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Interior-Point Methods for Full-Information and
Bandit Online Learning

Jacob D. Abernethy, Elad Hazan, and Alexander Rakhlin

Abstract—We study the problem of predicting individual
sequences with linear loss with full and partial (or bandit) feed-
back. Our main contribution is the first efficient algorithm for
the problem of online linear optimization in the bandit setting
which achieves the optimal O( VT ) regret. In addition, for the
full-information setting, we give a novel regret minimization
algorithm. These results are made possible by the introduction of
interior-point methods for convex optimization to online learning.

Index Terms—Bandit feedback, interior-point methods, online
convex optimization, online learning.

I. INTRODUCTION

N 1952, Robbins [1] introduced a problem of sequential

decision making, later termed the “multiarmed bandit,” in
which a learner must repeatedly make choices in an uncertain
environment. The name draws from the image of a gambler
who, on each of a sequence of rounds, must pull the arm on one
of several slot machines (“one-armed bandits”) that each returns
a reward chosen stochastically from some unknown fixed dis-
tribution. Of course, an ideal strategy would simply be to pull
the arm of the machine which returns the highest expected re-
ward. As the gambler does not know the best arm a priori, his
goal is then to follow a strategy to maximize his rewards, aver-
aged over time, relative to the (expected) reward he could have
received had he known the identity of the best arm. The mul-
tiarmed bandit problem has received much attention over the
years and many variants have been proposed.

We draw attention to one key attribute of such sequential de-
cision frameworks: what feedback is received by the decision
maker after an action is selected? For a gambler playing slot
machines, the gambler receives exactly one value, the reward
on the chosen arm. But a gambler placing a bet in a horse race
can observe not only the outcome of the chosen bet but also
that of any counterfactual. (“I knew I should have bet on Jolly
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Roger.”) The former decision-making model has recently been
called the bandit setting, whereas the latter is occasionally re-
ferred to as the full-information setting; we shall follow this ter-
minology. We note that the bandit setting, where strictly less
information is available, is clearly the more challenging for the
decision maker.

Much of the literature in decision theory has relied on a key
assumption, that our observations are stochastic objects drawn
from a fixed distribution. This approach follows naturally from
our intuitive belief that the past ought to predict the future. But
what if we are unwilling to accept this belief, may we still con-
struct decision strategies with reasonable performance guaran-
tees? Such a problem of universal decision making (or predic-
tion), where our observation sequences are nonstochastic, has
received much attention in a range of communities—learning
theory, information theory, game theory, optimization—and we
refer the reader to the survey by Merhav and Feder [2] as well
as to the excellent book of Cesa-Bianchi and Lugosi [3] for a
thorough exposition.

A. Review of Universal Prediction and Regret Minimization

Before describing the results of this paper, we give a quick re-
view of the sequential decision-making framework with deter-
ministic sequences, also known as adversarial online learning.
On each of a sequence of rounds, a learner (similarly, player)
must select a potentially randomized strategy (similarly pre-
diction or action) denoted by z; from some set K. Before the
learning process begins, the environment (similarly nature or
an adversary) has chosen a sequence of outcomes (similarly,
data points) f1, fa, ... drawn from some set F. There is some
real-valued loss function £ known to both parties, and for each
pair (z, f) € K x F the value #(z, f) is the cost to the learner
for playing = when the outcome was f. After the learner has se-
lected ¢, he receives some “feedback™ .7y which may depend
on both the outcome f; and his action z;. We say the learner
has full information when . 7; := f;, whereas we say the learner
has bandit feedback when .7 := #(xy, f;). After ¢ rounds, the
choice of #; may then only dependon ./, ..., . /4 _1.

In a stochastic setting, under the assumption that each out-
come f; is drawn i.i.d. from a given (unknown) distribution
D, a natural benchmark for the learner is the optimal expected
costinf,ex Ejpt(x, f). Inthe deterministic setting, however,
there is only one sequence fi, fo, ..., and the benchmark needs
to be set as the best performance on this sequence. It is then nat-
ural to consider expected regret
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as the performance measure for the learner. We note, impor-
tantly, that the expectation here is taken with respect to the ran-
domness of the learner’s choices and not those of Nature. Nature
has selected the outcomes f; in advance and hence are fixed and
nonstochastic. The goal of the learner is to provide a bound on
the regret for any such fixed outcome sequence.

Let us return our attention to the K -armed bandit problem,
where on each round the learner repeatedly selects an arm z; €
{1,..., K} and the environment selects a vector of payoffs
(equivalently, losses) f; € [0, B]¥, where B > 0 is some bound
on the payoff values. In this case, both the loss function and the
feedback are defined as £(z+., fi) = . /1 := fi[x+], the loss value
of arm ;. This problem has been thoroughly studied for decades
under stochastic assumptions, where the f; are drawn i.i.d. (see,
e.g., [4]). The earliest work studying this problem within the
deterministic framework was that of Auer et al. [5] in 2003,
who dubbed it the “nonstochastic multiarmed bandit problem.”
One major result of their paper is a learning algorithm with a
regret guarantee that scales! as O*(v/T K ). This was rather sur-
prising, as the easier full-information version of the problem,
where . /; := [, has an optimal regret of O(+/T log K ), pro-
viding the same asymptotic dependence on 7.

B. Online Linear Optimization in the Bandit Setting

Consider a natural extension of the K -armed bandit problem,
which we shall call Online Shortest Path. On each of a sequence
of rounds, our learner must choose a path between two nodes s
and ¢ in a graph with n edges, and let us imagine this path is a
route between home and the learner’s workplace, where the goal
is to minimize travel time. Once a path is selected, the learner
takes the route and observes the cost (duration) of the trip, which
shall depend on the traffic on that day. The learner would clearly
like to have low regret, regardless of the process generating the
traffic, relative to the best route averaged over all time.

It is clear that the set of s — # paths may be prohibitively
large for even a reasonably sized graph, making the straightfor-
ward reduction to the K -armed bandit problem computationally
infeasible. That is, K will represent the total number of paths
which can easily be exponential in 2. But here is one way around
this difficulty: relax the set of s — ¢ paths to the set of s — 7 flows,
where a flow can be thought of as a randomized path. The set of
flows, while infinitely large, can be described by a convex set
known as the flow polytope K C [0,1]™, where the vertices of
KC are precisely the set of paths. Any flow x € K can be de-
composed into a distribution over polynomially many paths, in
which the “cost” of the flow is the expected cost of the path. If
the traffic is described by a vector f € [0, 1]", where the ith co-
ordinate of f is the traffic on edge ¢, then the loss of flow x with
traffic f is exactly 4(x, f) := f'x.

Looking carefully at the problem of Online Shortest Path, we
see a very general problem arise that shall be a central focus of
this paper, and which we shall call online linear optimization
with bandit feedback. More precisely, we shall assume that 1)
the learner’s actions x; are drawn from a compact convex set
K C R"™, 2) the environment’s actions f; are drawn from some
bounded set 7 C R", 3) the loss is defined according to the

IThe notation O* () hides logarithmic factors.
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inner product, £(x;.f;) := f,'x,, and 4) we are in the bandit
feedback setting, ./, := f,"x,. This generic problem, as well

as the special case of online routing, has received attention in
some form or another from several authors [6]-[14].

C. Our Results

Despite this large body of work on the bandit linear optimiza-
tion problem, for years one question remained elusive: does
there exist an algorithm which achieves an ()*(\/T) regret.
While an algorithm achieving O*(\/ T) regret was given by
Auer et al. 5], this was only applicable to the simpler K -armed
bandit problem. The early works on this problem were unable
to prove a rate any faster than an O(72/3) [6]-[10]. The first
breakthrough was from Dani et al. [12] whose algorithm did
achieve a regret rate of O*(v/T). Their algorithm, which
utilizes a clever reduction to the technique of Auer et al. [5],
requires covering the set X with an e ~"-sized grid and cannot
be implemented efficiently in general.

The primary contributions of this paper are twofold.

1) Result 1: The first known efficient O*(\/T)-regret al-
gorithm, SCRiBLe, for the bandit setting with arbitrary
convex decision sets.

2) Result 2: A novel efficient algorithm for full-information
sequential prediction over arbitrary convex decision sets
with new regret bounds.

In this paper we closely study a particular family of algo-
rithms, called Follow the Regularized Leader (FTRL), which
at every step minimize an objective that is smoothed out by a
“regularization” function. One of the key insights of our work
is that the choice of regularization must be made very carefully.
With this in mind, we shall consider interior-point methods for
convex optimization, in particular looking at a class of functions
known as self-concordant barriers. Such barrier functions will
turn out to posses precisely the properties we need to achieve
the optimal regret rate efficiently. The approach we take un-
covers novel connections between interior-point methods and
the study of universal prediction and decision making. We begin
in Section IT with a look at the theory of optimization and brief
review of interior-point methods. We return to sequential pre-
diction in Sections III and IV, where we prove the second main
result in the full-information setting. This serves as the basis for
our main result, proven in Section V.

II. CONVEX OPTIMIZATION: SELF-CONCORDANT BARRIERS
AND THE DIKIN ELLIPSOID

An unconstrained convex optimization problem consists of
finding the value x € R" that minimizes some given convex
objective g(x). Unconstrained optimization has generally been
considered an “easy” problem, as straightforward techniques
such as gradient descent and Newton’s Method can be readily
applied, and the solution admits a simple certificate, namely
when Vg = 0. On the other hand, when the objective g() must
be minimized on some convex set X, known as constrained op-
timization, the problem becomes significantly more difficult.

Interior-point methods were designed for precisely this
problem and they are arguably one of the greatest achievements
in the field of convex optimization in the past two decades.
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These iterative polynomial-time algorithms for convex opti-
mization find the solution by adding a barrier function to the
objective such that the barrier diverges at the boundary of the
set. We may now interpret the resulting optimization problem,
on the modified objective function, as an unconstrained min-
imization problem which, as mentioned, can now be solved
quickly. Roughly speaking, this approximate solution can be
iteratively improved by gradually reducing the weight of the
barrier function as one approaches the true optimum. In work
pioneered by Karmarkar in the context of linear programming
[15], and greatly generalized to constrained convex optimiza-
tion by Nesterov and Nemirovskii, it has been shown that this
technique admits a polynomial-time complexity as long as the
barrier function is self-concordant, a property we soon define
explicitly.

In this paper, we will borrow several tools from the in-
terior-point literature, foremost among these is the use of
self-concordant barrier functions. The utility of such functions
is somewhat surprising, as our ultimate goal is not polyno-
mial-time complexity but rather low-regret learning algorithms.
While learning algorithms often involved adding “regulariza-
tion” to a particular objective function, for the special case of
learning with “bandit” feedback, as we shall see in Section V,
the self-concordant regularizer provides the missing piece in
obtaining a near-optimal regret guarantee.

The construction of barrier functions for general convex sets
has been studied extensively, and we refer the reader to [16]
and [17] for a thorough treatment on the subject. To be more
precise, most of the results of this section can be found in [18,
pp. 22--23], as well as in the aforementioned texts. We also refer
the reader to the survey of Nemirovskii and Todd [19].

A. Definitions and Properties

In what follows, we list the relevant definitions and results
on the theory of interior-point methods that will be used later in
this paper. Let £ C R™ be a convex compact set with nonempty
interior int(/C).

1) Basic Properties of Self-Concordant Functions.

Definition 2.1: A self-concordant function R : int(K) — R
isa C? convex function such that forallh € R™ andx € int(K)

ID*R(x)[h, b, h]| < 2 (D*R(x)[, h])*”

and R approaches infinity along any sequence of points ap-
proaching the boundary of K.
A ¥-self-concordant barrier R is a self-concordant function
with
IDR(x)[h]| < /% (D?*R(x)[h,h]) ">
Here, the third-order differential is defined as

DJR(X)[hl 1’127 1’13] =
(‘93

— |} =to=r. =0 R t1hy + tahs + t3h3).
8t18t28t3|“7t27t370 (x 4 t1hy + t2hy + t3h3)

We assume that R is nondegenerate, i.c., its Hessian exists
and has full rank.
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A central fact about interior-point methods is that they can be
applied quite generally, as any arbitrary n-dimensional closed
convex set admits an O{n)-self-concordant barrier [16]. Hence,
throughout this paper, # = O(n), but can even be independent
of the dimension, as for the sphere.

As self-concordant functions are used as a tool in optimiza-
tion via iterative updates, there are a few objects used to “mea-
sure” the region around every point x € X as well as the
progress of the optimization.

Definition 2.2: Let R be a self-concordant function. For any

x € int(K), we define an associated norm || - ||x as
[|hllx = vVh"VZR(x)h.
We can also define || - ||, the dual norm to || - ||x, as?

[h]lx = Vh'V=2R(x)h,

where we denoted the inverse of the Hessian matrix by
V7 2R(x) = [V2R(x)] L. For any x € int(K) we define the
Dikin Ellipsoid of radius r

Wo(x):={y e K:ly = xlx <r}

that is, the || - ||x-norm ball around x. Finally, we define the
Newton decrement for R at x as

AMx,R) = [VR)[; = IV *R=)VR()]x-

When we use the term Dikin Ellipsoid it will be implied that
the radius is 1 unless otherwise noted. This ellipsoid Wi (x) is
a key piece of our main result, in particular due to the following
nontrivial fact (see [18, p. 23] for proof):

Vx eint(K) Wi(x)cC K. (D
In other words, the inverse Hessian of the self-concordant func-
tion R stretches the space in such a way that the unit ball ac-
cording to the norm defined by V2R falls in the set K.

Self-concordant functions are used as a tool in a well-de-
veloped iterative algorithm for convex optimization known as
the damped Newton method. While optimization is not the pri-
mary focus of this paper, we shall employ a modification of the
damped Newton method as a more efficient alternative to one
of our main algorithms, so we now briefly sketch the technique.

Given a current point x € K, one first computes the Newton
direction

e(x,R) = =V 2R(x)VR(z)

and then a damped Newton iteration is performed, where the
updated point is
1

DN X
(x,R) TR

e(x, R).
While not necessarily clear at first glance, this iterative
process converges very quickly. It is convenient to measure the

2This is equivalent to the usual definition of the dual norm, namely ||h||; :=
sup{h -z : ||z]|]x < 1}.



ABERNETHY et al.: INTERIOR-POINT METHODS FOR FULL-INFORMATION AND BANDIT ONLINE LEARNING

progress to the minimizer in terms of the Newton decrement,
which leads us to the following Theorem.

Theorem 2.1 (see, e.g., [19]): For any self-concordant func-
tion R, let x be any point in the interior of K and let x* :=
argmin R. Then, DN(x,R) € K and whenever A(x,R) <
1/4 we have

I — x*[lx < 2A(x,R)
% — x*[lxe <2A(x,R)
MDN(x,R),R) <2Xx,R)%.

The key here is that the Newton decrement, which bounds the
distance to the minimizer, decreases at a doubly exponential
rate from iteration to iteration. As soon as A(x,R) < 1/4, we
require only O(loglog e 1) iterations to arrive at an e-nearby
point to x*.

2) Self-Concordant Barriers and the Minkowski Function:
The final result we state is that a self-concordant barrier func-
tion on a compact convex set X does not grow excessively
quickly despite that it must approach oo toward the boundary
of K. Ultimately, the crucial piece we shall need is that the
growth is logarithmic as a function of the inverse distance to the
boundary. Toward this aim let us define, for any x, y € int(K),
the Minkowski function mx(y) on K as

T (y) =inf{t > 0:x+t Yy —x) € K}.

The Minkowski function measures distance from x to ¥ as a
portion of the total distance on the ray from x to the boundary
of K that goes through the point y. Hence 7y (y) € [0, 1] always
and when x is considered the “center” of K then 1 — 7 (y) can
be interpreted as the distance from y to the boundary of .

Theorem 2.2: For any ¥-self-concordant barrier on /C, and
for any x,y € int(K), we have that

R@%ﬁdﬂgﬁh(Tj%GQ.

A proof can be found in the lecture notes of Nemirovskii [18]
and elsewhere.

It is important to notice that any linear perturbation R'(x) :=
R(x) + h - x of a self-concordant function R is again a self-
concordant function. Indeed, the linear term disappears in the
second and third derivatives in the first requirement of Defini-
tion 2.1. In the same vein, the norm induced by such R’ is iden-
tical to that of K.

B. Examples of Self-Concordant Functions

We note a straightforward fact that illuminates how self-con-
cordant barriers can be combined.

Lemma 2.1: Let Ry be a ¥ -self-concordant barrier function
for the set K1 and let R be a #5-self-concordant barrier func-
tion for the set Ko, then R := R1 + Ro is a (1 + ¥2)-self-con-
cordant barrier function for the set X1 N Ks.

The aforementioned Lemma is most useful for constructing
self-concordant barriers on sets defined by the intersection of
simpler sets. For example, on the set [0, oc] there exists a very
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simple barrier, namely R(z) = —logx. A quick check ver-
ifies that this function satisfies both the self-concordance and
the barrier property with equality with 4 = 1. In addition,
we can easily extend this to any half-space H in R™ by letting
R(x) = —log é(x, H), where 6(-, H ) is the Euclidean distance
to the half-space. Finally, if the set K is a polytope in R™, then it
is defined as the intersection of a number of halfspaces. Equiva-
lently, it can be defined by linear inequalities Ax > b for some
m x n matrix A, which leads us immediately to the log-barrier
function of this polytope, namely

m

R(x):= Y —log(A;ix —b;).

i=1

We note that this choice of R is m-self-concordant, as it is the
sum of m 1-self-concordant barriers.
For the n-dimensional ball

B, = {x € R", inz <1}

the barrier function R(x) = —log(1 — [|x||?) is 1-self-con-
cordant. In particular, this leads to the linear dependence of the
regret bound in Section V-C on the dimension n, as ¥ = 1.

III. LOW-REGRET LEARNING WITH FULL INFORMATION

The Interior-point literature, which we reviewed in the pre-
vious Section, is aimed at the problem of optimizing an objec-
tive particularly when the feasible set is constrained. Yet opti-
mization is essentially an offfine problem, as it presumed that
the data to be optimized over are known in advance. Offline op-
timization is a very useful tool, but is only applicable when the
objective is known in advance and can be queried. For the task
of learning, however, the problem is precisely that the true ob-
jective is unknown a priori to the decision maker and is instead
revealed one piece at a time. In this section, we turn our atten-
tion to the central focus of this paper, namely online convex
optimization, which generalizes a number of well-known on-
line-learning problems.

We begin by reviewing the setting of online convex optimiza-
tion. We then discuss the main algorithmic template we employ,
FTRL, and we prove several generic bounds for this class of
algorithms. We then apply the tools developed in the previous
section, and we prove an FTRL bound when a self-concordant
barrier function is used for regularization.

A. Online Linear Optimization With Full Information

The online linear optimization problem is defined as the fol-
lowing repeated game between the learner (player) and the en-
vironment (adversary).

Ateachtimestept = 1toT"

1) player chooses x; € K ;

2) adversary independently chooses f; € R" ;
3) player suffers loss f; 'x; and observes feedback . /;.

The goal of the player is not simply to minimize his total loss
ZtT:1 f,"x,, for an adversary could simply choose f; to be as
large as possible at every point in K. Rather, the player’s goal
is to minimize his regret. If the player uses some algorithm A
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that chooses the predictions x1, X2, . .. and is presented with a
sequence of functions f1.7 := (f1, ..., fr), then we define

T
E f,"x, — min E f,'x*
x ek £

Re<>1et A f1 T

At times, we may refer to the regret with respect to a particular
comparator u, namely

Regret ..A f] T

th Xy — th

It is generally assumed that the linear costs f; are chosen from
some bounded set 7 C R™. With this in mind, we also define the
worst case regret Regret, (A) := supg, -7+ Regret(A;fi.r)
with respect to F.

For the remainder of this section, we will focus entirely on
the full-information version of the problem. That is, we will
assume that the player may observe the entire function f; as
his feedback . /; and can exploit this in making his decisions.
We distinguish this version from the more challenging bandit
setting in which the player may only observe the cost that he
incurred, namely the scalar value f; 'x;. The bandit problem was
the motivation for this study, and we turn our attention in this
direction in Section V.

B. FTRL and Associated Bounds

Follow The Leader (FTL) is perhaps the simplest online
learning strategy one might arrive at: the player simply uses the
heuristic “select the best choice thus far”. In game theory, this
strategy is known as fictitious play, and was introduced by G.
W. Brown in 1951. For the online optimization task we study,
this can be written as

t
X41 i= arg min ZfsTx. 2)
xeX ]
s—

For certain types of problems, applying FTL does guarantee low
regret. Unfortunately, when the loss functions f; are linear on
the input space it can be shown that FTL will suffer worst case
regret that grows linearly in 7°.

A natural approach,3 and more well-known within statistical
learning, is to regularize the optimization problem (2) with an
appropriate regularization function R(x), which is generally
considered to be smooth and convex. The decision strategy
is described in the following algorithm, which we refer to as
FTRL.

We recall that this algorithm can only be applied in the full-in-
formation setting. That is, the choice of x;4; requires observing
fi,....f; to evaluate the objective in (3).

We now prove a simple bound on the regret of FTRL for a
given regularization function ‘R and parameter 7. This bound
is not particularly useful in and of itself, yet it shall serve as a
launching point for several results we give in the remainder of
this paper.

3In the context of classification, this approach has been formulated and ana-
lyzed by Shalev-Shwartz and Singer [20].
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Proposition 3.1: Given any sequence of cost vectors
fi,....fpr and for any point u € K, Algorithm 1 (FTRL)
enjoys the guarantee

Regret™ (FTRL(R,n); f1.1)
T
< Z £ (x¢ — xp11) +

t=1

R(u) - R(x;)

n

Algorithm 1 FTRL(R, 5): Follow the Regularized Leader

Input: n > 0, regularization function K.
On round ¢ + 1, play

t
-—_ O 3 T
Xet1 1= arguin [77 Z f.x + R(X)] . 3)

s=1

Proof: Toward bounding the regret of FTRL(R, ), let us
first imagine a slightly modified algorithm, BTRL(R,#) for
Be The Regularized Leader: instead of playing the point x; on
round ¢, the algorithm BTRL(R, n) plays the point x; 4 1, that is,
the point that would be played by FTRL(RR, ) with knowledge
of one additional round. This algorithm is, of course, entirely
fictitious as we are assuming it has access to the yet-to-be-ob-
served f;, but it will be a useful hypothetical in our analysis.

Let us now bound the regret of BTRL(R, n). Precisely, we
shall show the bound for the “worst-case” comparator u € X,
ie.,

R(u) — R(x1)
n

1 1
T : T
;fs X541 Sinellrégfs u -+ 4)
Notice that, with the latter established, the proof is completed
easily. The total loss of BTRL(R, 7)) is 3., f,"x:;1, whereas
the total loss of FTRL(R,7) is 3°._, £;"x;. It follows that the
difference in loss, and hence the difference in regret, for any
u € K, is identically
Regret"(FTRL(R, n); f1.7)
T
=Regret™(BTRL(R, n)i fir) + > £ (X¢ — Xe41).
t=1
Combining this with (4) gives the proof.
We now proceed to prove (4) by induction. The base case, for
t = 0, holds by the choice of x; as the minimizer over K. Now
assume the above bound holds for ¢ — 1. The crucial observation
is that the point x; 14 is chosen as the minimizer of (4)

¢ t—1

T T T
Z £ xoqp1 =1 xe1 + Zfs Xs11
s=1 s=1

t—1

_ . R(u) = R(x,)
. T T

(induction) <f;'x:41 + HIEIIIQI Z_:l f.u+ %,

-1
R - R

(u — Xt+1) < ftTXt+1 + Z fsTXt+1 + (Xt+1) (Xl)

s=1 n
- R -R
= min Z f,'u+ —(u) (x1)
uckl oy n

which completes the proof. |
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C. Vanilla Approach: Utilizing Strongly Convex R

The bound stated in Proposition 3.1 is difficult to interpret
for, at present, it tells us that the regret is bounded by the size
of successive steps between x; and X;41. Notice that the point
x:+1 depends on both f; and » as well as on the behavior of R.
Ultimately, we want a bound independent of the x.’s since these
points are not under our control once we have fixed R.

We arrive at a much more useful set of bounds if we require
certain conditions on the regularizer R. Indeed, the purpose of
including the regularizer was to ensure stability of the solutions
x4, which will help control ff,T(xt — Xty1). Via Holder’s In-
equality, we always have

£7 (%t — Xeg1) < [l [lxe — xeqa | 6]
for any dual norm pair || - ||, || -||*. Typically, it is assumed that f;
is explicitly bounded, and hence our remaining work is to bound
|x¢+ — X¢+1||. The usual approach is to require that R be suitably
curved. To discuss curvature, it is helpful to define the notion of
a Bregman divergence.

Definition 3.1: Given any strictly convex and differentiable
function R, define the Bregman divergence with respectto R as

Dr(x,y) =R(x) = R(y) — (VR(y), x - y).

A Bregman divergence measures the “distance” between points
x and y in terms of the “gap” in Jensen’s Inequality, that is by
how much the function R deviates at y from its linear approx-
imation at x. It is natural to see that the Bregman divergence is
larger for functions ‘R with greater curvature, which leads us to
the following definition.

Definition 3.2: A function R(x) is strongly convex with re-
spect to some norm || - || whenever the associated Bregman di-
vergence satisfies D (x,y) > 3|x — y||? for all x, y.

While it might not be immediately obvious, the strong con-
vexity of the regularization function in the FTRL algorithm is
directly connected to the bound in Proposition 3.1. Specifically,
the term R{u) — R(x;) increases with larger curvature of R,
whereas the terms ftT(xt — X441 shrink. Toward making the
latter more precise, we give two lemmas regarding the “dis-
tance” between the pairs x; and x;1.

Lemma 3.1: For the sequence {x:} chosen according to
FTRL(R, 1), we have that for any ¢:

DR(Xt-, Xt+1) < <VR(Xt) - VR(xt+1), Xt — Xt+1>
< <77ft7xt - Xt+1>~

Proof: Recalling that the divergence is always non-
negative, we obtain the first inequality by noting that
for any x,y € K, Dr(x.y) < Dgr(x.y) + Dr(y.x)
=(VR(x) — VR(y),x — y). For the second inequality, we
observe that x;1 is obtained in the optimization (3), and hence
we have the first-order optimality condition

t
<V7€(xt+1)+nszy—xt+1>20 Vyek. (6)

s=1
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We now apply this inequality twice: for rounds 7 and # + 1 set
y = X;41 and y = xy, respectively. Adding the inequalities
together gives

(VR(x:) — VR(x1+1), % — X401} < (9f, % — X441)
concluding the proof. |

Lemma 3.2: For the sequence {x;} chosen according to
FTRL(R,n), and R strongly convex with respect to the norm
| - ||, we have that for any ¢:

lIx: — xeqa |l < nf|fef]

where || - ||* is the associated dual norm.
Proof: Using the definition of strong convexity, we have

llx: — Xt-|-1||2 < Dr(Xe;Xe41) + Dr(Xe41, %)
={VR(x:) = VR(X¢11), Xt — Xep1)
< <77ftaxt - Xt+1>

< llE " lxe — xeqa -

(Lemma 3.1)
(Holder’s Ineq.)

Dividing both sides by ||x; — x;1]| gives the result. |

Applying (5) and Lemma 3.2 to Proposition 3.1, we arrive at
the following.

Proposition 3.2: When R is strongly convex with respect to
the norm || - ||, with minyex R{x) = 0, then foranyu € K

T
Regret™ (FTRL(R, n); fi.r) < n Y [l + 5 ' R(u).

t=1

What have we done here? By including the additional strong-
convexity assumption on R, we can now measure the algo-
rithm’s regret without concerning ourselves with the specific
points X; chosen in the optimization. Instead, we have a bound
which depends solely on the sequence of inputs {f;} and the
choice of regularization R. We can take this one step further
and obtain a worst-case bound on the regret explicitly in terms
of T', the maximum value of R, and the size of the f;’s.

Corollary 3.1: When R is strongly convex with respect to
the norm || - ||, and for constants ¢, R > 0 we have ||f;||* < G
for every ¢ and R(x) < R for every x € K, then by setting

n = 1/ =%~ we have

G?T

Regret - (FTRL(R, 7)) < 2GVTR.

IV. IMPROVED BOUNDS VIA INTERIOR-POINT METHODS

In Section II, we presented a brief summary of known re-
sults from the literature on interior-point methods and self-con-
cordant functions. In Section III, we switched gears and turned
our attention to the study of online linear optimization and de-
veloped a technique for proving regret bounds within the regu-
larization framework. In this section, we bring these seemingly
dissimilar topics together and show that, by utilizing a self-con-
cordant barrier as a regularization function, one can obtain much
improved bounds for an array of problems. In particular, the in-
troduction of these interior point techniques leads to a novel ef-
ficient algorithm for the Bandit setting with an essentially op-
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timal regret guarantee, resolving what was an open question for
several years.

A. Refined Regret Bound: Measuring t; Locally

We return our attention to proving regret bounds as in
Section III, but we now add a twist. The conclusions from that
Section can be summarized as follows. For any FTRL algo-
rithm, we achieve the fully general (yet unsatisfying) bound
in Proposition 3.1. We can also apply Hoélder’s Inequality and,
with the assumption that R is strongly convex, we arrive at
Proposition 3.2.

The analysis of Proposition 3.2 is the typical approach, and
indeed it can be shown that the above bound is tight (within a
small constant factor from optimal), for instance, in the setting
of prediction with expert advice [3]. On the other hand, there are
times when we cannot make the assumption that f; is bounded
with respect to a fixed norm. This is particularly relevant in the
bandit setting, when we will be estimating the functions f; yet
our estimates will blow up depending on the location of the point
x;. In such cases, to obtain tighter bounds, it will be beneficial to
measure the size of f; with respect to a changing norm. While
it may not be obvious at present, a useful way to measure f;
is with the quadratic form defined by the inverse Hessian of
R at the point x;. Indeed, this is precisely the norm defined in
Section II-A.

Theorem 4.1: Suppose for all £ we have n||f;||5, < 1,and R
is a self-concordant barrier with minyex R(x) = 0. Then for

anyu € K

T
Regret" (FTRL(R, n); fi.r) < 2 ) _ |12 + 17" R(u).

t=1

Before proceeding to the proof let us emphasize a key point,
namely that the function R is playing two distinct roles: first, K
is the regularization function for FTRL and, second, when we
refer to the norms || - ||x and || - ||%, these are with respect to the
function R

Proof of Theorem 4.1: Since R is a barrier, the minimiza-
tion problem in (3) is unconstrained. As with Proposition 3.2,
we can apply Holders inequality to the term £, (x; — x;11). As
the inequality holds for any primal-dual norm pair, we bound
(M

£ (xe — xe41) < 1BII%, 1% — %ot [, -

We can write ®, as the objective used to obtain x;y; in the
FTRL algorithm, i.e.,

1
Ou(x) =1 £."x+ R(x).
s=1

We can then bound

Xt — Xet1|lx, =||%¢ — argmin Oy|,
| . =l @4

(by Theorem 2.1) < 2A(xq, $4) = 2|| VP (x4)

[
Xy

Recall that Theorem 2.1 requires A(x¢, @) = [[V®:(x¢)|%, <
1/4. However, since x; minimizes ®;_1, and because ®;(x) =
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®, 1(x) + nf,'x, it follows that V®,(x;) = nf;. By assump-
tion, 7||£;]|5, < L. Furthermore, we have now shown that

lIx: — xip1llx, < 2nllf:

[
and when applied to (7) gives
£ (xr — xp41) < 2018157

Combining this inequality with Proposition 3.1 finishes the
proof. |

B. Improvement Compared to Previous Bounds

Assuming that R is strongly convex, modulo multiplicative
log T terms, the bound obtained in Theorem 4.1 is never asymp-
totically worse than previous bounds, and at times is signifi-
cantly tighter. We will briefly demonstrate this point next.

The key advantage is that, by measuring the loss functions
f, using [|f)(|22 = £,V *R(x;)f;, the upper bound on regret
depends on the position of x; in the set K. In particular, if
a majority of the points x; are close to the boundary, where
the regularizer R has large curvature and the inverse Hessian
V' ?R(x,) is tiny, we can expect the terms ||f;]|3* to be small.

As a simple example, consider an OLO problem in which
the convex set is the real line segment X = [—1,1], and we
shall use FTRL with the simple logarithmic barrier R(x) =
—log(1 — x) — log(1 + x). Let us now imagine a natural sce-
nario in which our sequence of cost vectors f1, 5, ... € F has
some positive or negative bias, and hence for some ¢ > 0 we
have |[f; 4+ - - 4+ ;|| > ¢t for large enough ¢, say t > t, for con-
stant #¢. It is easily checked that the FTRL optimization for our

1

chosen regularization will lead to [|x[| > 1 — _ for t > #o,

which implies that V2R(x;) > CZUL_)H Pick a constant B so
that 3°," 2||£]|%* < B (this constant depends on the constant
tp and the diameter of F, but not on £). For ¢ > 3, we can now
bound

. 4
*2 _ pTyv—2
[Eellx, = £'V T Rxo)f < ZE
Depending on the sign of f; + - - - 4+ f7, set the comparator
accordingtou = £(1 —1/7) so that R(u) < log T. We arrive
at the following bound on the regret via theorem 4.1:

T
Regret" (FTRL(R, n); fr.r) <27 Z 161122 + 5 2R (u)
t=1
<npB+ntlogT +n'C

where C' hides the constant c% ZtT:to 11 t% With an appropri-
ately tuned4r), we obtain a bound on the order of O(+/log T').

We may now compare this to the previous “fixed-norm” re-
gret bounds, such as those for online gradient descent of Zinke-
vich [21]. The corresponding bound for this algorithm would be
O(nT + n~1) which, even when optimally tuned, must grow at
a rate at least ©(v/'T).

“In this short example, we must assume that the value of # is initially tuned
for the given loss sequence. For a bound that is robust to arbitrary sequences of
loss vectors an adaptive selection of 7 is necessary, but such issues are beyond
the scope of our paper.
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C. Computational Efficiency

Algorithm 1 requires a solution of a convex program at every
iteration. Minimizing a convex function over a convex domain
K can be carried out efficiently, i.e., in polynomial time, de-
pending on the representation of . Algorithms for minimizing
a convex function over a convex domain in polynomial time
include the ellipsoid algorithm [22] and random-walk-based
methods [23].

Most interesting convex sets K are known to admit efficient
self-concordant barriers. This family includes polytopes, sets
defined by conic constraints, and the semi-definite cone. In this
case, interior-point methods give rise to much more efficient al-
gorithms. In our case, the objective function is a linear func-
tion plus a self-concordant barrier (which is smooth and strongly
convex). Hence, the optimization problem of Algorithm 1 with
a v-self-concordant barrier can be approximated up to £ preci-
sion in time O(v/9n? log 1) (see [18]).

This already gives an efficient algorithm as a basis for our
bandit algorithm that we develop in Sections V and VI. We give
an even more efficient algorithm next.

D. [Iterative Interior Point Algorithm

Although Algorithm 1 runs in polynomial time, in this sub-
section we give an even more efficient iterative algorithm. In-
stead of optimizing the objective of Algorithm 1 anew at every
step, the iterative algorithm makes small adjustments to the pre-
viously computed solution.

Define ®:(x) := 3.\ _, f."x + R(x), the FTRL objective
at time ¢ 4 1.

Computationally, to generate y; 1, it is only required to store
the previous point y; and compute the Newton direction and
Newton decrement. This latter vector can be computed by in-
verting a single matrix—the Hessian of the regularization func-
tion R at y,—and computing a single matrix-vector product
with the gradient of @, at point y;.

While Algorithm 2 may seem very different from the FTRL
method, it can be viewed as an efficient implementation of the
same algorithm, and hence it borrows the almost same regret
bounds. Notice in the bound below that for n = O(ﬁ), the
optimal setting of parameter in Theorem 4.1, the additive term
is a constant independent of the number of iterations.

Algorithm 2 Tterative FTRL (I-FTRL)

Input: > 0, regularization K.
Initialize y; = arg mingex R(x)
On round ¢ + 1, play

Vit1 := DN(Qs,y4) = ¥4 + -

me(}’n@t) ®)

and observe f; ;.

Theorem 4.2: Let K be a compact convex set and R be a
-self-concordant barrier on K. Assume ||f;||;, < C for all #
and nC < §. Then, foranyu € K

Regret"(I-FTRL(R, n); f1.7)
< Regret™ (FTRL(R, 7); fi.r) + 16C30*T. )
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To prove this theorem, we show that the predictions generated
by Algorithm 2 are very close to those generated by Algorithm
1. More formally, we prove the following lemma, where {x;}
denotes the sequence of vectors generated by the FTRL algo-
rithm as defined in (3).

Lemma 4.1:
v — xilly, < 2M(Fe, 1) < AN (31, @, 1) < 169°C2

Before proving this lemma, let us show how it immediately im-
plies Theorem 4.2

Regret"(I-FTRL(R, n); f1.7)

T T T
= thT(Yt -u)= thT(Xt —u)+ thT(Yt - X¢)
=1 t=1 t=1
T
< Regret"(FTRL(R, n); frr) + > IEI3, [[ye — xelly,
t=1

< Regret™(FTRL(R, n); fi.7) + 1642C3T.

We can now proceed to prove Lemma 4.1.

Proof of Lemma 4.1: The proof is by induction on ¢. For
t = 1 the result is true because x1,y; are chosen to minimize
‘R. Suppose the statement holds for ¢, we prove for ¢ + 1. By
definition

N (ye, @) = VO, (ye)'V 20 (y ) VO (ye)
= V‘I)t(Yt)TVﬂR(Yt)V(I)t(Yt)-

Note that
VO, (y:) = VO, _1(y:) + nf..

Using (x +y)"A(x +y) < 2x"Ax + 2y"Ay we obtain
1.
5)\2(3’1‘,7 ;) < VP 1(y) 'V R(y:) Vs 1(yt)

+0° 'V IR (y o)
= Ny, ®eo1) + 7P IIE5

The first term can be bounded by the induction hypothesis

My, @, 1) < 64n*C*. (10)
As for the second term, by our assumption on |||},
w37 < n’C2.
Combining the results
My, @) < 2-(64n*C* +9°C%) < 4*C* (11)

where the last inequality follows since 72C? < & In particular,
this implies that Ay, ;) < i and, therefore

1
AYi41,®P0) < 2)\2(}% ®,) < 877202 < ]

according to Theorem 2.1. The induction step is completed by
applying Theorem 2.1 again

lyt41 — Xt+1||yt+1 = |lyt41 — arg min ‘I’t||yt+1
< 2)\(Yt+17 D).
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V. BANDIT FEEDBACK

We now return our attention to the bandit version of the online
linear optimization problem that we have discussed. The addi-
tional difficulty in the bandit setting rests in the feedback model.
As before, an x; is chosen at round ¢, an Adversary chooses f;,
and the cost f;'x; is paid. But, instead of receiving the entire
vector f;, the learner may only observe the scalar value (ftht).
Recall that, in our FTRL template, the point x; is computed with
access to (f1, £, ..., f;_1) whereas an algorithm in the bandit
setting is given only (f; 'x1,f>'Xo,....f; .1 'x¢_1) as input.

Let us emphasize that the bandit model is difficult not only
because the feedback has been reduced from a vector to a scalar
but also because the content of the feedback actually depends
on the chosen action. This present an added dilemma for the
algorithm: is it better to select x; in order to gather better in-
formation or, alternatively, is it better to choose x; to exploit
previously obtained information? This is typically referred to
as an exploration-exploitation trade-off, and arises in a range of
problems.

In this section, we make an additional assumption that the
adversary is oblivious. That is, the sequence f1, .. .. fr is fixed
ahead of the game. For results in bandit optimization against
nonoblivious adversaries, we refer the reader to [24].

A. Constructing a Bandit Algorithm

A large number of bandit linear optimization algorithms have
been proposed, but essentially all make use of a generic template
algorithm. This template has three key ingredients:

1) A full-information algorithm A which takes as input a se-

quence of loss vectors f; and returns points x € K; that is

Xy — A(fl,fg, ‘e ,ft_l).

2) A sampling scheme sampler(x) for each x that defines a
distribution on K with the property that

E y = X.

(12)

y~sampler(x)

3) A corresponding estimation scheme guesser(f,y,x)
which uses the randomly chosen y and the observed value
£ = fTy to produce a “guess” of f. For every linear
function f, guesser must satisfy

[guesser(f'y,y, x)] = 1.

(13)
y~sanpler(x)
For the remainder of this paper, we will use f, to denote
the random variable guesser(f;'y:, y+, X;) when the def-
inition of sampler and guesser are clear.

These ingredients are combined into the following recipe,
which describes the generic construction taking a full-informa-
tion algorithm A for online linear optimization and produces a
new algorithm for the bandit setting. We shall refer to this bandit
algorithm as BanditReduction(A, sampler, guesser).

What justifies this reduction? In short, the unbiased sampling
and unbiased estimation scheme allow us to bound the expected
regret of BanditReduction(.A, sampler, guesser) in terms of
the regret of .4 on the estimated functions. Let us denote A’ :=
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BanditReduction(A, sampler, guesser), and for simplicity,
let E+[-] be the expectation over the algorithm’s random draw of
v+ ~ sampler(x;) conditioned on the history, i.e., the random
¥1,--.,¥:t_1.Inthe following, the assumption that f; ’s are fixed
ahead of the game is crucial. For any u € X, the expected regret
of A’ is

[T
E[R()gr()tu(A/; f17 o ;fT)} =E Z ftT(yt _ u)‘|
Li=1
rT
(Law of total expectation) =E Z Eqlf:' (y: — u)}]
Li=1
[T
(by (12)) =E|> £'(x; - u)‘|
Li=1
o
(by (13))  =E | > Eulff(x: - u)]]
Li=1
o
(law of total expectation) =E Z (% — u)}
Li=1

=E[Regret"(A; fi,...,T1)].

Notice, however, that the last expression within the E[] is ex-
actly the regret of A when the input functions are fi, ..., fr.
This leads us directly to the following Lemma:

Lemma 5.1: Assume we are given any full-information al-
gorithm A and any sampling and estimation schemes sampler,
guesser. If we let the associated bandit algorithm be A’ :=
BanditReduction(A, sampler, guesser), then the expected
regret of the (randomized) algorithm A" on the fixed sequence
{f:} is equal to the expected regret of the (deterministic’) algo-
rithm A on the random sequence {f;}. That is,

E[Regret™(A';fi, ... .fr)] = E[Regret®(A; ... 7).

This Lemma is quite powerful: it says that we can construct a
bandit algorithm from a full-information one, achieve a bandit
regret bound in terms of the full-information bound, and we
need only construct sampling and estimation schemes which
satisfy the properties in (12) and (13).

B. Dilemma of Bandit Optimization

At first glance, Lemma 5.1 may appear to be a slam dunk: as
long as we have a full-information algorithm .4 with a low-re-
gret guarantee, we can seemingly construct a Bandit version A’
with an identical regret guarantee in expectation. The remaining
difficulty, which may not be so obvious, is that the regret of .A
is taken with respect to the random estimates {f; }, and these es-
timates can unfortunately have very high variance! In general,
the typical bound on Regret(A; {1, ... fr) will scale with the
magnitude of the f;’s, and this can be quite bad if the f;’s can
grow arbitrarily large.

SAlthough we do not consider these here, there do exist randomized algo-
rithms for the full-information setting. In terms of regret, randomized algorithms
provide no performance improvement over deterministic algorithms, yet ran-
domization may lead to other benefits, e.g., computation. In the bandit setting,
however, randomization is entirely necessary for vanishing regret.
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Let us illustrate this issue with a simple example. Assume
K = Ay = {we; + (1 — a)ez : a € [0,1]}. We need to
construct a sampling scheme and an estimation scheme, and we
give anatural choice. Assume x = wey + (1 — «)es and assume
the unobserved cost function is f, then let

fT
i €1, f, _ —ayel,
Yy = e - ny
2 1_927
—a

It is easily checked that these sampling and estimation schemes
satisfy the desired requirements (13) and (12) The downside
that the magnitude of f can grow with max{ } (assuming
here that ||f|| = O(1)). While the careful regder may notice that
things are not so bad in expectation, as E|/f|| = O(1), the typ-
ical regret bound generally depends on E||f||? which grows with
max{a 1= - If we apply the strong-convexity result from
Section III-C, and by correctly choosing 1, we would have a

regret bound scaling with the quantity E {\/ZtT_l ||ft||*2] <
v/ ZtT:1 E||f,||*2. To obtain a rate of roughly O(+/T) it is nec-

essary that we have E||f||*> = O(1).

Perhaps our sampling and estimation schemes could have
been better designed? Unfortunately no: the variance of f cannot
be untethered from max{ 1 P g L_1. This example sheds light on
a crucial issue of Bandit optimization: how does one handle es-
timation variance when x is close to the boundary? Note that
the aforementioned example does not lead to difficulty when
max{1, 1=} = O(1). A common approach, used in various
forms throughout the literature [S]-[10], is simply to restrict
x = weq + (1 — «)es away from the boundary, requiring that
« € [v,1 — ] for some appropriately chosen v € (0,1/2).
This restriction does have the benefit of guaranteeing E||f]|? =
O(1/~), but comes at a price: a y-perturbation means we can
only compete with a suboptimal comparator, and this approxi-
mation shall give an additive O(+T') in the regret bound.

The solution, which we present in Section VI, is based on
measuring the function f; with a local norm. This was our orig-
inal aim in developing the FTRL algorithms based on self-con-
cordant barrier functions: they allow us to obtain a regret bound
which measures each f; in a way that depends on the current
hypothesis x;. Indeed, the norm || - ||, , which locally measures
f, is precisely what we shall need. Ultimately, we will show
that, with the correct choice of sampling scheme, we can always
guarantee that [|f;||? = O(1).

W.p. &
w.p. 1 —«

wheny = e

wheny = es.

C. Main Result

We now describe the primary contribution of this paper,
which is an efficient algorithm for Bandit linear optimiza-
tion that achieves a v/T-regret bound. We call this algorithm
SCRiBLe, standing for self-concordant regularization in bandit
learning.

We have now developed all necessary techniques to describe
the result and prove the desired bound. The key ingredients of
our algorithm, that help overcome the previously discussed dif-
ficulties, are as follows.

1) A self-concordant barrier function R for the set X (see

Section I1-Al).
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2) The full-information algorithm FTRL (Section I1I-B) using
the barrier R as the regularization.

3) A sampling scheme sampler(x) based on the Dikin
ellpisoid W;(x) (see Section II-Al) chosen according
to R. Specifically, if we denote {ej,....e,} and
{A1,...,An} as the eigenvalues and eigenvectors of
V2R(x,), the algorithm will sample y; — x; + A, /%e;,
one of the 2n poles of the Dikin ellipsoid, uniformly at
random.

4) An estimation scheme guesser(:,-,-) which produces
estimates aligned with eigenpoles of Wi (x). Specifically,
corresponding to the eigenpole chosen by sampler,
guesser outputs

ft<—:|:n(f y))\l/2 e;.

5) An improved regret bound for self-concordant functions
using local norms (see Section [V-A)
We now state the main result of this paper.

Theorem 5.1: Let K be a compact convex set and R be a
1J)-self-concordant barrier on K. Assume |f;'x| < L for any

Zlilff,TT , the regret of SCRiBLe

x € K and any {. Setting ry =
(Algorithm 4) is bounded as

f7)] < nl+/80T log T + 21

E[Regret” (SCRiBLe: fy, . . .,

whenever 1 = > 8.

Proof: SCRlBLe is exactly in the template of Algorithm
3, using the full-information algorithm FTRL%x and with
sampler(-) and guesser(:, -, ) that satisfy properties (12) and
(13), respectively. By Lemma 5.1, we can write

E[Regret"(A:fy, ... fr)] =E[Regret*(FTRLxg;f:, ... ,fr)].

We now apply Theorem 4.1. Notice that its conditions are sat-
isfied since with probability one

£, =ny f'tTvﬂR(Xt)?t
=am £,y Vi e, TV 2R(xy e,
=nn |y < nnl

dlogT 1
<nly 2081 o2
="M oprreT <

where the last inequality is by the condition on 1 . From the
above calculation ||f;]|%> < n?L?. Hence, we obtaln for any
uck

E[Regret" (FTRLg; £y, . .., fr)]
T
<2mE |||+ Rw)
t=1

< 2y’ LT + rlflR(u).

Ifuw is such that 7y, (u) < 1— %, then by Theorem 2.2, we have
that

R(u) < #logT. (14)
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If, on the other hand, my, (u) > 1 — 7, then we can define

= (1—-1/T)u+ (1/T)x;. Certainly
, T
Regret™(A; f1.7) = Regret™ (A; f1.7) + Z f,'(u' —u)
=1
= chrct“l (Asfir) + = Z f;'(x; — u)
<2’ LPT 4 ' R(u) —|— 2L
<2 LT + 95 *log T + 2L.
|

Algorithm 3 BanditReduction(.A, sampler, guesser)

Input: full-info algorithm A, sampling scheme sampler(-),
estimation scheme guesser(-, -, )

1: Initialize x; — A({})
2:forit=1...7T do

3:  Randomly sample y; ~ sampler(x;)
4:  Play y¢, observe f; 'y,

5:  Construct f; « guesser(ftTyt Vi, Xt)
6: Update X¢trl A(fl fQ ..... ft)

7: end for

Computational efficiency: Algorithm 4 can be implemented
to run in polynomial time: at every iteration the eigenvectors
of the Hessian of R need be computed, and this can be car-
ried out in time O(n?). Besides other elementary computations,
the dominating operation is solving the mathematical program
in stage 4. The latter can be performed efficiently, as detailed
in Section IV-C. The previously known algorithms for bandit
linear optimization that achieve optimal regret guarantees are
based on discretizing the set X, rendering the method com-
putationally infeasible [12], [14]. Algorithm 4 is the first effi-
cient algorithm for bandit linear optimization with optimal re-
gret bound.

Algorithm 4 SCRiBLe

1: Input: 1 > 0, ¥-self-concordant barrier R

2: Let x3 = arg mingex [R(x)].

3:fort =1toT do

4: Let {e1,...,e,} and {Aq,..., A, } be the set of
eigenvectors and eigenvalues of VZR(x;).

5: Choose #; uniformly at random from {1,...
g; = +1 with probablhty/l /2.

.n} and

6: Predicty; = x; + Ef/\ i
7: Observe the cost f; 'y E [R
8: Definef, :==n (f:"y:) et)\ e;,.
9: Update
t
X341 = arg inelllcl ] Z:l fIX + R(X)
10: end for
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We remark that it is also possible to analyze an iterative ver-
sion of our bandit algorithm, based on Algorithm 2 and the ideas
presented in this section, and obtain the same asymptotic regret
bounds as Algorithm 4.

VI. CONCLUSION

We have given the first efficient algorithm for bandit online
linear optimization with optimal regret bound. For this purpose,
we introduced the fascinating tool of self-concordant barriers
from interior point optimization and provided a new algorithm
for full-information online linear optimization with strong re-
gret bounds.

In the full-information case, we have given an iterative ver-
sion of our algorithm which is preferable computationally, and
a similar iterative algorithm can be derived for the bandit case
as well.
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