
Chapter 15

On Martingale Extensions of
Vapnik–Chervonenkis Theory with
Applications to Online Learning

Alexander Rakhlin and Karthik Sridharan

Abstract We review recent advances on uniform martingale laws of large
numbers and the associated sequential complexity measures. These results
may be considered as forming a non-i.i.d. generalization of Vapnik–Chervo-
nenkis theory. We discuss applications to online learning, provide a recipe
for designing online learning algorithms, and illustrate the techniques on the
problem of online node classification. We outline connections to statistical
learning theory and discuss inductive principles of stochastic approximation
and empirical risk minimization.

15.1 Introduction

Questions of uniform convergence of means to their expectations have been
central to the development of statistical learning theory. In their seminal
paper, Vapnik and Chervonenkis found necessary and sufficient conditions
for such a uniform convergence for classes of binary-valued functions [40]. A
decade later, this pioneering work was extended by Vapnik and Chervonenkis
to classes of uniformly bounded real-valued functions [37]. These results now
form an integral part of empirical process theory [15, 26, 16, 35, 14], with
wide-ranging applications in statistical estimation and machine learning [9,
17].
In this review chapter, we summarize some recent advances on uniform

martingale laws of large numbers [31], as well as their impact on both
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theoretical and algorithmic understanding of online learning [29, 27]. The
uniform martingale laws can be seen as natural extensions of the Vapnik–
Chervonenkis theory beyond the i.i.d. scenario. In this chapter, we would like
to highlight the striking similarity between the classical statements and the
non-i.i.d. generalizations.
Let (Ω,A,P) be a probability space and let Z1, . . . , Zn, . . . be a sequence

of random variables taking values in a measurable space (Z,S). Suppose Zt

is At-measurable, for all t ≥ 1, where (At)t≥1 is a filtration. Let F be a
class of measurable functions on (Z,S), with |f | ≤ 1 for any f ∈ F . Then
{E [f(Zt)|At−1]− f(Zt) : t ≥ 1} is a martingale difference sequence for any
f ∈ F , and

Mf
n =

n∑

t=1

E [f(Zt)|At−1]− f(Zt)

is a martingale. For a fixed n, the collection {Mf
n : f ∈ F} defines a stochas-

tic process over F . It is then natural to ask whether the supremum of the
process,1

sup
f∈F

1

n

n∑

t=1

E [f(Zt)|At−1]− f(Zt), (15.1)

converges to zero (as n tends to infinity) in probability or almost surely.2

When (Zt) is a sequence of i.i.d. random variables, the question reduces to
precisely the one raised by Vapnik and Chervonenkis [40, 37], and the stochas-
tic process over F becomes the well-studied empirical process (normalized by
n).
For simplicity, we will focus on the expected value of the supremum in

(15.1); convergence with probability one is shown along the same lines.

Example 15.1. Let Z be a unit ball in a Banach space (B, ‖ · ‖). Let F be
a unit ball in a dual Banach space. By definition, the supremum in (15.1)
can be written as 1

n ‖
∑n

t=1 E [Zt|At−1]− Zt‖ and can be interpreted as the
(normalized) length of a random walk with bounded conditionally-zero-mean
increments. The question of whether this quantity converges to zero is well-
studied. It was shown in [25] that convergence occurs if and only if the Ba-
nach space (B, ‖·‖) is super-reflexive. Furthermore, in most “natural” Banach
spaces, the expected length of such a walk is within a constant multiple of
the expected length with bounded i.i.d. increments. In such situations, the
uniform martingale convergence is equivalent to the i.i.d. case.

The example gives us hope that the martingale extension of uniform laws
will be a simple enterprise. However, the situation is not so straightforward,
as the next example shows.

Example 15.2. Let F be the class of indicators on the unit interval Z = [0, 1]:

1 We may also consider the absolute value of the average without any complications.
2 Issues of measurability can be addressed with the techniques in [16].
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F = {fθ(z) = I {z > θ} : θ ∈ [0, 1]} . (15.2)

Let ǫ1, . . . , ǫn, . . . be independent Rademacher random variables, P (ǫt =
−1) = P (ǫt = +1) = 1

2 . Define a sequence of random variables (Zt) as
follows:

Zt =
t∑

s=1

2−s
I {ǫs = 1}

and notice that Zt ∈ [0, 1). For the above definition, we have a dyadic fil-
tration At = σ(ǫ1, . . . , ǫt). Fix any n ≥ 1 and observe that the sequence
(Zt) has the following two properties. For any s ≥ 1, (a) conditionally on
the event {ǫs = −1}, Zt < Zs + 2−s for all t ≥ s; (b) conditionally on the
event {ǫs = 1}, Zt ≥ Zs for all t ≥ s. It then follows that for any sequence
ǫ1, . . . , ǫn there exists θ

∗ ∈ [0, 1] such that (15.1) is equal to the proportion
of −1’s in this sequence. Hence, the expected supremum is equal to 1/2. In
summary, for the class F defined in (15.2), there exists a dyadic martingale
ensuring that the expectation of the supremum in (15.1) is a constant.

The above example seems to significantly complicate the rosy picture
painted by Example 15.1: the class of thresholds on a unit interval—the orig-
inal question studied by Glivenko and Cantelli for i.i.d. data, and a flagship
class with VC dimension one—does not satisfy the martingale analogue of the
uniform law of large numbers.
The natural next question is whether there is a measure of capacity of

F that characterizes whether the uniform martingale law of large numbers
holds.

15.2 Random Averages, Combinatorial Dimensions, and

Covering Numbers

A key argument in obtaining the necessary and sufficient conditions in the
work of Vapnik and Chervonenkis [40, 37] relates the difference between an
average and an expectation to the difference between averages on two inde-
pendent samples. This step—now commonly termed symmetrization—allows
one to reason conditionally on the data, and to study the geometry (and
combinatorics) of the finite-dimensional projection

F|z1,...,zn , {(f(z1), . . . , f(zn)) : f ∈ F}.

In the non-i.i.d. case, the symmetrization step is more involved due to the
dependencies. Before stating the “sequential symmetrization” result, let us
define the notion of a tree, the entity replacing “a tuple of n points” in the
i.i.d. realm.
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All trees considered in this chapter are complete, binary, and rooted. A
tree z with nodes labeled by elements of Z will be called a Z-valued tree.
Equivalently, a tree z of depth n is represented by n labeling functions zt :
{±1}t−1 → Z, with z1 being a constant, and the value zt(ǫ1, . . . , ǫt−1) indi-
cating the label in Z obtained by following the path (ǫ1, . . . , ǫt−1) ∈ {±1}

t−1

from the root to the node (we designate −1 as “left” and +1 as “right”). We
write z = (z1, . . . , zn). Henceforth, we will denote ǫ = (ǫ1, . . . , ǫn) as the
full path down the tree z, and for brevity we shall write zt(ǫ) instead of
zt(ǫ1, . . . , ǫt−1). In a similar manner, we may define an R-valued tree as a
tree labeled by real numbers. For instance, f ◦ z = (f ◦ z1, . . . , f ◦ zn) is a
real-valued tree for any f : Z → R. If ǫ1, . . . , ǫn are taken to be independent
Rademacher random variables, a tree {zt} is simply a predictable process with
respect to the corresponding dyadic filtration.
Throughout the chapter, we will refer to a particular type of tree z where

each labeling function is a constant within a level of the tree: there exist
z1, . . . , zn ∈ Z such that zt(ǫ) = zt for all t. This tree will often witness
the reduction from a sequential version of the question to the i.i.d. version
involving a tuple of points. Let us term such a tree a constant-level tree.
With the introduced notation, we are ready to state the sequential sym-

metrization result. It is proved in [29, 31] that

E sup
f∈F

1

n

n∑

t=1

E [f(Zt)|At−1]− f(Zt) ≤ 2 sup
z

E sup
f∈F

1

n

n∑

t=1

ǫtf(zt(ǫ)) (15.3)

where the supremum is over all Z-valued trees of depth n. The statement
also holds for the absolute value of the average on both sides. The relation
is, in fact, tight in the sense that there exists a sequence (Zt) of random
variables such that the term on the left-hand side of (15.3) is lower bounded
by a multiple of the term on the right-hand side (modulo additional O(n−1/2)
terms).
Given a tree z, the expected supremum on the right-hand side of (15.3),

Rseq
n (F ; z) , E sup

f∈F

1

n

n∑

t=1

ǫtf(zt(ǫ)), (15.4)

is termed the sequential Rademacher complexity of F on z. The key relation
(15.3) allows us to study this complexity conditionally on z, similarly to the
way classical Rademacher averages can be studied conditionally on the tuple
(z1, . . . , zn) ∈ Z

n.
We observe that the classical notion E supf∈F

1
n

∑n
t=1 ǫtf(zt) of a Rade-

macher average is recovered as a special case of sequential Rademacher com-
plexity by taking a constant-level tree defined earlier: zt(ǫ) = zt for all t. The
tree structure becomes irrelevant, and we gracefully recover the complexity
that arises in the study of i.i.d. data.
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In the i.i.d. analysis, the supremum of the symmetrized processes can be
written as

sup
f∈F

1

n

n∑

t=1

ǫtf(zt) = sup
a∈F|z1,...,zn

1

n

n∑

t=1

ǫtat. (15.5)

For a function class F ⊆ {0, 1}Z , the cardinality of the projection F|z1,...,zn
is finite and governed by the beautiful combinatorics discovered by Vapnik
and Chervonenkis (and later independently by Sauer, Shelah). For the case
of sequential Rademacher complexity, however, the size of the projection
F|z = {f ◦ z : f ∈ F} can be exponential in n for any interesting class F .
This can be seen by considering a tree z such that 2n distinct functions in F
take a value 1 on one of the 2n leaves of the tree and zero everywhere else.
The following crucial observation was made in [29, 31]: while the projection
F|z may indeed be too large, it is enough to consider a potentially smaller
set V of R-valued trees of depth n with the property

∀f ∈ F , ∀ǫ ∈ {±1}n, ∃v ∈ V s.t. ∀t ∈ {1, . . . , n} f(zt(ǫ)) = vt(ǫ).
(15.6)

In other words, a single v can match values of different f ’s on different paths.
While the set V is potentially smaller, we still have, as in (15.5), for any
ǫ ∈ {±1}n,

sup
f∈F

1

n

n∑

t=1

ǫtf(zt(ǫ)) = max
v∈V

1

n

n∑

t=1

ǫtvt(ǫ)

whenever V is finite (such as the case for a class of binary-valued functions).
The set V with property (15.6) is termed a 0-cover, and its size, denoted by
N (0,F , z), fills the shoes of the growth function of Vapnik and Chervonenkis
[40].
To check that all the pieces of our puzzle still fit correctly, we observe that

for a constant-level tree z, the set V satisfying (15.6) indeed reduces to the
notion of projection F|z1,...,zn .
The natural next question is whether the 0-cover lends itself to the combi-

natorics of the flavor enjoyed by the growth function. Surprisingly, the answer
is yes, and the relevant combinatorial dimension was introduced 25 years ago
by Littlestone [22] within the context of online learning, and without any
regard to the question of uniform martingale laws.

Definition 15.1 ([22]). A Z-valued tree z of depth d is shattered by a class
F ∈ {±1}Z of binary-valued functions if

∀ǫ ∈ {±1}d, ∃f ∈ F , s.t. ∀t ∈ {1, . . . , d} f(zt(ǫ)) = ǫt.

Following [10], the size of the largest Z-valued tree shattered by F will be
called the Littlestone dimension and denoted by ldim (F).
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Once again, for a constant-level tree, the notion of shattering coincides
with the definition of Vapnik and Chervonenkis [40]. In particular, it is clear
that

vc (F) ≤ ldim (F) .

The following analogue of the celebrated Vapnik–Chervonenkis lemma is
proved in [29, 31] for a class of binary-valued functions:

N (0,F , z) ≤
d∑

i=0

(
n

i

)

where d = ldim (F) and z is any Z-valued tree of depth n.
When ldim (F) is infinite (as is the case with the class of thresholds dis-

cussed in Example 15.2), it is possible to show that there exists a sequence of
trees of increasing size such that Rseq

n (F ; z) does not converge to zero with
increasing n. Similarly, the uniform martingale deviations in (15.1) do not
converge to zero for an appropriately chosen sequence of distributions. Thus,
finiteness of the Littlestone dimension is necessary and sufficient for the uni-
form martingale law of large numbers to hold universally for all distributions.
In other words, this dimension plays the role of the Vapnik–Chervonenkis di-
mension for the non-i.i.d. extension studied here.
We now review developments for classes of real-valued functions. Here, the

property (15.6) is extended to the notion of a sequential cover as follows (see
[29]). A set V of R-valued trees forms a sequential α-cover (w.r.t. ℓ2) of F
on a given Z-valued tree z of depth n if

∀f ∈ F , ∀ǫ ∈ {±1}n, ∃v ∈ V s.t.
1

n

n∑

t=1

(f(zt(ǫ))− vt(ǫ))
2 ≤ α2.

The size of the smallest α-cover is denoted by N2(α,F , z), and the above
definition naturally extends to the ℓp case, p ∈ [1,∞]. As with the 0-cover,
the order of quantifiers in the above definition is crucial: an element v ∈ V
can be chosen given the path ǫ.
Let us define a scale-sensitive version of Littlestone dimension as follows.

We say that a Z-valued tree z of depth d is α-shattered by F if there exists
an R-valued witness tree s such that

∀ǫ ∈ {±1}d, ∃f ∈ F , s.t. ∀t ∈ {1, . . . , d} ǫt(f(zt(ǫ))− st(ǫ)) ≥ α/2.

The size of the largest α-shattered tree is called the sequential fat-shattering
dimension and denoted by fatα(F).
One can see that the definition of sequential cover readily reduces to the

classical notion of an α-net of F|z1,...,zn when z is a constant-level tree. By
the same token, the definition of α-shattering reduces to the corresponding
notion in the i.i.d. case [19, 8, 6]. The following estimate for the sequential
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covering number is proved in [29] for a class of uniformly bounded functions
F ⊂ [−1, 1]Z :

N∞(α,F , z) ≤

(
2en

α

)fatα(F)

.

The corresponding result for the classical case involves extra logarithmic
factors that appear to be difficult to remove [33]. As for obtaining an n-
independent upper bound on ℓ2 sequential covering numbers (an analogue to
[24]) — the question is still open.
We close this section with the main result of [31]: the almost sure conver-

gence of uniform martingale deviations in (15.1) to zero for all distributions
is equivalent to both finiteness of fatα(F) for all α > 0 and to convergence of
sup

z
Rseq

n (F ; z) to zero. The characterization in terms of the scale-sensitive
dimension is analogous to the celebrated result of Alon et al [6] in the i.i.d.
case. We refer to [31] for the details of these statements, as well as for more
tools, such as the extension of the Dudley chaining technique to sequential
covering numbers.

15.3 Online Learning: Theory

The study of uniform laws of large numbers by Vapnik and Chervonenkis was
motivated by interest in the theoretical analysis of “learning machines” and
the inductive principle of empirical risk minimization. In a similar vein, the
study of uniform martingale analogues is motivated by questions of sequential
prediction (or, online learning).
The hallmark of statistical learning theory is that it provides distribution-

free learning guarantees. The prior knowledge about the problem at hand is
placed not on the data-generating mechanism, but rather implicitly encap-
sulated in the benchmark against which we compare the performance. The
objective takes the form

Eℓ(ŷ(X), Y )− inf
f∈F

Eℓ(f(X), Y ) (15.7)

where ŷ is a hypothesis X → Y produced by the learner upon observing i.i.d.
data {(Xi, Yi)}

n
i=1, F is some class of functions X → Y that captures the

inductive bias of the practitioner, and ℓ is a loss function that measures the
quality of ŷ.
The online learning scenario goes a step further: the i.i.d. assumption is

removed and the learning process is assumed to be sequential [13]. In fact, we
assume nothing about the evolution of the sequence. Such a scenario is also
known by the name of individual sequence prediction. Since the only available
sequence is the one which we attempt to predict, the measure of performance
is based purely on this very sequence.
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While the statistical learning paradigm has proved to be successful in
many applications (such as face detection, character recognition, etc.), some
modern problems are inherently sequential, and the i.i.d. assumption on data
— dubious at best. One such problem is described in Sect. 15.4.3. Thank-
fully, the martingale extensions described earlier allow us to analyze online
problems of this flavor.
Let us describe the online learning scenario within the supervised setting

(that is, data are pairs of predictor-response variables). In round t, the fore-
caster observes xt ∈ X , chooses a prediction ŷt ∈ Y, and then observes the
outcome yt ∈ Y. The quality of the prediction is evaluated by the loss func-
tion ℓ(ŷt, yt), an “out-of-sample” performance measure. The new data point
(xt, yt) is then incorporated into the growing dataset. In contrast to the sta-
tistical learning scenario, we make no assumptions3 about the evolution of
the sequence (x1, y1), . . . , (xn, yn), . . .. The problem becomes well-posed by
considering a goal that is called regret :

1

n

n∑

t=1

ℓ(ŷt, yt)− inf
f∈F

1

n

n∑

t=1

ℓ(f(xt), yt) (15.8)

for some class F of functions X → Y. The term subtracted is a benchmark
that encodes the inductive bias in a way similar to (15.7). The fact that the
loss ℓ(ŷt, yt) is an out-of-sample performance measure facilitates a deeper
connection between (15.8) and (15.7).
We remark that if the loss function is not convex in ŷt (or if Y is not

convex), then the forecaster commits to a randomized strategy qt and draws
ŷt ∼ qt after observing yt.
Littlestone [22] studied the online learning problem under the so-called

realizability assumption: there exists f∗ ∈ F such that the presented se-
quence satisfies yt = f∗(xt) for all t. For the indicator loss and a binary
sequence of outcomes, Littlestone presented a method (essentially, a vari-
ant of “halving”) that makes at most ldim (F) mistakes; moreover, Little-
stone showed that there exists a strategy of Nature ensuring that at least
ldim (F) mistakes are incurred by any prediction method. This result has
been extended by Ben-David, Pál, and Shalev–Shwartz [10] to the “agnostic”
setting that lifts the realizability assumption on the sequence. For the case
of indicator loss and binary outcomes, the authors exhibited a method that

guarantees an O
(
n−1/2

√
ldim (F) log n

)
upper bound on regret and also

provided a nearly matching lower bound of Ω
(
n−1/2

√
ldim (F)

)
. The upper

bounds were derived—like the vast majority of results in online learning—by
exhibiting an algorithm (in this case, a clever modification of the Exponen-
tial Weights algorithm) and proving a bound on its regret. The work of [22]

3 It is also possible to study an intermediate setting, where some knowledge about the

sequence is available (see, e.g., [30]).
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and [10] were the first indications that one may find characterizations of
learnability for the sequential prediction setting.
In contrast to the algorithmic approach, an emerging body of literature

aimed to study online learning by working directly with the minimax value
of a multistage prediction problem [1, 34, 29, 2]. Since a prediction method
is required to do well on all sequences, it is instructive to think of the online
learning problem as a game between the Learner and Nature. The minimax
regret (or, the value of the game) is then defined as

Vn(F) , ⟪sup
xt

inf
qt∈∆(Y)

sup
yt

E

ŷt∼qt

⟫
n

t=1

{
1

n

n∑

t=1

ℓ(ŷt, yt)− inf
f∈F

1

n

n∑

t=1

ℓ(f(xt), yt)

}
. (15.9)

where ∆(Y) is the set of distributions on Y and the ⟪· · · ⟫nt=1 notation is the
shorthand for the repeated application of operators, from t = 1 to n. For
instance, we would write the minimax value of an abstract two-stage game
in our notation as

min
a1

max
b1

min
a2

max
b2

φ(a1, b1, a2, b2) = ⟪min
at

max
bt
⟫2

t=1

φ(a1, b1, a2, b2).

Given any upper bound on minimax regret Vn(F), there exists a prediction
method that guarantees such a bound; any lower bound on Vn(F) ensures
the existence of a strategy for Nature that inflicts at least that much regret
for any prediction method.
The link to the uniform martingale laws of large numbers comes from the

following theorem proved in [29]: for the case of absolute loss ℓ(ŷt, yt) =
|ŷt − yt|, Y = [−1, 1], and F ⊆ [−1, 1]X , it holds that

Rseq
n (F) ≤ Vn(F) ≤ 2Rseq

n (F) (15.10)

where Rseq
n (F) = sup

x
Rseq

n (F ;x) as defined in (15.4). A similar statement
holds for more general loss functions. It is also possible to prove the upper
bound for a more general non-supervised scenario (such as online convex
optimization) in terms of the sequential Rademacher complexity of the loss
class ℓ ◦ F = {ℓ ◦ f : f ∈ F}.
Together with the results of Sect. 15.2, one obtains a characterization of

the existence of an algorithm with diminishing regret. The sequential com-
plexities discussed earlier also provide rates of convergence of minimax regret
to zero. As in the case of statistical learning, it is possible to establish con-
trol of sequential covering numbers, combinatorial parameters, or—directly—
sequential Rademacher complexity for the particular questions at hand. With-
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out much work, this approach yields rates of convergence of minimax regret
for such classes as neural networks, decision trees, and so forth (see [29]). For
many of these, a computationally feasible algorithm is unknown; nevertheless
the minimax approach is able to discern the relevant complexity of the class
in a non-constructive manner.
We remark that in many cases of interest sequential Rademacher complex-

ity is of the same order as classical Rademacher complexity. In such cases,
one obtains the same rates of convergence in online learning as in statisti-
cal learning with i.i.d. data. An analogous statement also holds for “curved
losses,” such as the square loss. Of course, the class of thresholds—as well as
many other natural VC classes of binary-valued functions—is an exception to
this equivalence, as the value Vn(F) does not decrease to zero and uniform
martingale convergence does not hold. In some sense, the difficulty of learn-
ing thresholds in the online manner comes from the infinite precision in the
arbitrary choices xt of Nature, coupled with the lack of information coming
from a binary-valued response yt. The situation is conveniently remedied by
considering Lipschitz functions, such as a “ramp” version of a threshold. Ba-
nach spaces, in particular, are a rich source of examples where the rates of
online learning and statistical learning match.

15.4 Online Learning: Algorithms

As mentioned earlier, the upper bounds of Sect. 15.3 are non-algorithmic
since the starting point is Eq. (15.10) — an upper bound that contains no
prescription for how an algorithm should form predictions. While it is at-
tractive to be able to understand the inherent complexity of online learning
without the need to search for a prediction strategy, it is still desirable to find
an algorithm that achieves the promised bounds. In this section, we recover
the algorithms that were “lost” through the non-constructive derivations. In
fact, we will see how to come up with prediction methods through a rather
general recipe. As a bonus, the algorithms can also be used in the statistical
learning scenario with i.i.d. data: an algorithm with a bound on regret (15.8)
can also guarantee a bound on (15.7), under some conditions.

15.4.1 How to Relax

Let us examine (15.9) for a step t ≥ 1. Since the choices ŷ1, y1, . . . , ŷt−1, yt−1

have been made, the sum
∑t−1

s=1 ℓ(ŷs, ys) does not enter into the optimization
objective for xt, qt, yt. Recall that, according to the protocol, xt is observed
before the mixed strategy qt is chosen. Given xt, the optimization problem
for qt, yt now becomes
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inf
qt

sup
yt

Eŷt∼qt

{
ℓ(ŷt, yt) + ⟪sup

xs

inf
qs∈∆(Y)

sup
ys

E

ŷs∼qs

⟫
n

t+1[
n∑

s=t+1

ℓ(ŷs, ys)− inf
f∈F

n∑

s=1

ℓ(f(xs), ys)

]}

where we omit the normalization by n throughout. Let us denote the in-
ner term, the optimization over variables from step t + 1 onwards, by
Vn (x1:t, y1:t). Henceforth, we use the notation x1:t = (x1, . . . , xt). We may
think of Vn (x1:t, y1:t) as a conditional minimax value, given the prefix of data
up to time t. With this notation, the optimization objective at time t, given
xt, is

inf
qt

sup
yt

Eŷt∼qt {ℓ(ŷt, yt) + Vn (x1:t, y1:t)}

and the recursive definition of the conditional value is

Vn (x1:t−1, y1:t−1) = sup
xt

inf
qt

sup
yt

Eŷt∼qt {ℓ(ŷt, yt) + Vn (x1:t, y1:t)} .

To make the recursive definition complete, the starting point is taken to be

Vn (x1:n, y1:n) = − inf
f∈F

n∑

s=1

ℓ(f(xs), ys).

It is then easy to see that the terminal point of the recursive definition yields
Vn(F) =

1
nVn (∅) . An optimal regret minimization algorithm is given by any

choice

q∗t ∈ argmin
qt

sup
yt

Eŷt∼qt {ℓ(ŷt, yt) + Vn (x1:t, y1:t)}

yet this choice is likely to be computationally infeasible. While written as
a dynamic programming problem, the function Vn (x1:t, y1:t) needs to be
computed for all possible sequences—an insurmountable task for any in-
teresting scenario. The idea put forth in [27] is to derive upper bounds
on the conditional value. To this end, let Reln (x1:t, y1:t) be a function
∪t=1,...,n(X × Y)

t → R such that

Reln (x1:n, y1:n) ≥ − inf
f∈F

n∑

s=1

ℓ(f(xs), ys) (15.11)

and

Reln (x1:t−1, y1:t−1) ≥ sup
xt

inf
qt

sup
yt

Eŷt∼qt {ℓ(ŷt, yt) + Reln (x1:t, y1:t)} .

(15.12)
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The function Reln () is called a relaxation. One of the main tools for verifying
the admissibility condition (15.12) is the minimax theorem, as the maximin
dual objective is often easier to analyze. Once admissibility is established,
the algorithm

q∗t ∈ argmin
qt

sup
yt

Eŷt∼qt {ℓ(ŷt, yt) + Reln (x1:t, y1:t)} (15.13)

automatically comes with a regret guarantee of 1
nReln (∅) (see [27]). The

search for computationally feasible regret minimization algorithms is thus
reduced to finding an appropriate relaxation that is not too much larger than
the conditional value. This is where the techniques from Sect. 15.2 come in.
Suppose ℓ(ŷ, y) is 1-Lipschitz in the first coordinate. By sequential sym-

metrization, it is possible to show that the conditional sequential Rademacher
complexity

R(x1:t, y1:t) , sup
x

E sup
f∈F

{
2

n∑

s=t+1

ǫsf(xs(ǫ))−
t∑

s=1

ℓ(f(xs), ys)

}
(15.14)

is an admissible relaxation, where expectation is over ǫt+1:n, the supremum
is taken over trees x of depth n − t, and indexing of the tree starts at t + 1
for simplicity. Observe that (15.14) reduces to the sequential Rademacher
complexity when t = 0. At the other extreme, it satisfies (15.11) with equality
for t = n. In view of (15.10), an algorithm that uses this relaxation is nearly
optimal. However, the supremum over x is not computationally tractable in
general. We thus take (15.14) as a starting point for finding relaxations, and
the main goal is to remove the supremum over x via further inequalities or
via sampling, as illustrated in the next two paragraphs.
Let us illustrate the idea of “removing a tree” in (15.14) on the example of

a finite class F of functions X → [−1, 1]. Defining Lt(f) =
∑t

s=1 ℓ(f(xs), ys)
to be the cumulative loss of f at time t, we have, given any x and for any
λ > 0,

E sup
f∈F

{
2

n∑

s=t+1

ǫsf(xs(ǫ))− Lt(f)

}

≤
1

λ
log
∑

f∈F

E exp

{
2λ

n∑

s=t+1

ǫsf(xs(ǫ))− λLt(f)

}

≤
1

λ
log
∑

f∈F

exp {−λLt(f)}+ 2λ(n− t).

Using the last upper bound as a relaxation, we immediately obtain a
parameter-free version of the celebrated Weighted Majority (or, the Aggre-
gating Algorithm) [41, 23]. We refer for the details to [27], where a number of
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known and novel methods are derived more or less mechanically by following
the above line of reasoning.
As emphasized throughout this chapter, the rates for online learning and

for statistical learning often match. In these cases, there is hope that the
supremum over a tree x in (15.14) can be replaced by an expectation over an
i.i.d. draw xt+1, . . . , xn from a fixed distribution D. Under appropriate con-
ditions (see [27]), one can then obtain a randomized method of the “random
rollout” style. At time t, we first draw xt+1, . . . , xn ∼ D and Rademacher
random variables ǫt+1, . . . , ǫn. The randomized prediction is given by

q∗t = argmin
qt

sup
yt

{
E [ℓ(ŷt, yt)] + sup

f∈F

{
2

n∑

s=t+1

ǫsf(xs)−
t∑

s=1

ℓ(f(xs), ys)

}}
.

In some sense, the “future” is simulated through an i.i.d. draw rather than
a worst-case tree x. This technique leads to a host of efficient randomized
prediction methods, and an example will be presented in Sect. 15.4.3.
In summary, the relaxation techniques give a principled way of deriving

computationally feasible online learning algorithms. The uniform martingale
laws of large numbers and the sequential complexity measures described ear-
lier become a toolbox for such derivations.

15.4.2 From Online to Statistical Learning: The

Improper Way

To describe the next idea, let us for simplicity fix Y = {0, 1}, ℓ(ŷ, y) =
I {ŷ 6= y}, and F a class of functions X → Y. Then Eŷt∼qtℓ(ŷt, yt) = |qt−yt|
and (15.13) becomes

q∗t = argmin
qt

max
yt∈{0,1}

{|qt − yt|+ Reln (x1:t, y1:t)}

which is equal to

q∗t =
1

2
(1 + Reln (x1:t, (y1:t−1, 1))−Reln (x1:t, (y1:t−1, 0))) . (15.15)

Since q∗t is calculated based on xt, we may write the solution as a function

ft(x) =
1

2
(1 + Reln ((x1:t−1, x), (y1:t−1, 1))−Reln ((x1:t−1, x), (y1:t−1, 0))) .

Then the guarantee given by the relaxation algorithm can be written as

E

[
1

n

n∑

t=1

|ft(xt)− yt| − inf
f∈F

1

n

n∑

t=1

I {f(xt) 6= yt}

]
≤

1

n
Reln (∅) .
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The so-called online-to-batch conversion [12, 11] method defines

f̂ =
1

n

n∑

t=1

ft,

the average of the trajectory output by the online learning algorithm. If data
(X1, Y1), . . . , (Xn, Yn) presented to the online learning algorithm are i.i.d.

with a common distribution PX×Y , an easy calculation shows that f̂ enjoys
a statistical learning guarantee

E|f̂(X)− Y | − inf
f∈F

E|f(X)− Y | ≤
1

n
Reln (∅) .

Note that f̂ is [0, 1]-valued, and the first term can be interpreted as the ex-
pected indicator loss of a randomized method. Randomized prediction meth-
ods are not commonplace in statistical learning, but here they arise naturally
because of the non-convexity of the indicator loss. Whenever the loss function
is convex and Y is a convex set (e.g., square loss for regression) there is no
need for randomized predictions.
The important point we would like to discuss is about the nature of the

function f̂ . Observe that f̂ is not necessarily in F , as it is obtained purely as
an average of point-wise solutions in (15.15). Such a learning method is called
“improper.” In contrast, the most-studied method in statistical learning, the
empirical risk minimization (ERM) algorithm, is “proper,” as it selects a
member of F . Recently, however, it was shown that ERM—and any selector
method for that matter—is suboptimal for the problem of learning with square
loss and a finite set of functions [21, 18]. Several “improper” algorithms were
suggested, mixing the finite set of functions via a convex combination [7, 20].
These methods, however, appear somewhat ad hoc, as there is presently no
language in statistical learning theory for talking about improper learning
methods. This is where online learning appears to come in and give us such
a language.
The power of the above reasoning is demonstrated in [28], where opti-

mal rates are exhibited for the problem of online regression with square loss
through a direct analysis of the value in (15.8). Because of the curvature of
the loss, a slightly different quantity (an offset sequential Rademacher com-
plexity) governs the rates of convergence. An algorithm guaranteeing these
optimal rates automatically follows from a recipe similar to that for the abso-
lute loss. Coupled with online-to-batch conversion, the method yields optimal
rates for statistical learning with square loss whenever sequential complexi-
ties are of the same order of magnitude as the i.i.d. ones. Remarkably, this
method is very different from that obtained in [32] for the same problem.
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15.4.3 Application: Online Node Classification

We now consider the problem of online node classification and illustrate how
Rademacher relaxation and the idea of randomized methods can be used
to develop an efficient prediction algorithm with low regret. The motivation
for the setting comes, for instance, from the need by advertising agencies to
predict in a sequential manner whether, say, an individual in a social network
is of a particular type, given information about her friends. The problem
cannot be modeled as i.i.d., and the online learning framework provides an
attractive alternative.
More precisely, assume we are provided with a weighted graph G =

(V,E,W ) where V is the set of vertices, E the set of edges, and W : E →
[−1, 1] is the weight of each edge, indicating similarity/dissimilarity between
vertices. In a sequential manner, the vertices of G are presented without repe-
tition. In round t ≤ n ≤ |V |, after a node vt is presented, the learner predicts
the label of the node ŷt ∈ {±1} and the true label yt ∈ {±1} is subsequently
revealed. Informally, the structure of the problem is such that similar nodes
(as measured by W ) should have similar labels, and dissimilar nodes should
have different labels. For a class FG ⊆ {±1}V of labelings of vertices, the
(unnormalized) regret is defined as

n∑

t=1

I {ŷt 6= yt} − inf
f∈FG

n∑

t=1

I {f(vt) 6= yt}

=
1

2

(
n∑

t=1

(−ŷtyt)− inf
f∈FG

n∑

t=1

(−f(vt)yt)

)

where the last step is because I {a 6= b} = 1−a·b
2 for a, b ∈ {±1}. The condi-

tional sequential Rademacher complexity (15.14) is then given by

R(v1:t, y1:t) = sup
v

E sup
f∈FG





|V |∑

s=t+1

ǫsf(vs(ǫ)) +
1

2

t∑

s=1

ysf(vs)





where v is a V \ {v1, . . . , vt}-valued tree that has sequences of non-repeating
nodes on each path. Since

∑n
s=t+1 ǫsf(vs(ǫ)) is invariant w.r.t. the order in

which the nodes appear in the tree, we can take these nodes without repetition
in any order we please:

R(v1:t, y1:t) = E sup
f∈FG





|V |∑

s=t+1

ǫsf(vs) +
1

2

t∑

s=1

ysf(vs)



 (15.16)

where vt+1, . . . vn is any fixed order in which future nodes could appear (e.g.,
ascending order). Now, depending on G, the supremum over FG might still
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be difficult to compute. We therefore might want to further relax the problem
by using a larger set FG ⊇ FG for the supremum in (15.16). The randomized
algorithm we derive from such a relaxation is given by first drawing ǫ1, . . . , ǫn
Rademacher random variables and then predicting ŷt ∈ {±1} by picking +1
with probability

q∗t =
1

2
+

1

2
Clip


 sup

f∈FG





|V |∑

s=t+1

ǫsf(vs) +
1

2

t−1∑

s=1

ysf(vs) +
1

2
f(vt)



 (15.17)

− sup
f∈FG





|V |∑

s=t+1

ǫsf(vs) +
1

2

t−1∑

s=1

ysf(vs)−
1

2
f(vt)








where Clip(α) = α if |α| ≤ 1 and Clip(α) = sign(α) otherwise. The expected
regret for the above algorithm is bounded by

1

n
Reln (∅) =

1

n
E


 sup
f∈FG

|V |∑

t=1

ǫtf(vt)


 . (15.18)

Since the algorithm in (15.17) is independent of n, the regret guarantee in
fact holds for any n ≤ |V |.
Let us discuss the computational requirements of the proposed method.

From Eq. (15.17), our randomized prediction q∗t can be obtained by solving
two optimization problems per round (say round t) as:

Val+t = Maximize f⊤X+
t Val−t = Maximize f⊤X−

t

subject to f ∈ FG subject to f ∈ FG (15.19)

where X+
t is the vector such that X+

t [vt] = +1/2, X+
t [vs] =

1
2ys for any

s ≤ t− 1, and X+
t [vs] = ǫs when s > t. Similarly X−

t is the vector such that
X−

t [vt] = −1/2, X
−
t [vs] =

1
2ys for any s ≤ t−1, and X−

t [vs] = ǫs when s > t.

The randomized predictor is given by q∗t = 0.5 + 0.5 Clip(Val+t − Val−t ). To
further detail the computational requirements, consider the following exam-
ple.

Example 15.3 (Laplacian Node Classification). Assume that W is some ma-
trix measuring similarities/dissimilarities between nodes and let L denote the
Laplacian matrix of the graph. A natural choice for a class FG is then

FG =



f ∈ {±1}|V | :

∑

eu,v∈E

|W (eu,v)| (1− sgn(W (eu,v))f(u)f(v)) ≤ K





=
{
f ∈ {±1}|V | : f⊤Lf ≤ K

}
⊆
{
f ∈ [−1, 1]|V | : f⊤Lf ≤ K

}
, FG
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for some K > 0. The optimization problem (15.19) with the above set is
computationally feasible. We observe that the bound in (15.18) only increases

if FG is replaced with a superset obtained as follows. Since [−1, 1]|V | ⊂{
‖f‖2 ≤

√
|V |
}
, it holds that FG ⊆

{
f ∈ R

|V | : f⊤Mf ≤ 1
}
where M =

1
2KL+ 1

2|V |I|V |. Hence, the bound on expected regret is

1

n
E
[
ǫ⊤M−1ǫ

]
≤

1

n

√√√√
|V |∑

j=1

1

λj (M)

where for any square matrix M , λj (M) denotes the jth eigenvalue of M .

15.5 Completing the Circle: Vapnik and Chervonenkis

1968

Some of the key statements of the celebrated paper of Vapnik and Chervo-
nenkis [40] already appeared in the three-page abstract [39] in 1968. Perhaps
the less-known paper of Vapnik and Chervonenkis that also appeared in 1968
(submitted in 1966) is the manuscript “Algorithms with Complete Memory
and Recurrent Algorithms in Pattern Recognition Learning” [38]. We would
like to finish our chapter with a short discussion of this work, as it can be
viewed through the prism of online methods.
In the early sixties, the interest in studying “learning machines” was fueled

by the introduction of the Perceptron algorithm by Rosenblatt in 1957 and
by the mistake-bound proof of Novikoff in 1962. According to [36, p. 33], two
inductive approaches were discussed at the seminars of the Moscow Institute
of Control Sciences starting in 1963: (a) the principle of stochastic approxima-
tion, and (b) the principle of empirical risk minimization. The first approach
to minimizing the risk functional is recurrent, or online, and finds its roots in
the work of Robbins and Monroe in the early 1950s. In a string of influential
papers, Aizerman, Braverman, and Roeznoer [4, 3, 5] introduced a gener-
alization of the Perceptron using the idea of potential functions (presently
termed kernels). Both the Perceptron and the potential-based updates were
shown to be instances of the stochastic approximation approach, minimiz-
ing an appropriate functional. In parallel to these developments, Vapnik and
Chervonenkis were working on the second approach to learning – direct min-
imization of the empirical risk.

It is especially interesting to read [38] against this backdrop. The authors
find the length of the training sequence that suffices for ERM to achieve the
desired accuracy for linear classifiers in d dimensions, under the assumption
of realizability. This sample complexity is computed based on the fact that
the growth function behaves polynomially with exponent d, a precursor to the
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general combinatorial result. The authors compare this sample complexity to
the one obtained from the Perceptron mistake bound (with a conversion to
the i.i.d. guarantee). The latter sample complexity depends inversely on the
square of the margin. Vapnik and Chervonenkis discuss the fact that for a
Perceptron-based approach one cannot obtain distribution-free statements,
as the required sample complexity becomes infinite when the margin is taken
to zero. In contrast, sample complexity of ERM, irrespective of the distri-
bution, can be upper bounded in terms of the dimension and independently
of the margin. The authors also note that the margin may enter into the
computation time of ERM – a statement that already foreshadows the focus
on computational complexity by Valiant in 1984.

The discussion by Vapnik and Chervonenkis on sample complexity of re-
current vs. full-memory algorithms can be seen through the lens of results
in the present chapter. The Perceptron is an online learning method (we
can write down a relaxation that yields the corresponding update), and its
convergence is governed by uniform martingale laws of large numbers. Such
a distribution-free convergence is not possible for thresholds, as shown in
Example 15.2. More generally, an attempt to pass to a statistical learning
guarantee through an online statement can only be successful if there is no
gap between the classical and sequential complexities. On the positive side,
there are many examples where uniform martingale convergence is equivalent
to i.i.d. convergence, in which case the world of recurrent algorithms meets
the world of empirical risk minimization. It is rather remarkable that the
topic of online vs. batch learning algorithms—a current topic of interest in
the learning community—was already explored by Vapnik and Chervonenkis
in the 1960s.
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