪{i,j}∈NVi,j, N+ = ∪{i,j}∈NN+
i,j, and d1, . . . , dN are game-dependent con-

stants.

Proof. We use the convention that, for any variable x used by the algorithm, x(t) denotes the value of x at
the end of time step t. For example, ni(t) is the number of times action i is chosen up to and including time
step t.

12

Symbol Definition

It ∈ N action chosen at time t
Yt ∈ {0, 1}sIt observation at time t

δ̃i,j(t) ∈ estimate of (`i − `j)>p ({i, j} ∈ N)
ci,j(t) ∈ confidence width for pair {i, j} ({i, j} ∈ N)
P(t) ⊆ N plausible actions

N (t) ⊆ N2 set of admissible neighbors

N+(t) ⊆ N ∪{i,j}∈N (t)N
+
i,j ; admissible neighborhood actions

V(t) ⊆ N ∪{i,j}∈N (t)Vi,j ; admissible information seeking actions
R(t) ⊆ N rarely sampled actions
S(t) P(t) ∪N+(t) ∪ (V(t) ∩R(t)); admissible actions

Table 2: List of symbols used in the algorithm

The proof is based on three lemmas. The first lemma shows that the estimate δ̃i,j(t) is in the vicinity of
δi,j with high probability.5

Lemma 2. For any {i, j} ∈ N , t ≥ 1,

P
(
|δ̃i,j(t)− δi,j | ≥ ci,j(t)

)
≤ 2|Vi,j |t1−2α .

If for some t, i, j, the event whose probability is upper-bounded in Lemma 2 happens, we say that a
confidence interval fails. Let Gt be the event that no confidence intervals fail in time step t and let Bt be
its complement event. An immediate corollary of Lemma 2 is that the sum of the probabilities that some
confidence interval fails is small:

T∑

t=1

P (Bt) ≤
T∑

t=1

∑

{i,j}∈N

2|Vi,j |t−2α ≤
∑

{i,j}∈N

2|Vi,j |
(

1 +
1

2α− 2

)
. (2)

To prepare for the next lemma, we need some new notations. For the next definition we need to denote
the dependence of the random sets P(t), N (t) on the outcomes ω from the underlying sample space Ω. For
this, we will use the notation Pω(t) and Nω(t). With this, we define the set of plausible configurations to be

Ψ = ∪t≥1 {(Pω(t),Nω(t)) : ω ∈ Gt} .

Call π = (i0, i1, . . . , ir) (r ≥ 0) a path in N ′ ⊆ N2 if {is, is+1} ∈ N ′ for all 0 ≤ s ≤ r − 1 (when r = 0 there
is no restriction on π). The path is said to start at i0 and end at ir. In what follows we denote by i∗ an
optimal action under p∗ (i.e., `>i∗p

∗ ≤ `>i p∗ holds for all actions i).
The set of paths that connect i to i∗ and lie in N ′ will be denoted by Bi(N ′). The next lemma shows

that Bi(N ′) is non-empty whenever N ′ is such that for some P ′, (P ′,N ′) ∈ Ψ:

Lemma 3. Take an action i and a plausible pair (P ′,N ′) ∈ Ψ such that i ∈ P ′. Then there exists a path π
that starts at i and ends at i∗ that lies in N ′.

For i ∈ P define

di = max
(P′,N ′)∈Ψ

i∈P′

min
π∈Bi(N ′)
π=(i0,...,ir)

r∑

s=1

|Vis−1,is | .

5The proofs of technical lemmas can be found in the appendix.

13

According to the previous lemma, for each Pareto-optimal action i, the quantity di is well-defined and finite.
The definition is extended to degenerate actions by defining di to be max(dl, dk), where k, l are such that
i ∈ N+

k,l.

Let k(t) = argmaxi∈P(t)∪V (t)W
2
i /ni(t − 1). When k(t) 6= It this happens because k(t) 6∈ N+(t) and

k(t) /∈ R(t), i.e., the action k(t) is a “purely” information seeking action which has been sampled frequently.
When this holds we say that the “decaying exploration rule is in effect at time step t”. The corresponding
event is denoted by Dt = {k(t) 6= It}. Let δi be defined as maxj∈N δi,j , i.e., δi is the excess expected loss of
action i compared to an optimal action.

Lemma 4. Fix any t ≥ 1.

1. Take any action i. On the event Gt ∩ Dt,6 from i ∈ P(t) ∪N+(t) it follows that

δi ≤ 2di

√
α log t

f(t)
max
k∈N

Wk√
ηk
.

2. Take any action k. On the event Gt ∩ Dct , from It = k it follows that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

We are now ready to start the proof. By Wald’s identity, we can rewrite the expected regret as follows:

E[RT] = E

[
T∑

t=1

LIt,Jt

]
−

T∑

t=1

E [Li∗,J1] =

N∑

k=1

E[nk(T)]δi

=

N∑

k=1

E

[
T∑

t=1

I {It = k}
]
δk

=

N∑

k=1

E

[
T∑

t=1

I {It = k,Bt}
]
δk +

N∑

k=1

E

[
T∑

t=1

I {It = k,Gt}
]
δk .

Now,

N∑

k=1

E

[
T∑

t=1

I {It = k,Bt}
]
δk ≤

N∑

k=1

E

[
T∑

t=1

I {It = k,Bt}
]

(because δk ≤ 1)

= E

[
T∑

t=1

N∑

k=1

I {It = k,Bt}
]

= E

[
T∑

t=1

I {Bt}
]

=

T∑

t=1

P (Bt) .

Hence,

E[RT] ≤
T∑

t=1

P (Bt) +

N∑

k=1

E[

T∑

t=1

I {It = k,Gt}]δk .

6Here and in what follows all statements that start with “On event X” should be understood to hold almost surely on the
event. However, to minimize clutter we will not add the qualifier “almost surely”.

14

Here, the first term can be bounded using (2). Let us thus consider the elements of the second sum:

E[

T∑

t=1

I {It = k,Gt}]δk ≤ δk+

E[

T∑

t=N+1

I
{
Gt,Dct , k ∈ P(t) ∪N+(t), It = k

}
] δk (3)

+ E[

T∑

t=N+1

I
{
Gt,Dct , k 6∈ P(t) ∪N+(t), It = k

}
] δk (4)

+ E[

T∑

t=N+1

I
{
Gt,Dt, k ∈ P(t) ∪N+(t), It = k

}
] δk (5)

+ E[

T∑

t=N+1

I
{
Gt,Dt, k 6∈ P(t) ∪N+(t), It = k

}
] δk . (6)

The first δk corresponds to the initialization phase of the algorithm when every action gets chosen once. The
next paragraphs are devoted to upper bounding the above four expressions (3)-(6). Note that, if action k is
optimal, that is, if δk = 0 then all the terms are zero. Thus, we can assume from now on that δk > 0.

Term (3): Consider the event Gt ∩ Dc
t ∩ {k ∈ P(t) ∪ N+(t)}. We use case 2 of Lemma 4 with the choice

i = k. Thus, from It = k, we get that i = k ∈ P(t) ∪N+(t) and so the conclusion of the lemma gives

nk(t− 1) ≤ Ak(t)
def
= 4W 2

k

d2
k

δ2
k

α log t .

Therefore, we have

T∑

t=N+1

I
{
Gt,Dct , k ∈ P(t) ∪N+(t), It = k

}

≤
T∑

t=N+1

I {It = k, nk(t− 1) ≤ Ak(t)}

+

T∑

t=N+1

I
{
Gt,Dct , k ∈ P(t) ∪N+(t), It = k, nk(t− 1) > Ak(t)

}

=

T∑

t=N+1

I {It = k, nk(t− 1) ≤ Ak(t)}

≤ Ak(T) = 4W 2
k

d2
k

δ2
k

α log T

yielding

(3) ≤ 4W 2
k

d2
k

δk
α log T .

Term (4): Consider the event Gt ∩Dc
t ∩ {k 6∈ P(t) ∪N+(t)}. We use case 2 of Lemma 4. The lemma gives

that that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

15

We know that k ∈ V(t) = ∪{i,j}∈N (t)Vi,j . Let Φt be the set of pairs {i, j} in N (t) ⊆ N such that k ∈ Vi,j .
For any {i, j} ∈ Φt, we also have that i, j ∈ P(t) and thus if l′{i,j} = argmaxl∈{i,j} δl then

nk(t− 1) ≤ 4W 2
k

d2
l′{i,j}

δ2
l′{i,j}

α log t .

Therefore, if we define l(k) as the action with

δl(k) = min
{
δl′{i,j} : {i, j} ∈ N , k ∈ Vi,j

}

then it follows that

nk(t− 1) ≤ 4W 2
k

d2
l(k)

δ2
l(k)

α log t .

Note that δl(k) can be zero and thus we use the convention c/0 = ∞. Also, since k is not in P(t) ∪N+(t),
we have that nk(t− 1) ≤ ηkf(t). Define Ak(t) as

Ak(t) = min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log t, ηkf(t)

)
.

Then, with the same argument as in the previous case (and recalling that f(t) is increasing), we get

(4) ≤ δk min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log T, ηkf(T)

)
.

We remark that without the concept of “rarely sampled actions”, the above term would scale with 1/δ2
l(k),

causing high regret. This is why the “vanilla version” of the algorithm fails on hard games.

Term (5): Consider the event Gt ∩ Dt ∩ {k ∈ P(t) ∪ N+(t)}. From case 1 of Lemma 4 we have that

δk ≤ 2dk

√
α log t
f(t) maxj∈N

Wj√
ηj

.

Thus,

(5) ≤ dkT
√
α log T

f(T)
max
l∈N

Wl√
ηl
.

Term (6): Consider the event Gt ∩ Dt ∩ {k 6∈ P(t) ∪ N+(t)}. Since k 6∈ P(t) ∪ N+(t) we know that
k ∈ V(t) ∩ R(t) ⊆ R(t) and hence nk(t− 1) ≤ ηkf(t). With the same argument as in the cases (3) and (4)
we get that

(6) ≤ δkηkf(T) .

To conclude the proof of Theorem 3, we set ηk = W
2/3
k , f(t) = α1/3t2/3 log1/3 t and, with the notation

16

W = maxk∈N Wk, V = ∪{i,j}∈NVi,j , N+ = ∪{i,j}∈NN+
i,j , we write

E[RT] ≤
∑

{i,j}∈N

2|Vi,j |
(

1 +
1

2α− 2

)
+

N∑

k=1

δk

+

N∑

k=1
δk>0

4W 2
k

d2
k

δk
α log T

+
∑

k∈V\N+

δk min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log T, α1/3W
2/3
k T 2/3 log1/3 T

)

+
∑

k∈V\N+

δkα
1/3W

2/3
k T 2/3 log1/3 T

+ 2dkα
1/3W 2/3T 2/3 log1/3 T .

An implication of Theorem 3 is an upper bound on the individual regret of locally observable games:

Corollary 1. If G is locally observable then

E[RT] ≤
∑

{i,j}∈N

2|Vi,j |
(

1 +
1

2α− 1

)
+

N∑

k=1

δk + 4W 2
k

d2
k

δk
α log T .

Proof. If a game is locally observable then V \ N+ = ∅, leaving the last two sums of the statement of
Theorem 3 zero.

The following corollary is an upper bound on the minimax regret of any globally observable game.

Corollary 2. Let G be a globally observable game. Then there exists a constant c such that the expected
regret can be upper bounded independently of the choice of p∗ as

E[RT] ≤ cT 2/3 log1/3 T .

The following theorem is an upper bound on the minimax regret of any globally observable game against
“benign” opponents. To state the theorem, we need a new definition. Let A be some subset of actions in G.
We call A a point-local game in G if

⋂
i∈A Ci 6= ∅.

Theorem 5. Let G be a globally observable game. Let ∆′ ⊆ ∆M be some subset of the probability simplex
such that its topological closure ∆′ has ∆′∩Ci∩Cj = ∅ for every {i, j} ∈ N \L. Then there exists a constant

c such that for every p∗ ∈ ∆′, algorithm CBP with parameters α > 1, νk = W
2/3
k , f(t) = α1/3t2/3 log1/3 t

achieves

E[RT] ≤ cdpmax
√
bT log T ,

where b is the size of the largest point-local game, and dpmax is a game-dependent constant.

Proof. To prove this theorem, we use a scheme similar to the proof of Theorem 3. Repeating that proof, we

17

arrive at the same expression

E[

T∑

t=1

I {It = k,Gt}]δk ≤ δk+

E[

T∑

t=N+1

I
{
Gt,Dct , k ∈ P(t) ∪N+(t), It = k

}
] δk (3)

+ E[

T∑

t=N+1

I
{
Gt,Dct , k 6∈ P(t) ∪N+(t), It = k

}
] δk (4)

+ E[

T∑

t=N+1

I
{
Gt,Dt, k ∈ P(t) ∪N+(t), It = k

}
] δk (5)

+ E[

T∑

t=N+1

I
{
Gt,Dt, k 6∈ P(t) ∪N+(t), It = k

}
] δk , (6)

where Gt and Dt denote the events that no confidence intervals fail, and the decaying exploration rule is in
effect at time step t, respectively.

From the condition of ∆′ we have that there exists a positive constant ρ1 such that for every neighboring
action pair {i, j} ∈ N \ L, max(δi, δj) ≥ ρ1. We know from Lemma 4 that if Dt happens then for any pair

{i, j} ∈ N \ L it holds that max(δi, δj) ≤ 4N
√

α log t
f(t) max(Wk′/

√
ηk′)

def
= g(t). It follows that if t > g−1(ρ1)

then the decaying exploration rule can not be in effect. Therefore, terms (5) and (6) can be upper bounded
by g−1(ρ1).

With the value ρ1 defined in the previous paragraph we have that for any action k ∈ V \N+, l(k) ≥ ρ1

holds, and therefore term (4) can be upper bounded by

(4) ≤ 4W 2 4N2

ρ2
1

α log T ,

using that dk, defined in the proof of Theorem 3, is at most 2N . It remains to carefully upper bound
term (3). For that, we first need a definition and a lemma. Let Aρ = {i ∈ N : δi ≤ ρ}.
Lemma 5. Let G = (L,H) be a finite partial-monitoring game and p ∈ ∆M an opponent strategy. There
exists a ρ2 > 0 such that Aρ2 is a point-local game in G.

To upper bound term (3), with ρ2 introduced in the above lemma and γ > 0 specified later, we write

(3) = E[

T∑

t=N+1

I
{
Gt,Dct , k ∈ P(t) ∪N+(t), It = k

}
] δk

≤ I {δk < γ}nk(T)δk + I {k ∈ Aρ2 , δk ≥ γ} 4W 2
k

d2
k

δk
α log T + I {k /∈ Aρ2} 4W 2 8N2

ρ2
α log T

≤ I {δk < γ}nk(T)γ + |Aρ2 |4W 2
d2
pmax

γ
α log T + 4NW 2 8N2

ρ2
α log T ,

where dpmax is defined as the maximum dk value within point-local games.

18

Let b be the number of actions in the largest point-local game. Putting everything together we have

E[RT] ≤
∑

{i,j}∈N

2|Vi,j |
(

1 +
1

2α− 2

)
+ g−1(ρ1) +

N∑

k=1

δk

+ 16W 2N
3

ρ2
1

α log T + 32W 2N
3

ρ2
α log T

+ γT + 4bW 2
d2
pmax

γ
α log T .

Now we choose γ to be

γ = 2Wdpmax

√
bα log T

T

and we get

E[RT] ≤ c1 + c2 log T + 4Wdpmax
√
bαT log T .

Remark 1. Note that the above theorem implies that CBP does not need to have any prior knowledge about
∆′ to achieve

√
T regret. This is why we say our algorithm is “adaptive”.

An immediate implication of Theorem 5 is the following minimax bound for locally observable games:

Corollary 3. Let G be a locally observable finite partial monitoring game. Then there exists a constant c
such that for every p ∈ ∆M ,

E[RT] ≤ c
√
T log T .

5.3 Example

In this section we demonstrate the results of the previous section through the example of Dynamic Pricing.
From Section 2.1 we know that dynamic pricing is not a locally observable game. That is, the minimax
regret of the game is Θ(T 2/3).

Now, we introduce a restriction on the space of opponent strategies such that the condition of Theorem 5
is satisfied. We need to prevent non-consecutive actions from being simultaneously optimal. A somewhat
stronger condition is that out of three actions i < j < k, the loss of j should not be more than that of both
i and k. We can prevent this from happening by preventing it for every triple i− 1, i, i+ 1. Hence, a “bad”
opponent strategy would satisfy

`>i−1p ≤ `>i p and `>i+1p ≤ `>i p .

After rearranging, the above two inequalities yield the constraints

pi ≤
c

c+ 1
pi−1

for every i = 2, . . . , N − 1. Note that there is no constraint on pN . If we want to avoid by a margin these
inequalities to be satisfied, we arrive at the constraints

pi ≥
c

c+ 1
pi−1 + ρ

for some ρ > 0, for every i = 2, . . . , N − 1.

19

In conclusion, we define the restricted opponent set to

∆′ =

{
p ∈ ∆M : ∀i = 2, . . . , N − 2, pi ≥

c

c+ 1
pi−1 + ρ

}
.

The intuitive interpretation of this constraint is that the probability of the higher maximum price of the
costumer should not decrease too fast. This constraint does not allow to have zero probabilities, and thus it
is too restrictive.

Another way to construct a subset of ∆M that is isolated from “dangerous” boundaries is to include only
“hilly” distributions. We call a distribution p ∈ ∆M hilly if it has a peak point i∗ ∈ N , and there exist
ξ1, . . . , ξi∗−1 < 1 and ξi∗+1, . . . , ξN < 1 such that

pi−1 ≤ ξi−1pi for 2 ≤ i ≤ i∗, and

pi+1 ≤ ξi+1pi for i∗ ≤ i ≤ N − 1.

We now show that with the right choice of ξi, under a hilly distribution with peak i∗, only action i∗ and
maybe action i∗ − 1 can be optimal.

1. If i ≤ i∗ then

(`i − `i−1)>p = cpi−1 − (pi + · · ·+ pN)

≤ cξi−1pi − pi − (pi+1 + · · ·+ pN) ,

thus, if ξi−1 ≤ 1/c then the expected loss of action i is less than or equal to that of action i− 1.

2. If i ≥ i∗ then

(`i+1 − `i)>p = cpi − (pi+1 + · · ·+ pN)

≥ pi



c− (ξi+1 + ξi+1ξi+2 + · · ·+

N∏

j=i+1

ξj)



 .

Now if we let ξi∗+1 = · · · = ξN = ξ then we get

(`i+1 − `i)>p ≥ pi
(
c− ξ 1− ξN−1

1− ξ

)

≥ pi
(
c− ξ

1− ξ

)
,

and thus if we choose ξ ≤ c
c+1 then the expected loss of action i is less than or equal to that of action

i+ 1.

So far in all the calculations we allowed equalities. If we want to achieve that only action i∗ and
possibly action i∗ − 1 are optimal, we use

ξi





< 1/c, if 2 ≤ i ≤ i∗ − 2;
= 1/c, if i = i∗ − 1;
< c/(c+ 1), if i∗ + 1 ≤ i ≤ N.

If an opponent strategy is hilly with ξi satisfying all the above criteria, we call that strategy sufficiently hilly.
Now we are ready to state the corollary of Theorem 5:

Corollary 4. Consider the dynamic pricing game with N actions and M outcomes. If we restrict the set
of opponent strategies ∆′ to the set of all sufficiently hilly distributions then the minimax regret of the game
is upper bounded by

E[RT] ≤ C
√
T

for some constant C > 0 that depends on the game G = (L,H) and the choice of ∆′.

20

ij

G

Figure 2: To each vertex i in the graph G we associate an algorithm Ai. The algorithm plays an action
from the distribution qti over its neighborhood set Ni and receives partial information about relative loss
between the node i and its neighbor. The other piece of the partial information comes from the times when
a neighboring algorithm Aj is run and the action i is picked.

Remark 2. Note that the number of actions and outcomes N = M does not appear in the bound because the
size of the largest point local game with the restricted strategy set is always 2, irrespectively of the number of
actions.

6 The adversarial case

Now we turn our attention to playing against adversarial opponents. We propose and analyze the algorithm
NeigborhoodWatch. We show that the algorithm achieves O(

√
T) regret on locally observable games.

6.1 Method

The method is a two-level procedure motivated by Foster and Vohra [1997], and Blum and Mansour [2007].
The intuition stems from the following observation. Consider the graph whose vertices are the actions, and
two vertices are connected with an edge if the corresponding actions are neighbors. Suppose for each vertex
i we have a distribution qi ∈ ∆N supported on the neighbor set Ni. Let p ∈ ∆N be defined by p = Qp
where Q is the matrix [q1, . . . , qN]. Then there are two equivalent ways of sampling an action from p. The
first way is to directly sample the vertex according to p. The second is to sample a vertex i according to p
and then choose a vertex j within the neighbor set Ni according to qi. Because of the stationarity (or flow)
condition p = Qp, the two ways are equivalent. This idea of finding a fixed point is implicit in Foster and
Vohra [1997], and Blum and Mansour [2007], who show how stationarity can be used to convert external
regret guarantees into an internal regret statement.7 We show here that, in fact, this conversion can be done
“locally” and only with “comparison” information between neighboring actions.

Our procedure is as follows. We run N different algorithms A1, . . . ,AN , each corresponding to a vertex
and its neighbor set. Within this neighbor set we obtain small regret because we can construct estimates of
loss differences among the actions, thanks to the local observability condition. Each algorithm Ai produces
a distribution qti ∈ ∆N at round t, reflecting the relative performance of the vertex i and its neighbors.
Since Ai is only concerned with its local neighborhood, we require that qti has support on Ni and is zero
everywhere else. The meta algorithm NeigborhoodWatch combines the distributions Qt = [qt1, . . . , q

t
N]

and computes pt as a fixed point

pt = Qtpt . (7)

How do we choose our actions? At each round, we draw Kt ∼ pt and then It ∼ qtKt according to our
two-level scheme. The action It is the action we play in the partial monitoring game against the adversary.

7For the definition of internal regret, see the next section. The external regret is just the regret, the word “external” is used
as “not internal”.

21

Algorithm 2 NeigborhoodWatch Algorithm

1: For all i = {1, . . . , N}, initialize algorithm Ai with q1
i = x1

i = 1Ni/|Ni|
2: for t=1,. . . , T do
3: Let Qt = [qt1, . . . , q

t
N], where qti is furnished by Ai

4: Find pt satisfying pt = Qtpt

5: Draw kt from pt

6: Play It drawn from qtkt and obtain signal SItejt
7: Run local algorithm Akt with the received signal
8: For any i 6= kt, q

t+1
i ← qti

9: end for

Algorithm 3 Local Algorithm Ai
1: If t = 1, initialize s = 1
2: For r ∈ {τi(s− 1) + 1, . . . , τi(s)} (i.e. for all r since the last time Ai was run) construct

br(i,j) = vT

i,j

[
I {Ir = i}Si

I {kr = i} I {Ir = j}Sj/qri (j)

]
ejr

for all j ∈ Ni
3: Define for all j ∈ Ni,

hs(i,j) =

τi(s)∑

r=τi(s−1)+1

br(i,j)

and let
f̃si =

[
hs(i,j) · I {j ∈ Ni}

]
j∈[N]

4: Pass the cost f̃si to a full-information online convex optimization algorithm over the simplex (e.g. Ex-
ponential Weights Algorithm) and receive the next distribution xs+1 supported on Ni

5: Define
qt+1
i ← (1− γ)xs+1 + (γ/|Ni|)1Ni

6: Increase the count s← s+ 1

Let the action played by the adversary at time t be denoted by Jt. Then the feedback we obtain is SIteJt .
This information is passed to AKt which updates the distributions qtKt . In Section 6.2.2 we detail how this
is done.

The advantage of the above two-level method is that while the actions are still chosen with respect to
the distribution qt, the loss difference estimations are only needed locally. The local observability condition
ensures that these local estimations can be done without using “non-local” actions.

6.2 Analysis of NeigborhoodWatch

Before presenting the main result of this section, we need the concept of local internal regret.

6.2.1 Local internal regret

Let φ : {1, . . . , N} 7→ {1, . . . , N} be a departure function [Cesa-Bianchi et al., 2006], and let It and Jt denote
the moves at time t of the player and the opponent, respectively. At the end of the game, regret with respect
to φ is calculated as the difference of the incurred cumulative cost and the cost that would have been incurred
had we played action φ(It) instead of It, for all t. Let Φ be a set of departure functions. The Φ-regret is

22

defined as

1

T

T∑

t=1

c(It, Jt)− inf
φ∈Φ

1

T

T∑

t=1

c(φ(It), Jt)

where the cost function considered in this paper is simply c(i, j) = Li,j . If Φ = {φk : k ∈ [N]} consists of
constant mappings φk(i) = k, the regret is called external, or just simply regret: this definition is equivalent
to the regret definition in the introduction. For (global) internal regret, the set Φ consists of all departure
functions φi→j such that φi→j(i) = j and φi→j(h) = h for h 6= i.

Definition 9. For a game G, let the graph G be its neighborhood graph: its vertices are the actions of the
game, and two vertices are connected with an edge if the corresponding actions are neighbors. A departure
function φi→j is called local if j is a neighbor of i in the neighborhood graph G. Let ΦL be the set of all local
departure functions. The ΦL-regret defined with respect to the set of all local departure functions is called
local internal regret.

The main result of the paper is the following internal regret guarantee.

Theorem 6. The local internal regret of Algorithm 2 is bounded as

sup
φ∈ΦL

E

{
T∑

t=1

(eIt − eφ(It))
TLejt

}
≤ 4Nv̄

√
6(logN)T

where v̄ = max(i,j) ‖v(i,j)‖∞.

To prove that the same bound holds for the external regret we need two observations. The fist observation
is that the local internal regret is equal to the the internal regret:

Lemma 6. There exists a problem dependent constant K such that the internal regret is at most K times
the local internal regret.

The second (well-known) observation is that the internal regret is always greater than or equal to the
external regret.

Corollary 5. External regret of Algorithm 2 is bounded as

E{RT } ≤ 4KNv̄
√

6(logN)T

where K is the upper bound from Lemma 6.

We remark that high probability bounds can also be obtained in a rather straightforward manner, using,
for instance, the approach of Abernethy and Rakhlin [2009]. Another extension, the case of random signals,
is discussed in Section 6.3.

The rest of this section is devoted to prove Theorem 6.

6.2.2 Estimating loss differences

The random variable kt drawn from pt at time t determines which algorithm is active on the given round.
Let

τi(s) = min{t : s =

t∑

r=1

I {kt = i}}

denote the (random) time when the algorithm Ai is invoked for the s-th time. By convention, τi(0) = 0.
Further, define

πi(t) = min{t′ ≥ t : kt′ = i}

23

to denote the next time the algorithm is run on or after time t. When invoked for the s-th time, the algorithm
Ai constructs estimates

br(i,j) , vT

i,j

[
I {Ir = i}Si

I {kr = i} I {Ir = j}Sj/qri (j)

]
ejr (r ∈ {τi(s− 1) + 1, . . . , τi(s)}, j ∈ Ni)

for all the rounds after it has been run the last time, until (and including) the current time r = τi(s). We
can assume bt(i,j) = 0 for any j /∈ Ni. The estimates bt(i,j) can be constructed by the algorithm because SIrejr
is precisely the feedback given to the algorithm.

Let Ft be the σ-algebra generated by the random variables {k1, I1, . . . , kt, It}. For any t, the (conditional)
expectation satisfies

E
[
bt(i,j)|Ft−1

]
=

N∑

k=1

ptkq
t
k(i)vT

i,j

[
Si
0

]
ejt + ptiq

t
i(j)v

T

i,j

[
0

Sj/q
t
i(j))

]
ejt

= ptiv
T

i,jS(i,j)ejt

= pti(`j − `i)Tejt

= pti(ej − ei)TLejt (8)

where in the second equality we used the fact that
∑N
k=1 p

t
kq
t
k(i) = pti by stationarity (7). Thus each

algorithm Ai, on average, has access to unbiased estimates of the loss differences within its neighborhood
set.

Recall that algorithm Ai is only aware of its neighborhood, and therefore we peg coordinates of qti to
zero outside of Ni. However, for convenience, our notation below still employs full N -dimensional vectors,
and we keep in mind that only coordinates indexed by Ni are considered and modified by Ai.

When invoked for the s-th time (that is, t = τi(s)), Ai constructs linear functions (cost estimates)
f̃si ∈ RN defined by

f̃si =
[
hs(i,j) · I {j ∈ Ni}

]
j∈[N]

,

where

hs(i,j) =

τi(s)∑

r=τi(s−1)+1

br(i,j) .

We now show that f̃si ·q
τ(s)
i has the same conditional expectation as the actual loss of the meta algorithm

NeigborhoodWatch at time t = τi(s). That is, by bounding expected regret of the black-box algorithm
operating on {f̃si }, we bound the actual regret suffered by the meta algorithm on the rounds when Ai was
invoked.

Lemma 7. Consider algorithm Ai. It holds that

E
{

(q
τi(s+1)
i − eu)TLejτi(s+1)

∣∣∣ Fτi(s)
}

= E
{
f̃s+1
i · (qτi(s+1)

i − eu)
∣∣∣ Fτi(s)

}

for any u ∈ Ni.

Proof. Throughout the proof, we drop the subscript i on τi to ease the notation. Note that q
τ(s+1)
i = q

τ(s)+1
i

since the distribution is not updated when algorithm Ai is not invoked. Hence, conditioned on Fτ(s), the

variable (q
τ(s+1)
i − eu) can be taken out of the expectation. We therefore need to show that

(q
τ(s+1)
i − eu) · E

{
Lejτ(s+1)

|Fτ(s)

}
= (q

τ(s+1)
i − eu) · E

{
f̃s+1
i |Fτ(s)

}
(9)

24

First, we can write

E
{
hs+1

(i,j)

∣∣∣ Fτ(s)

}
= E





τ(s+1)∑

t=τ(s)+1

bt(i,j)

∣∣∣∣∣∣
Fτ(s)





= E





∞∑

t=τ(s)+1

bt(i,j)I {t ≤ τ(s+ 1)}

∣∣∣∣∣∣
Fτ(s)





=

∞∑

t=τ(s)+1

E
{
E
[
bt(i,j)I {t ≤ τ(s+ 1)}

∣∣∣ Ft−1

] ∣∣∣ Fτ(s)

}

=

∞∑

t=τ(s)+1

E
{
I {t ≤ τ(s+ 1)}E

[
bt(i,j)

∣∣∣ Ft−1

] ∣∣∣ Fτ(s)

}
.

The last step follows because the event {t ≤ τ(s + 1)} is Ft−1-measurable (that is, variables k1, . . . , kt−1

determine the value of the indicator). By (8), we conclude

E
{
hs+1

(i,j)

∣∣∣ Fτ(s)

}
=

∞∑

t=τ(s)+1

E
{
I {t ≤ τ(s+ 1)} pti(ej − ei)TLejt

∣∣ Fτ(s)

}
. (10)

Since I {t = τ(s+ 1)} = I {kt = i} I {t ≤ τ(s+ 1)}, we have

E
{
I {t = τ(s+ 1)} ejt

∣∣ Fτ(s)

}
= E

{
E {I {kt = i} I {t ≤ τ(s+ 1)} ejt | Ft−1}

∣∣ Fτ(s)

}

= E
{
I {t ≤ τ(s+ 1)} ejtE {I {kt = i} | Ft−1}

∣∣ Fτ(s)

}

= E
{
I {t ≤ τ(s+ 1)}P(kt = i

∣∣ Ft−1)ejt
∣∣ Fτ(s)

}

= E
{
I {t ≤ τ(s+ 1)} ptiejt

∣∣ Fτ(s)

}
.

Combining with (10),

E
{
hs+1

(i,j)

∣∣∣ Fτ(s)

}
=

∞∑

t=τ(s)+1

E
{
I {t ≤ τ(s+ 1)} pti(ej − ei)TLejt

∣∣ Fτ(s)

}

=

∞∑

t=τ(s)+1

E
{
I {t = τ(s+ 1)} (ej − ei)TLejt

∣∣ Fτ(s)

}

Observe that coordinates of f̃s+1
i , q

τ(s+1)
i , and eu are zero outside of Ni. We then have that

E
{
f̃s+1
i

∣∣∣ Fτ(s)

}
=
[
I {j ∈ Ni}E

{
hs+1

(i,j)

∣∣∣ Fτ(s)

}]
j∈N

=


I {j ∈ Ni}

∞∑

t=τ(s)+1

E
{

(ej − ei)TLejtI {t = τ(s+ 1)}
∣∣ Fτ(s)

}


j∈N

=


I {j ∈ Ni}

∞∑

t=τ(s)+1

E
{
ejLejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}


j∈N

− c · 1Ni

where

c =

∞∑

t=τ(s)+1

E
{
eiLejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}

25

is a scalar. When multiplying the above expression by q
τ(s+1)
i −eu, the term c·1Ni vanishes. Thus, minimizing

regret with relative costs (with respect to the ith action) is the same as minimizing regret with the absolute
costs. We conclude that

(q
τ(s+1)
i − eu)E

{
f̃s+1
i

∣∣∣ Fτ(s)

}
= (q

τ(s+1)
i − eu) ·




∞∑

t=τ(s)+1

E
{
ejLejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}


j∈Ni

= (q
τ(s+1)
i − eu) ·

∞∑

t=τ(s)+1

E
{
LejtI {t = τ(s+ 1)}

∣∣ Fτ(s)

}

= (q
τ(s+1)
i − eu) · E

{
Lejτ(s+1)

∣∣ Fτ(s)

}
.

6.2.3 Regret Analysis

For each algorithm Ai, the estimates f̃si are passed to a full-information black box algorithm which works
only on the coordinates Ni. From the point of view of the full-information black box, the game has length
Ti = max{s : τi(s) ≤ T}, the (random) number of times action i has been played within T rounds.

We proceed similarly to Abernethy and Rakhlin [2009]: we use a full-information online convex opti-
mization procedure with an entropy regularizer (also known as the Exponential Weights Algorithm) which
receives the vector f̃si and returns the next mixed strategy xs+1 ∈ ∆N (in fact, effectively in ∆|Ni|). We
then define

qt+1
i = (1− γ)xs+1 + (γ/|Ni|)1Ni

where γ is to be specified later. Since Ai is run at time t, we have τi(s) = t by definition. The next time Ai
is active (that is, at time τi(s+ 1)), the action Iτi(s+1) will be played as a random draw from qt+1

i = q
τi(s+1)
i ;

that is, the distribution is not modified on the interval {τi(s) + 1, . . . , τi(s+ 1)}.
We prove Theorem 6 by a series of lemmas. The first one is a direct consequence of an external regret

bound for a Follow the Regularized Leader (FTRL) algorithm in terms of local norms [Abernethy and
Rakhlin, 2009]. For a strictly convex “regularizer” F , the local norm ‖·‖x is defined by ‖z‖x =

√
zT∇2F (x)z

and its dual is ‖z‖∗x =
√
zT∇2F (x)−1z.

Lemma 8. The full-information algorithm utilized by Ai has an upper bound

E

{
Ti∑

s=1

f̃si · (qτi(s)i − eφ(i))

}
≤ ηE

{
Ti∑

s=1

(‖f̃si ‖∗xs)2

}
+ η−1 logN + Tγ ¯̀

on its external regret, where φ(i) ∈ Ni is any neighbor of i, ¯̀= maxi,j Li,j, and η is a learning rate parameter
to be tuned later.

Proof. Since our decision space is a simplex, it is natural to use the (negative) entropy regularizer, in which
case FTRL is the same as the Exponential Weights Algorithm. From Abernethy and Rakhlin [2009, Thm
2.1], for any comparator u with zero support outside |Ni|, the following regret guarantee holds:

Ti∑

s=1

f̃si · (xs − u) ≤ η
Ti∑

s=1

(‖f̃si ‖∗xs)2 + η−1 log(|Ni|) .

An easy calculation shows that in the case of entropy regularizer F , the Hessian∇2F (x) = diag(x−1
1 , x−1

2 , . . . , x−1
N)

and ∇2F (x)−1 = diag(x1, x2, . . . , xN). We refer to Abernethy and Rakhlin [2009] for more details.
Let φ : {1, . . . , N} 7→ {1, . . . , N} be a local departure function (see Definition 9). We can then write a

regret guarantee
Ti∑

s=1

f̃si · (xs − eφ(i)) ≤ η
Ti∑

s=1

(‖f̃si ‖∗xs)2 + η−1 log(|Ni|) .

26

Since, in fact, we play according to a slightly modified version q
τi(s)
i of xs, it holds that

Ti∑

s=1

f̃si · (qτi(s)i − eφ(i)) ≤ η
Ti∑

s=1

(‖f̃si ‖∗xs)2 + η−1 log(|Ni|) +

Ti∑

s=1

f̃si · (qτi(s)i − xs) .

Taking expectations of both sides and upper bounding |Ni| by N , we get

E

{
Ti∑

s=1

f̃si · (qτi(s)i − eφ(i))

}
≤ ηE

{
Ti∑

s=1

(‖f̃si ‖∗xs)2

}
+ η−1 logN + E

{
Ti∑

s=1

f̃si · (qτi(s)i − xs)
}

.

A proof identical to that of Lemma 7 gives

E
{
f̃si · (qτi(s)i − xs)

∣∣∣ Fτi(s−1)

}
= E

{
(q
τi(s)
i − xs)TLejτi(s) |Fτi(s−1)

}

≤ E
{
‖qτi(s)i − xs‖1 · ‖Lejτi(s)‖∞

∣∣∣ Fτi(s−1)

}

≤ γ ¯̀

for the last term, where ¯̀ is the upper bound on the magnitude of entries of L. Putting everything together,

E

{
Ti∑

s=1

f̃si · (qτi(s)i − eφ(i))

}
≤ ηE

{
Ti∑

s=1

(‖f̃si ‖∗xs)2

}
+ η−1 logN + Tγ ¯̀

where we have upper bounded Ti by T .

As with many bandit-type problems, effort is required to show that the variance term is controlled. This
is the subject of the next lemma.

Lemma 9. The variance term in the bound of Lemma 8 is upper bounded as

N∑

i=1

E

{
Ti∑

s=1

(‖f̃si ‖∗xs)2

}
≤ 24v̄2NT .

Proof. First, fix an i ∈ [N] and consider the term E
{∑Ti

s=1(‖f̃si ‖∗xs)2
}

. Until the last step of the proof, we

will sometimes omit i from the notation.
We start by observing that f̃si is a sum of τ(s) − τ(s − 1) − 1 terms of the type vT

i,jSiejr (that is, of

constant magnitude) and one term of the type vT
i,jSjejr/q

r
i (j). In controlling ‖f̃si ‖∗xs , we therefore have two

difficulties: controlling the number of constant-size terms and making sure the last term does not explode
due to division by a small probability qri (j). The former is solved below by a careful argument below, while
the latter problem is solved according to usual bandit-style arguments.

More precisely, we can write f̃si = g
τi(s−1)
τi(s)

+ hτi(s) where the vectors g
τi(s−1)
τi(s)

, hτi(s) ∈ RN are defined as

g
τi(s−1)
τi(s)

(j) , gτi(s−1)(j) ,
τi(s)−1∑

r=τi(s−1)

I {Ir = i} vT

i,jSiejr I {j ∈ Ni}

and
hτi(s)(j) = I

{
Iτi(s) = j

}
vT

i,Iτi(s)
SIτi(s)ejτi(s)/q

τi(s)
i (Iτi(s)) .

Then
(‖f̃si ‖∗xs)2 = (‖gτi(s−1) + hτi(s)‖∗xs)2 ≤ 2(‖gτi(s−1)‖∗xs)2 + 2(‖hτi(s)‖∗xs)2

27

We will bound each of the two terms separately, in expectation. For the second term,

(‖hτi(s)‖∗xs)2 = xs(Iτ)(vT

i,IτSIτ ejτ /q
τ
i (Iτ))2 ≤ xs(Iτ)(v̄/qτi (Iτ))2

where τ = τi(s). Since q
τi(s)
i = (1− γ)xs + (γ/|Ni|)1Ni , it is easy to verify that xs(Iτ)/qτi (Iτ) ≤ 2 (whenever

γ < 1/2) and thus
(‖hτi(s)‖∗xs)2 ≤ 2v̄2/qτi (Iτ) .

The remaining division by the probability disappears under the expectation:

E
{

(‖hτi(s)‖∗xs)2
∣∣∣ σ(k1, I1, . . . , kτi(s))

}
≤ 2v̄2

N∑

j=1

q
τi(s)
i (j)/q

τi(s)
i (j) = 2Nv̄2 . (11)

Consider now the second term. As discussed in the proof of Lemma 8, the inverse Hessian of the entropy
function shrinks each coordinate i precisely by xs(i) ≤ 1, implying that the local norm is dominated by the
Euclidean norm :

‖gτi(s−1)‖∗xs ≤ ‖gτi(s−1)‖2.

It is therefore enough to upper bound E
{∑Ti

s=1 ‖gτi(s)‖22
}

. The idea of the proof is the following. Observe

that P (kt = i|Ft−1) = P (It = i|Ft−1). Conditioned on the event that either kt = i or It = i, each of the
two possibilities has probability 1/2 of occurring. Note that gτi(s−1) inflates every time kt 6= i, yet It = i
occurs. It is then easy to see that magnitude of gτi(s−1) is unlikely to get large before algorithm Ai is run
again. We now make this intuition precise.

The function gt is presently defined only for those time steps when t = τi(s) for some s (that is, when
the algorithm Ai is invoked). We extend this definition as follows. Let the jth coordinate of gt be defined as

gtπ(t+1)(j) , gt(j) ,
π(t+1)−1∑

r=t

I {Ir = i} v(i,j)Siejr

for j ∈ Ni and 0 otherwise. The function gt can be thought of as accumulating partial pieces on rounds
when It = i until kt = i occurs. Let us now define an analogue of τ and π for the event that either It = i or
kt = i:

γi(s) = min

{
t : s =

t∑

r=1

I {kt = i or It = i}
}

Further, for any t, let
νi(t) = min{t′ ≥ t : kt = i or It = i},

the next time occurrence of the event {kτ = i or Iτ = i} on or after t. Let

I = I {νi(t) 6= πi(t)}

be the indicator of the event that the first time after t that {kτ = i or Iτ = i} occurred it was also the case
that the algorithm was not run (i.e. kτ 6= i). Note that gt(j) can now be written recursively as

gt(j) = I ·
[
v(i,j)Siejν(t) + g

ν(t)+1
π(ν(t)+1)(j)

]
.

As argued before, P(I = 1|Ft−1) = 1/2. We will now show that E {gt(j) | Ft−1} ≤ 2v̄ by the following

28

inductive argument, whose base case trivially holds for t = T :

E
{
gt(j)

∣∣ Ft−1

}
= E

{
E
{
I ·
[
v(i,j)Siejν(t) + gν(t)+1(j)

] ∣∣∣ Fν(t)

} ∣∣∣ Ft−1

}

= E
{
Iv(i,j)Siejν(t) + IE

{
gν(t)+1(j)

∣∣∣ Fν(t)

} ∣∣∣ Ft−1

}

≤ v̄ + E
{
Igν(t)+1(j)

∣∣∣ Ft−1

}

= v̄ + E
{
I E

[
gν(t)+1(j)

∣∣∣ Fν(t)

]

︸ ︷︷ ︸
≤ 2v̄ by induction

∣∣∣ Ft−1

}

≤ v̄ + E {I | Ft−1} 2v̄

≤ v̄ + (1/2)2v̄ = 2v̄

The expected value of (gt(j))2 can be controlled in a similar manner. To ease the notation, let z =
v(i,j)Siejν(t) . Using the upper bound for the conditional expectation of gt(j) calculated above,

E
{

(gt(j))2
∣∣ Ft−1

}
= E

{
I ·
(
z2 + (gν(t)+1(j))2 + 2zgν(t)+1(j)

) ∣∣∣ Ft−1

}

= E
{
Iz2 + IE

{
(gν(t)+1(j))2

∣∣∣ Fν(t)

}
+ 2IzE

{
gν(t)+1(j)

∣∣∣ Fν(t)

} ∣∣∣ Ft−1

}

≤ 5v̄2 + E
{
IE
{

(gν(t)+1(j))2
∣∣∣ Fν(t)

} ∣∣∣ Ft−1

}

The argument now proceeds with backward induction exactly as above. We conclude that

E
{

(gt(j))2
∣∣ Ft−1

}
≤ 10v̄2

and, hence,

E
{
‖gτi(s−1)‖22

}
≤ 10Nv̄2

Together with (11), we conclude that

E
{

(‖f̃si ‖∗xs)2
}
≤ 2(2Nv̄2 + 10Nv̄2) = 24v̄2N.

Summing over t = 1, . . . , T and observing that only one algorithm is run at any time t proves the statement.

Proof of Theorem 6. The flow condition pt = Qtpt comes in crucially in several places throughout the
proofs, and the next argument is one of them. Observe that

E
{
eφ(It)

∣∣Ft−1

}
=

N∑

k=1

N∑

i=1

ptkq
t
k(i)eφ(i) =

N∑

i=1

eφ(i)

N∑

k=1

ptkq
t
k(i) =

N∑

i=1

eφ(i)p
t
i = E

{
eφ(kt)

∣∣Ft−1

}

and thus

E

{
T∑

t=1

eTφ(It)
Lejt

}
= E

{
T∑

t=1

E
{
eφ(It)

∣∣Ft−1

}T
Lejt

}

= E

{
T∑

t=1

E
{
eφ(kt)

∣∣Ft−1

}T
Lejt

}

= E

{
T∑

t=1

eTφ(kt)
Lejt

}

29

It is because of this equality that external regret with respect to the local neighborhood can be turned into
local internal regret. We have that

E

{
T∑

t=1

(eIt − eφ(It))
TLejt

}
= E

{
T∑

t=1

(eIt − eφ(kt))
TLejt

}

= E

{
T∑

t=1

(qtkt − eφ(kt))
TLejt

}

=

N∑

i=1

E

{
T∑

t=1

I {kt = i} (qti − eφ(i))
TLejt

}

By Lemma 7,

E
{

(q
τi(s)
i − eφ(i))

TLejτi(s) |Fτi(s−1)

}
= E

{
f̃si · (qτi(s)i − eφ(i))

∣∣∣ Fτi(s−1)

}

and so by Lemma 8

E

{
T∑

t=1

(eIt − eφ(It))
TLejt

}
=

N∑

i=1

E

{
Ti∑

s=1

f̃si · (qτi(s)i − eφ(i))

}

≤ η
N∑

i=1

E

{
Ti∑

s=1

(‖f̃si ‖∗xs)2

}
+N(η−1 logN + Tγ ¯̀)

With the help of Lemma 9,

E

{
T∑

t=1

(eIt − eφ(It))
TLejt

}
≤ η24v̄2NT +N(η−1 logN + Tγ ¯̀) = 4Nv̄

√
6(logN)T + TNγ ¯̀

with η =
√

logN
24v̄2T .

We remark that for the purposes of “in expectation” bounds, we can simply set γ = 0 and still get
O(
√
T) guarantees (see Abernethy and Rakhlin [2009]). This point is obscured by the fact that the original

algorithm of Auer et al. [2003] uses the same parameter for the learning rate η and exploration γ. If these are
separated, the “in expectation” analysis of Auer et al. [2003] can be also done with γ = 0. However, to prove
high probability bounds on regret, a setting of γ ∝ T−1/2 is required. Using the techniques in Abernethy
and Rakhlin [2009], the high-probability extension of results in this paper is straightforward (tails for the
terms ‖gτi(s−1)‖22 in Lemma 9 can be controlled without much difficulty).

6.3 Random Signals

We now briefly consider the setting of partial monitoring with random signals, studied by Rustichini [1999],
Lugosi, Mannor, and Stoltz [2008], and Perchet [2011]. Without much modification of the above arguments,
the local observability condition yet again yields O(

√
T) internal regret.

Suppose that instead of receiving deterministic feedback Hi,j , the decision maker now receives a random
signal di,j drawn according to the distribution Hi,j ∈ ∆(Σ) over the signals. In the problem of deterministic
feedback studied in the paper so far, the signal Hi,j = σ was identified with the Dirac distribution δσ.

Given the matrix H of distributions on Σ, we can construct, for each row i, a matrix Ξi ∈ Rsi×M as

Ξi(k, j) , Hi,j(σk)

where the set σ1, . . . , σsi is the union of supports of Hi,1, . . . ,Hi,M . Columns of Ξi are now distributions over
signals. Given the actions It and jt of the player and the opponent, the feedback provided to the player can

30

be equivalently written as StItejt where each column r of the random matrix StIt ∈ Rsi×M is a standard unit
vector drawn independently according to the distribution given by the column r of Ξi. Hence, ESti = Ξi.

As before, the matrix Ξ(i,j) is constructed by stacking Ξi on top of Ξj . The local observability condition,
adapted to the case of random signals, can now be stated as:

`i − `j ∈ Im ΞT

(i,j)

for all neighboring actions i, j.
Let us specify the few places where the analysis slightly differs from the arguments of the paper. Since

we now have an extra (independent) source of randomness, we define Ft to be the σ-algebra generated by
the random variables {k1, I1, S

1 . . . , kt, It, S
t} where St is the random matrix obtained by stacking all Sti .

We now define the estimates

br(i,j) , vT

i,j

[
I {Ir = i}Sti

I {kr = i} I {Ir = j}Stj/qri (j)

]
ejr , ∀r ∈ {τi(s− 1) + 1, . . . , τi(s)}, ∀j ∈ Ni

with the only modification that Sti and Stj are now random variables. Equation (8) now reads

E
[
bt(i,j)|Ft−1

]
=

N∑

k=1

ptkq
t
k(i) · vT

i,j

[
Ξi
0

]
ejt + ptiq

t
i(j) · vT

i,j

[
0

Ξj/q
t
i(j))

]
ejt

= ptiv
T

i,jΞ(i,j)ejt

= pti(ej − ei)TLejt . (12)

The rest of the analysis follows as in Section 6.2.3, with Ξ in place of S.

7 Classification – putting everything together

In this section we use the results of this paper, along with some previous results, to prove the classification
theorems 1 and 2. For the convenience of the reader, we recite these theorems:

Theorem 1 (Classification for games against stochastic opponents). Let G = (L,H) be a finite partial-
monitoring game. Let K be the number of non-dominated actions in G. The minimax expected regret of G
against stochastic opponents is

E[RT (G)] =





0, K = 1;

Θ̃(
√
T), K > 1, G is locally observable;

Θ(T 2/3), G is globally observable but not locally observable;
Θ(T), G is not globally observable.

Theorem 2 (Classification for games against adversarial opponents). Let G = (L,H) be a non-degenerate
finite partial-monitoring game. Let K be the number of non-dominated actions in G. The minimax expected
regret of G against adversarial opponents is

E[RT (G)] =





0, K = 1;

Θ(
√
T), K > 1, G is locally observable;

Θ(T 2/3), G is globally observable but not locally observable;
Θ(T), G is not globally observable.

Proof of Theroems 1 and 2. The following lower bound results are sufficient for both theorems:

• If a game is not globally observable then its minimax regret is Θ(T) [Piccolboni and Schindelhauer,
2001].

31

• If a game has more than one Pareto-optimal actions then its minimax regret is Ω(
√
T) [Antos et al.,

2012].

• If a game is not locally observable then its minimax regret is Ω(T 2/3) (Theorem 4).

On the other hand, the following upper bounds completes the proofs of the theorems:

• If a game has only one Pareto-optimal action then the minimax regret is 0 (trivial: an optimal algorithm
chooses the Pareto-optimal action in every time step).

• If a game is globally observable then the algorithm FeedExp by Piccolboni and Schindelhauer [2001]
achieves O(T 2/3) expected regret [Cesa-Bianchi et al., 2006].

• For locally observable games,

1. the algorithm CBP achieves Õ(
√
T) expected regret against stochastic opponents (Corollary 3);

2. if the game is non-degenerate then NeigborhoodWatch achieves O(
√
T) expected regret against

adversarial opponents (Corollary 5);

8 Discussion

This paper presents the recent advances made in understanding finite partial-monitoring games. The main
achievement of this work is a classification of games based on their minimax regret. Algorithms are presented
that achieve the minimax regret within logarithmic factors for any given game.

The immediate open problem is to include the degenerate games in the classification under the adversarial
model. We conjecture that the classification extends to degenerate games the same way as under the
stochastic model. From a more practical point of view, more computationally efficient algorithms would be
helpful, especially in the stochastic case. If the number of actions or outcomes is high, the running time of
the CBP algorithm dramatically increases. This is due to the fact that the algorithm runs LP solvers in
every time step.

Another important extension is partial monitoring with side information. In the model investigated in
this paper, the learner does not receive any additional information about the outcome, or how the outcome
is generated, before taking an action. In many practical applications it is not the case. In dynamic pricing,
for example, the vendor might (and should) have additional information about the customer, e.g., how much
he needs the product or his financial situation. This leads to the model of partial monitoring with side
information. A recent work by Bartók and Szepesvári [2012] investigates this setting. They prove that
local observability remains the key condition to achieve root-T regret under partial monitoring with side
information.

Acknowledgements

We thank Vianney Perchet and Gilles Stoltz for their helpful comments on the first draft of this paper.

References

J. Abernethy and A. Rakhlin. Beating the adaptive bandit with high probability. In COLT, 2009.

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm for
bandit linear optimization. In Proceedings of the 21st Annual Conference on Learning Theory (COLT
2008), pages 263–273. Citeseer, 2008.

32

Alekh Agarwal, Peter Bartlett, and Max Dama. Optimal allocation strategies for the dark pool problem. In
13th International Conference on Artificial Intelligence and Statistics (AISTATS 2010), May 12-15, 2010,
Chia Laguna Resort, Sardinia, Italy, 2010.

A. Antos, G. Bartók, D. Pál, and Cs. Szepesvári. Toward a classification of finite partial-monitoring games.
Theoretical Computer Science, 2012. to appear.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits. In
Proceedings of the 22nd Annual Conference on Learning Theory, 2009.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The nonstochastic multiarmed bandit problem.
SIAM Journal on Computing, 32(1):48–77, 2003.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

G. Bartók and Cs. Szepesvári. Partial monitoring with side information. In ALT, 2012. To appear.

G. Bartók, D. Pál, and C. Szepesvári. Toward a classification of finite partial-monitoring games. In Algo-
rithmic Learning Theory, pages 224–238. Springer, 2010.

G. Bartók, D. Pál, and C. Szepesvári. Minimax regret of finite partial-monitoring games in stochastic
environments. In Conference on Learning Theory, 2011.

G. Bartók, N. Zolghadr, and Cs. Szepesvári. An adaptive algorithm for finite stochastic partial monitoring.
In ICML, 2012. submitted.

A. Blum and Y. Mansour. From external to internal regret. Journal of Machine Learning Research, 8
(1307-1324):3–8, 2007.

N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Regret minimization under partial monitoring. Mathematics of
Operations Research, 31(3):562–580, 2006.

Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient prediction. IEEE
Transactions on Information Theory, 51(6):2152–2162, June 2005.

T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley, New York, second edition, 2006.

Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex optimization in the
bandit setting: gradient descent without a gradient. In Proceedings of the 16th annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2005), page 394. Society for Industrial and Applied Mathematics,
2005.

D.P. Foster and A. Rakhlin. No internal regret via neighborhood watch. Journal of Machine Learning
Research - Proceedings Track (AISTATS), 22:382–390, 2012.

D.P. Foster and R.V. Vohra. Calibrated learning and correlated equilibrium. Games and Economic Behavior,
21(1-2):40–55, 1997.

Robert Kleinberg and Tom Leighton. The value of knowing a demand curve: Bounds on regret for online
posted-price auctions. In Proceedings of 44th Annual IEEE Symposium on Foundations of Computer
Science 2003 (FOCS 2003), pages 594–605. IEEE, 2003.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and Computation,
108:212–261, 1994.

G. Lugosi, S. Mannor, and G. Stoltz. Strategies for prediction under imperfect monitoring. Math. Oper.
Res, 33:513–528, 2008.

33

Gábor Lugosi and Nicolò Cesa-Bianchi. Prediction, Learning, and Games. Cambridge University Press,
2006.

V. Perchet. Internal regret with partial monitoring: Calibration-based optimal algorithms. Journal of
Machine Learning Research, 12:1893–1921, 2011.

A. Piccolboni and C. Schindelhauer. Discrete prediction games with arbitrary feedback and loss. In Com-
putational Learning Theory, pages 208–223. Springer, 2001.

A. Rustichini. Minimizing regret: The general case. Games and Economic Behavior, 29(1-2):224–243, 1999.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings
of Twentieth International Conference on Machine Learning (ICML 2003), 2003.

Appendix

Here we give the proofs of the lemmas used in the main proof. For the convenience of the reader, we restate
the lemmas.

Lemma 1. There exists a (problem dependent) constant c such that the following inequalities hold:

N2
1 ≥ N1

1 − cTε
√
N1

4 , N2
3 ≥ N1

3 − cTε
√
N1

4 ,

N1
2 ≥ N2

2 − cTε
√
N2

4 , N1
3 ≥ N2

3 − cTε
√
N2

4 .

Proof. For any 1 ≤ t ≤ T , let f t = (f1, . . . , ft) ∈ Σt be a feedback sequence up to time step t. For i = 1, 2,
let p∗i be the probability mass function of feedback sequences of length T −1 under opponent strategy pi and
algorithm A. We start by upper bounding the difference between values under the two opponent strategies.
For i 6= j ∈ {1, 2} and k ∈ {1, 2, 3},

N i
k −N j

k =
∑

fT−1

(
p∗i (f

T−1)− p∗j (fT−1)
) T−1∑

t=0

1A(f t) ∈ Nk

≤
∑

fT−1:

p∗i (fT−1)−p∗j (fT−1)≥0

(
p∗i (f

T−1)− p∗j (fT−1)
) T−1∑

t=0

1A(f t) ∈ Nk

≤ T
∑

fT−1:

p∗i (fT−1)−p∗j (fT−1)≥0

p∗i (f
T−1)− p∗j (fT−1) =

T

2
‖p∗1 − p∗2‖1

≤ T
√

KL(p∗1||p∗2)/2 , (13)

where KL(·||·) denotes the Kullback-Leibler divergence and ‖ · ‖1 is the L1-norm. The last inequality follows
from Pinsker’s inequality [Cover and Thomas, 2006]. To upper bound KL(p∗1||p∗2) we use the chain rule
for KL-divergence. By overloading p∗i so that p∗i (f

t−1) denotes the probability of feedback sequence f t−1

under opponent strategy pi and algorithm A, and p∗i (ft|f t−1) denotes the conditional probability of feedback
ft ∈ Σ given that the past feedback sequence was f t−1, again under pi and A. With this notation we have

KL(p∗1||p∗2) =

T−1∑

t=1

∑

ft−1

p∗1(f t−1)
∑

ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)

=

T−1∑

t=1

∑

ft−1

p∗1(f t−1)

4∑

i=1

1A(f t−1) ∈ Ni
∑

ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)
(14)

34

Let a>ft be the row of S that corresponds to the feedback symbol ft.
8 Assume k = A(f t−1). If the feedback

set of action k does not contain ft then trivially p∗i (ft|f t−1) = 0 for i = 1, 2. Otherwise p∗i (ft|f t−1) = a>ftpi.

Since p1 − p2 = 2εv and v ∈ KerS, we have a>ftv = 0 and thus, if the choice of the algorithm is in either

N1,N2 or N3, then p∗1(ft|f t−1) = p∗2(ft|f t−1). It follows that the inequality chain can be continued from (14)
by writing

KL(p∗1||p∗2) ≤
T−1∑

t=1

∑

ft−1

p∗1(f t−1)1A(f t−1) ∈ N4

∑

ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)

≤ c1ε2
T−1∑

t=1

∑

ft−1

p∗1(f t−1)1A(f t−1) ∈ N4 (15)

≤ c1ε2N1
4 .

In (15) we used Lemma 10 (see below) to upper bound the KL-divergence of p1 and p2. Flipping p∗1 and
p∗2 in (13) we get the same result with N2

4 . Reading together with the bound in (13) we get all the desired
inequalities.

Lemma 10. Fix a probability vector p ∈ ∆M , and let ε ∈ RM such that p− ε, p+ ε ∈ ∆M also holds. Then

KL(p− ε||p+ ε) = O(‖ε‖22) as ε→ 0.

The constant and the threshold in the O(·) notation depends on p.

Proof. Since p, p + ε, and p − ε are all probability vectors, notice that |ε(i)| ≤ p(i) for 1 ≤ i ≤ M . So if a
coordinate of p is zero then the corresponding coordinate of ε has to be zero as well. As zero coordinates
do not modify the KL divergence, we can assume without loss of generality that all coordinates of p are
positive. Since we are interested only in the case when ε→ 0, we can also assume without loss of generality
that |ε(i)| ≤ p(i)/2. Also note that the coordinates of ε = (p+ ε)− ε have to sum up to zero. By definition,

KL(p− ε||p+ ε) =

M∑

i=1

(p(i)− ε(i)) log
p(i)− ε(i)
p(i) + ε(i)

.

We write the term with the logarithm

log
p(i)− ε(i)
p(i) + ε(i)

= log

(
1− ε(i)

p(i)

)
− log

(
1 +

ε(i)

p(i)

)
,

so that we can use that, by second order Taylor expansion around 0, log(1− x)− log(1 + x) = −2x+ r(x),
where |r(x)| ≤ c|x|3 for |x| ≤ 1/2 and some c > 0. Combining these equations, we get

KL(p− ε||p+ ε) =

M∑

i=1

(p(i)− ε(i))
[
−2

ε(i)

p(i)
+ r

(
ε(i)

p(i)

)]

=

M∑

i=1

−2ε(i) +

M∑

i=1

2
ε2(i)

p(i)
+

M∑

i=1

(p(i)− ε(i))r
(
ε(i)

p(i)

)
.

Here the first term is 0, letting p = mini∈{1,...,M} p(i) the second term is bounded by

8Here without loss of generality we assume that different actions have difference feedback symbols, and thus a row of S
corresponding to a symbol is unique.

35

2
∑M
i=1 ε

2(i)/p = (2/p)‖ε‖22, and the third term is bounded by

M∑

i=1

(p(i)− ε(i))
∣∣∣∣r
(
ε(i)

p(i)

)∣∣∣∣ ≤ c
M∑

i=1

p(i)− ε(i)
p3(i)

|ε(i)|3

≤ c
M∑

i=1

|ε(i)|
p2(i)

ε2(i)

≤ c

2

M∑

i=1

1

p
ε2(i) =

c

2p
‖ε‖22.

Hence, KL(p− ε||p+ ε) ≤ 4+c
2p ‖ε‖22 = O(‖ε‖22).

Lemma 2. For any {i, j} ∈ N , t ≥ 1,

P
(
|δ̃i,j(t)− δi,j | ≥ ci,j(t)

)
≤ 2|Vi,j |t1−2α .

Proof.

P
(
|δ̃i,j(t)− δi,j | ≥ ci,j(t)

)

≤
∑

k∈N+
i,j

P

(
|v>i,j,k

νk(t− 1)

nk(t− 1)
− v>i,j,kSkp∗| ≥ ‖vi,j,k‖∞

√
α log t

nk(t− 1)

)
(16)

=
∑

k∈N+
i,j

t−1∑

s=1

I {nk(t− 1) = s}P
(
|v>i,j,k

νk(t− 1)

s
− v>i,j,kSkp∗| ≥ ‖vi,j,k‖∞

√
α log t

s

)
(17)

≤
∑

k∈N+
i,j

2t1−2α (18)

= 2|N+
i,j |t1−2α ,

where in (16) we used the triangle inequality and the union bound and in (18) we used Hoeffding’s inequality.

Lemma 3. Take an action i and a plausible pair (P ′,N ′) ∈ Ψ such that i ∈ P ′. Then there exists a path π
that starts at i and ends at i∗ that lies in N ′.

Proof. If (P ′,N ′) is a valid configuration, then there is a convex polytope Π ⊆ ∆M such that p∗ ∈ Π,
P ′ = {i : dim Ci ∩Π = M − 1} and N ′ = {{i, j} : dim Ci ∩ Cj ∩Π = M − 2}.

Let p′ be an arbitrary point in Ci ∩ Π. We enumerate the actions whose cells intersect with the line
segment p′p∗, in the order as they appear on the line segment. We show that this sequence of actions
i0, . . . , ir is a feasible path.

• It trivially holds that i0 = i, and ir is optimal.

• It is also obvious that consecutive actions on the sequence are in N ′.

For an illustration we refer the reader to Figure 3

Next, we want to prove lemma 4. For this, we need the following auxiliary result:

Lemma 11. Let action i be a degenerate action in the neighborhood action set N+
k,l of neighboring actions

k and l. Then `i is a convex combination of `k and `l.

36

C1 ∩ Π

C2 ∩ Π

C3 ∩ Π

C4 ∩ Π

C5 ∩ Π

C6 ∩ Π

Figure 3: The dashed line defines the feasible path 1, 5, 4, 3.

Proof. For simplicity, we rename the degenerate action i to action 1, while the other actions k, l will be called
actions 2 and 3, respectively. Since action 1 is a degenerate action between actions 2 an 3, we have that

(p ∈ ∆M and p⊥(`1 − `2))→ (p⊥(`1 − `3) and p⊥(`2 − `3))

implying

(`1 − `2)
⊥ ⊆ (`1 − `3)

⊥ ∩ (`2 − `3)
⊥
.

Using de Morgan’s law we get

〈`1 − `2〉 ⊇ 〈`1 − `3〉 ⊕ 〈`2 − `3〉 .

This implies that for any c1, c2 ∈ there exists a c3 ∈ such that

c3(`1 − `2) = c1(`1 − `3) + c2(`2 − `3)

`3 =
c1 − c3
c1 + c2

`1 +
c2 + c3
c1 + c2

`2 ,

suggesting that `3 is an affine combination of (or collinear with) `1 and `2.
We know that there exists p1 ∈ ∆ such that `>1 p1 < `>2 p1 and `>1 p1 < `>3 p1. Also, there exists p2 ∈ ∆M

such that `>2 p2 < `>1 p2 and `>2 p2 < `>3 p2. Using these and linearity of the dot product we get that `3 must
be the middle point on the line, which means that `3 is indeed a convex combination of `1 and `2.

Lemma 4. Fix any t ≥ 1.

1. Take any action i. On the event Gt ∩ Dt,9 from i ∈ P(t) ∪N+(t) it follows that

δi ≤ 2di

√
α log t

f(t)
max
k∈N

Wk√
ηk
.

9Here and in what follows all statements that start with “On event X” should be understood to hold almost surely on the
event. However, to minimize clutter we will not add the qualifier “almost surely”.

37

2. Take any action k. On the event Gt ∩ Dct , from It = k it follows that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

Proof. First we observe that for any neighboring action pair {i, j} ∈ N (t), on Gt it holds that δi,j ≤ 2ci,j(t).

Indeed, from {i, j} ∈ N (t) it follows that δ̃i,j(t) ≤ ci,j(t). Now, on Gt, δi,j ≤ δ̃i,j(t)+ci,j(t). Putting together
the two inequalities we get δi,j ≤ 2ci,j(t).

Now, fix some action i that is not dominated. We define the “parent action” i′ of i as follows: If i is
not degenerate then i′ = i. If i is degenerate then we define i′ to be the Pareto-optimal action such that
δi′ ≥ δi and i is in the neighborhood action set of i′ and some other Pareto-optimal action. It follows from
Lemma 11 that i′ is well-defined.

Consider case 1. Thus, It 6= k(t) = argmaxj∈P(t)∪V(t)W
2
j /nj(t − 1). Therefore, k(t) 6∈ R(t), i.e.,

nk(t)(t − 1) > ηk(t)f(t). Assume now that i ∈ P(t) ∪ N+(t). If i is degenerate then i′ as defined in the
previous paragraph is in P(t) (because the rejected regions in the algorithm are closed). In any case, by
Lemma 3, there is a path (i0, . . . , ir) in N (t) that connects i′ to i∗ (i∗ ∈ P(t) holds on Gt). We have that

δi ≤ δi′ =

r∑

s=1

δis−1,is

≤ 2

r∑

s=1

cis−1,is

= 2

r∑

s=1

∑

j∈Vis−1,is

‖vis−1,is,j‖∞
√

α log t

nj(t− 1)

≤ 2

r∑

s=1

∑

j∈Vis−1,is

Wj

√
α log t

nj(t− 1)

≤ 2diWk(t)

√
α log t

nk(t)(t− 1)

≤ 2diWk(t)

√
α log t

ηk(t)f(t)
.

Upper bounding Wk(t)/
√
ηk(t) by maxk∈N Wk/

√
ηk we obtain the desired bound.

Now, for case 2 take an action k, consider G ∩ Dct , and assume that It = k. On Dc
t , It = k(t).

Thus, from It = k it follows that Wk/
√
nk(t− 1) ≥ Wj/

√
nj(t− 1) holds for all j ∈ P(t). Let Jt =

argminj∈P(t)∪N+(t)
d2j
δ2j

. Now, similarly to the previous case, there exists a path (i0, . . . , ir) from the parent

action J ′t ∈ P(t) of Jt to i∗ in N (t). Hence,

δJt ≤ δJ′t =

r∑

s=1

δis−1,s

≤ 2

r∑

s=1

∑

j∈Vis−1,is

Wj

√
α log t

nj(t− 1)

≤ 2dJtWk

√
α log t

nk(t− 1)
,

38

implying

nk(t− 1) ≤ 4W 2
k

d2
Jt

δ2
Jt

α log t

= min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

This concludes the proof of Lemma 4.

Lemma 5. Let G = (L,H) be a finite partial-monitoring game and p ∈ ∆M an opponent strategy. There
exists a ρ2 > 0 such that Aρ2 is a point-local game in G.

Proof. For any (not necessarily neighboring) pair of actions {i, j}, the boundary between them is defined by
the set Bi,j = {p ∈ ∆M : (`i − `j)>p = 0}. We generalize this notion by introducing the margin: for any

ξ ≥ 0, let the margin be the set Bξi,j = {p ∈ ∆M : |(`i− `j)>p| ≤ ξ}. It follows from finiteness of the action
set that there exists a ξ∗ > 0 such that for any set K of neighboring action pairs,

⋂

{i,j}∈K

Bi,j 6= ∅ ⇐⇒
⋂

{i,j}∈K

Bξ
∗

i,j 6= ∅ . (19)

Let ρ2 = ξ∗/2. Let A = Aρ2 . Then for every pair i, j in A, (`i − `j)
>p∗ = δi,j ≤ δi + δj ≤ ρ2. That

is, p∗ ∈ Bξ
∗

i,j . It follows that p∗ ∈ ⋂i,j∈A×AB
ξ∗

i,j . This, together with (19), implies that A is a point-local
game.

Lemma 6. There exists a problem dependent constant K such that the internal regret is at most K times
the local internal regret.

Let Φ be a set of transformations N 7→ N . Φ-regret is defined as

sup
φ∈Φ

E

{
T∑

t=1

`>Itejt −
T∑

t=1

`>φ(It)
ejt

}

Let ΦL be the set of local transformations. The claim is that there exists a problem-dependent constant K
(independent of T) such that Φ-regret is upper bounded by K times ΦL-regret.

Let us first write

T∑

t=1

`>Itejt −
T∑

t=1

`>φ(It)
ejt =

N∑

i=1

∑

t∈T :It=i

(`i − `φ(i))
>ejt =

N∑

i=1

si(`i − `φ(i))
>p̂i

where si = |{t : It = i}| and p̂i = 1
si

∑
t∈[T]:It=i

ejt , the empirical frequency of adversarial actions on the
rounds when our choice is action i. To prove the claim it is enough to show that for any i ∈ N there exists
a K > 0 (that does not depend on T) and a neighboring action k ∈ Ni such that

(`i − `φ(i))
>p̂i ≤ K(`i − `k)>p̂i .

We may assume that φ(i) is the best response action to p̂i (in other words, p̂i ∈ Cφ(i)) since this makes the
above requirement harder to satisfy. If φ(i) is a neighbor of i, the claim is trivially satisfied with K = 1.
Otherwise, pick p ∈ Ci to be the centroid of Ci and consider the segment [p, p̂i] ⊂ ∆M . Note that on this
segment the function f(q) = mini eiLq is concave and piece-wise linear. Since i and φ(i) are not neighbors,
there exists an action k 6= φ(i) such that k is a neighbor of i and there exists q′ ∈ [p, p̂i] such that `>i q

′ = `>k q
′.

It then follows that `>φ(i)p̂i ≤ `>k p̂i < `>i p̂i. The first inequality is an equality when p̂i = q′′, in which case we

39

p q′ q′′ p̂i

eiLq

ekLq

e�(i)Lq

(a) There must be a neighbor of i, denoted by k
between i and φ(i).

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Ci

p

Ck

Cφ(i)

p̂i

β

q′

q′′

(b) The dashed line denotes the intersec-
tion of the probability simplex and the hy-
perplane (`i − `k)>x = 0. The minimum
angle β must be isolated from zero because
p is the centroid of Ci.

Figure 4: Illustrations for Lemma 6.

may simply choose K = 1. Otherwise, let u denote a unit vector in the direction q′′ − p. We may express p̂i
as q′′ + αu for a constant α > 0. Then we are seeking an upper bound on the ratio

(`i − `k)>q′′ + α(`i − `φ(i))
>u

(`i − `k)>q′′ + α(`i − `k)>u
≤ (`i − `φ(i))

>u

(`i − `k)>u
.

Obviously, the enumerator of the above fraction can be upper bounded by ‖`i− `φ(i)‖. Now what is left is to
lower bound the denominator. The lower bound depends on the angle between orthogonal of (`i − `k) and
the direction p̂i − p. Since p was chosen as the centroid of Ci, this angle (β on Figure 4(b)) is isolated from
zero.

40

