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Abstract

We present efficient algorithms for the problem of contextual bandits with i.i.d. covariates,
an arbitrary sequence of rewards, and an arbitrary class of policies. Our algorithm BISTRO
requires d calls to the empirical risk minimization (ERM) oracle per round, where d is the
number of actions. The method uses unlabeled data to make the problem computationally
simple. When the ERM problem itself is computationally hard, we extend the approach by
employing multiplicative approximation algorithms for the ERM. The integrality gap of the
relaxation only enters in the regret bound rather than the benchmark. Finally, we show that
the adversarial version of the contextual bandit problem is learnable (and efficient) whenever
the full-information supervised online learning problem has a non-trivial regret guarantee (and
efficient).

1 Introduction

A multi-armed bandit with covariates (also known as a contextual bandit) is a generalization of the
classical multi-armed bandit problem [LR85]. As the name suggests, in this natural formulation the
quality of the arms may depend on the observed set of covariates. Contextual bandits arise in many
application areas, from ad placement and news recommendation to personalized medical care and
clinical trials. In recent years, there has been a strong push to develop computationally efficient
regret minimization methods with respect to a given set of policies [LZ08, DHK+11, BLL+11,
AHK+14]. The grand goal here would be to develop efficient and statistically optimal methods for
large (and possibly uncountable) sets of policies, just as machine learning and statistics succeeded
in developing methods that perform well relative to rich classes of predictors (linear separators,
SVMs, and so forth). Compared to batch learning, however, the state of affairs at the moment is
quite poor. It appears to be difficult to develop scalable methods even for a finite set of policies,
as witnessed by the papers mentioned earlier. To some extent, the reason is not surprising: while
in statistical learning the batch nature of the problem suggests the empirical objective to optimize,
the scope of algorithms for contextual bandits is not at all clear.

[AHK+14] exhibit a computationally attractive method for a finite class of policies, given an
ERM (empirical risk minimization) oracle for the class. The oracle model allows one to address
the question of how much more difficult (computationally) the bandit problem is in comparison to
the batch learning problem.

In the present paper, we introduce a family of efficient methods (and, more generally, a new
algorithmic approach based on relaxations) for minimizing regret against a potentially uncountable
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class F , given that the value of the ERM objective can be computed. In addition, we require access
to i.i.d. draws of contexts (e.g. unlabeled data) — a realistic assumption in many application areas
mentioned earlier. Our method requires only d oracle calls per round, irrespective of the size of the
policy class. Furthermore, the results hold in the hybrid scenario where the contexts are i.i.d. but
rewards evolve according to an arbitrary process.

Let us now describe the scenario in more detail. On each round t = 1, . . . , n, we observe covariates
xt ∈ X , select an action ŷt ∈ {1, . . . , d} ≜ [d], and observe the cost ct(ŷt) of the chosen action. Here
ct ∈ [0,1]d is a cost assignment to all actions, chosen by Nature independently of ŷt. This cost vector
remains unknown to us, except for the coordinate ct(ŷt). Since we include randomized prediction
methods, we denote the distribution over the d choices on round t by qt ∈ ∆d, and draw ŷt ∼ qt.
The goal is to design a prediction method with small expected cumulative cost ∑n

t=1 q
T

t ct.
We assume that x1, . . . , xn are drawn i.i.d. from some unknown distribution Px on X . At the

same time, we do not place any assumption on the sequence of costs c1, . . . , cn, which may evolve
according to some arbitrary stochastic process, or be an “individual sequence,” or even be chosen
adaptively and adversarially. As such, our setting may be termed “hybrid i.i.d.-adversarial.” Our
results also hold in the so-called transductive setting, where the side information is presented ahead
of time.1

We have in mind machine learning applications such as online ad or product placement, whereby
the contextual information x1, . . . , xn of website visitors may be viewed as an i.i.d. sequence, yet
the decisions made by these customers might be too complex to be described in a probabilistic form.

A common way to encode the prior knowledge about the problem is to take a class F of functions
(or, deterministic policies) X → [d], with the hope that one of the functions will incur small cost on
the presented contexts. With this “inductive bias,” we then aim to make predictions as to minimize
regret

Reg =
n∑
t=1

qTt ct − inf
f∈F

n∑
t=1

f(xt)Tct, (1)

where henceforth we abuse the notation by identifying the value f(x) ∈ [d] with the standard
basis vector ef(x). This regret formulation encodes the prior knowledge of the practitioner. If
the modeling choice F is good and (1) is small, the algorithm is guaranteed to incur small loss∑n

t=1 q
T

t ct. Modeling the set of solutions F to the problem is a more direct approach (in the spirit
of statistical learning) as compared to the harder problem of positing distributional assumptions
on the relationship between contexts and the rewards. (The latter approach typically suffers from
the curse of dimensionality.)

The difficulty of the problem arises from the form of the feedback. The customer seeking to buy
a product different from what is presented by the recommendation engine may leave the site without
revealing her valuation for all the items. Similarly, in personalized care, we may only observe the
effect of the drug choice selected for the given patient. It is well recognized that exploration—or
randomization—is required in these problems. Yet, in the contextual bandit setting the exploration-
exploitation trade-off is not simple, as the quality of the arms changes with the context in a way
that is only indirectly captured by the benchmark term.

Online multiclass classification with one bit (correct-or-not) feedback can be seen as an example
of our setting. In that case ct is a standard basis vector eyt for some class yt ∈ [d], and the feedback

1In Section 6 we also discuss the fully-adversarial case (see [ACBFS02, MS09] for the famous EXP4 algorithm for
finite F).
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is ct(ŷt) = I{ŷt ≠ yt}. Unlike [KSST08], we posit that side information is i.i.d.—an assumption that
will play a key role in developing computationally efficient methods, even for the indicator (rather
than the easier hinge) loss.

The hybrid i.i.d.-adversarial scenario has been studied in both the full information and contex-
tual bandit settings in [LM09]. Their algorithm, as well as the algorithm of [BLL+11], maintain
distributions over the set of functions and, hence, computation can be linear in the size of F .

For the case whenF is finite, the upper bound for BISTRO provided in Theorem 2 isO(n3/4(log ∣F ∣)1/4).
The work of [AHK+14] gives a better O(n1/2(log ∣F ∣)1/2) rate for the case when rewards are i.i.d.
On the other hand, our results hold for

• arbitrary F and arbitrary reward sequences,

• approximate ERM values and a way to address the computational problem associated to
ERM.

We remark that if contexts are arbitrary as well, our setting subsumes the problem of multiclass
prediction with bandit feedback and indicator loss, as described above. Even for the multiclass hinge
loss, it is still unclear (at least to the authors) whether the rate O(n2/3) for the linear classifier
considered in [KSST08] can be improved.2 It is, therefore, an open question whether the O(n3/4)
rates achieved by our method for the hybrid scenario for arbitrary classes F can be improved.

There are several new techniques that make it possible to develop computationally feasible
prediction methods with nontrivial regret guarantees:

• First is the idea of relaxations, presented in [RSS12] for the full-information setting. An
extension to partial information case has been a big roadblock for developing new bandit
methods. We present this extension here.

• Second is the idea of a random playout, also employed in [RS15]. We show that by having
access to unlabeled contexts, the computational (and statistical) difficulty of integrating with
respect to the unknown distribution simply disappears.

• We extend the notion of classical Rademacher averages to the case of vector-valued functions.
The symmetrization technique in this case is of independent interest.

• In many cases, the offline ERM optimization problem (which we assume away as an “oracle
call”) may be NP hard. Building on the technique of [RS15], we employ optimization-based
relaxations for integer programs. We prove that the regret bound of the resulting algorithm
only worsens by a multiplicative factor that is related to the ratio of average widths of the
relaxed and the original sets.

It is worth emphasizing again that the family of prediction methods presented in this work
is drived from the partial-information extension of the relaxation framework, and the resulting
algorithms are distinct from the ones appearing in the literature. We believe that this approach
is systematic and can partially fill the gap in our understanding of the algorithmic possibilities for
contextual bandits.

2The O(n1/2) rate in [HK11] is only proved for the case of log-loss.
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2 Notation

We denote [d] ≜ {1, . . . , d} and a1∶t ≜ {a1, . . . , at}. Let ∆d be the probability simplex over d
coordinates. The vector of ones is denoted by 1 and an indicator of event A by I{A}. For a matrix
M , we use Mt to refer to its t-th column.

3 Setup

Let us recall the online protocol. On each round t ∈ [n], we observe side information xt ∈ X , predict
ŷt ∼ qt ∈∆d, and observe feedback ct(ŷt) for some ct ∈ [0,1]d.

Given x1∶n, it is convenient to work with a matrix representation of the class F projected on
these data. Each f ∈ F yields sequence (f(x1), . . . , f(xn)), which we collect as a d × n matrix Mf ,
defined as

Mf(j, t) = I{f(xt) = j} . (2)

Let M̂ = M̂[x1∶n] = {Mf ∶ f ∈ F} denote the collection of matrices. (The hat on M̂ will remind us
of the dependence of this set on x1∶n, even if not explicitly mentioned).

We may now define the oracle employed by the prediction method:

Definition 1. Given a class F of policies X → [d], a set of covariates x1∶n, and a real-valued d ×n
matrix Y , a value-of-ERM oracle returns the value

inf
M∈M̂[x1∶n]

n∑
t=1

MT

t Yt . (3)

The oracle is called δ-approximate if the reported value is within δ from the minimum.

We may express the comparator term in (1) as an ERM objective (3) with Y = [c1, . . . , cn].
Closely related to this expression is a new (to the best of our knowledge) definition of Rademacher
averages for vector-valued functions: given x1∶n, define

R(F ;x1∶n) ≜R(M̂) ≜ Eǫ1∶n sup
M∈M̂

n∑
t=1

MT

t ǫt (4)

where ǫ1, . . . ,ǫn are d-dimensional vectors with independent Rademacher random variables. We
observe that Rademacher complexity is nothing but a (negative of) the ERM objective with the
random matrix [−ǫ1, . . . ,−ǫn]. Indeed, as in the classical case, correlation of the vector valued
function class F with noise measures its complexity.

4 Relaxations for Partial Information

Let us write the information obtained on round t as a tuple

It(xt, qt, ŷt, ct) = (xt, qt, ŷt, ct(ŷt)),
keeping in mind that xt is revealed before qt is chosen. In full information problems, It contains
the vector ct, but not so in our bandit case. For partial information problems, it turns out to be
crucial to include qt in the definition of It, in addition to the value ct(ŷt).
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A partial-information relaxation Rel () is a function that maps (I1, . . . , It) to a real value, for
any t ∈ [n]. We say that the partial-infromation relaxation Rel (I1, . . . , It) is admissible if for any
t ∈ [n], for all I1, . . . , It−1,

E
xt

inf
qt

max
ct

E
ŷt∼qt

{ct(ŷt) +Rel (I1∶t−1, It(xt, qt, ŷt, ct))} ≤Rel (I1∶t−1) (5)

and for all x1∶n,c1∶n, and q1∶n,

E

ŷ1∶n∼q1∶n

Rel (I1∶n) ≥ − inf
f∈F

n∑
t=1

f(xt)Tct . (6)

In the above expressions, xt follows the (unknown) distribution Px, qt ranges over distributions on[d], and ct over [0,1]d.
Any randomized strategy (qt)nt=1 that certifies the inequalities (5) and (6) is called an admissible

strategy.

Lemma 1. Let Rel () be an admissible relaxation and (qt)nt=1 an admissible strategy. Then for any
c1∶n,

E[Reg] ≤Rel (∅) .
The above partial-information relaxation setup appears to be “the right” analogue of the full-

information relaxation framework. While we do not present it here, one may recover the EXP4
algorithm through the above approach, with the correct regret bound.

We will now present an admissible strategy for the contextual bandit problem, assuming we can
sample from the distribution Px, or have access to unlabeled data.

5 The BISTRO Algorithm

For any t ∈ [n], define a d × n matrix Y (t) as

Y (t) = [c1, . . . , ct−1, ct,2ǫt+1, . . . ,2ǫn]
with ǫs ∈ {±1}d a vector of independent Rademacher random variables. At each step t ∈ [n], the
randomized method presented below calculates a distribution qt ∈∆d with each coordinate at least
γ and defines an unbiased estimate c̃t of ct in a usual manner as

c̃t(j) = I{ŷt = j} × ct(ŷt)/qt(j).
It is standard to verify that Eŷt∼qt c̃t = ct. We then define

Ỹ (t) = [c̃1, . . . , c̃t−1, c̃t,2γ−1ǫt+1, . . . ,2γ−1ǫn], (7)

and recall that Ỹ
(t)
s denotes the s-th column of this matrix. The next theorem is the main result

of the paper.

Theorem 2. The partial-information relaxation

Rel (I1∶t) = E

(x,ǫ)t+1∶n

sup
M∈M̂

{− n∑
s=1

MT

s Ỹ
(t)
s } + (n − t)γ (8)
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is admissible. An admissible randomized strategy for this relaxation is given by BISTRO (Algo-
rithm 1). The expected regret of the algorithm with γ =

√
2ER(F ;x1∶n)/(nd) is upper bounded

by
2
√
2d ⋅ n ⋅ER(F ;x1∶n).

Algorithm 1 BISTRO: BandItS wiTh RelaxatiOns

input Parameter γ ∈ (0,1/d)
1: for t = 1, . . . , n do

2: Observe xt. Draw xt+1∶n ∼ Px and ǫt+1∶n .
3: Construct Ỹ (t) and define q∗t to be a minimizer of

max
j∈[d]

⎧⎪⎪⎨⎪⎪⎩q
T
ej − min

M∈M̂[x1∶n]

{∑
s≠t

γMT

s Ỹ
(t)
s +MT

t ej}⎫⎪⎪⎬⎪⎪⎭
over q ∈∆d and set

qt = (1 − γd)q∗t + γ1. (9)

4: Predict ŷt ∼ qt and observe ct(ŷt).
5: Create an estimate c̃t:

c̃t(j) = I{ŷt = j} × ct(ŷt)/qt(j).
6: end for

The draw xt+1∶n ∼ Px can be realized by drawing from a pool of unlabeled data.
The random signs comprising the matrix Ỹ provide a form of “regularization”. We remark that

in experiments, one may obtain better performance by replacing the factor 2 in (7) with a smaller
value, or even with zero. A theoretical justification for this (which is related to using a surrogate
loss) is beyond the scope of this paper.

Lemma 3. The calculation of q∗t in BISTRO3 can be done by a water-filling argument and requires
d calls to the ERM oracle.

Proof of Lemma 3. The optimization problem in Algorithm 1 is of the form

min
q∈∆d

max
j∈[d]

{qj − ψj}
where ψj is the value of the infimum over M̂ corresponding to ej , and it is solved by a water-filling
argument which we describe next. Each value ψj is a value-of-ERM oracle call. Let ψ(1) ≥ . . . ≥ ψ(d)
be a sorted order of these values, and let q(1) = . . . = q(d) = 0 be the initial values of the corresponding
coordinates of the solution q. Start with a unit amount and assign q(1) = ψ(1) − ψ(2). Then add
ψ(2)−ψ(3) to both q(1) and q(2), and proceed until either the unit mass is exhausted, or the smallest
coordinate (d) in the ordering is reached and filled. In the former case, q is the solution, and the
latter case requires us to uniformly fill all the coordinates of q until they sum to one. It is easy to
see that this procedure minimizes the maximum difference.

3‘Bistro’ means ‘fast’ in Russian.
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The algorithm only requires the value of the ERM objective, not the solution. Furthermore,
this value can be δ-approximate, and the additional error is O(nδ) over the n rounds. This provides
extra flexibility, since approximate ERM values may be obtained via optimization methods.

Perhaps the most unusual aspect of the algorithm is the use of unlabeled data. It is an example
of a general random playout idea. In the setting of online linear optimization, the Follow-the-
Perturbed-Leader method is an example of such a random playout, yet the idea extends well
beyond this scenario. As shown in [RSS12], the random playout technique can be applied when a
certain worst-case-choice can be replaced with a known bad-enough distribution. However, when
side information xt is i.i.d., the step is not even required. Furthermore, an inspection of the proof
shows that we may deal with x’s coming from a non-i.i.d. stochastic process, as long as we are able
to draw future samples from it.

We also remark that (9) may be applied only to the coordinates that are close to zero, if any.
The potential suboptimality of the O(n3/4) bound stems from the uniform exploration. It is an
open question whether this can be improved systematically for all classes F , or whether there is a
different structural property that allows one to avoid this form of exploration.

6 Extensions

In this section, we outline several extensions of BISTRO. Specifically, we show how to incorporate
additional data-based constraints, and how to use further optimization-based relaxations (such as
LP or SDP), to obtain polynomial time methods for the ERM (or regularized ERM) solution. We
show that one obtains a regret bound that only worsens by a factor related to the integrality gap
of the integer program relaxation. With an eye on both computation and prediction performance,
these techniques expand the applicability of BISTRO.

6.1 Data-dependent policy classes

An inspection of the proof reveals that all the steps go through if define regret in (1) with respect
to a data-dependent class F[x1∶n]:

n∑
t=1

qTt ct − inf
f∈F[x1∶n]

n∑
t=1

f(xt)Tct. (10)

In this case, given x1∶n, to each f ∈ F[x1∶n] we associate Mf as defined in (2), and take

M̂ = {Mf ∶ f ∈ F[x1∶n]}.
The BISTRO algorithm is then identical, while the regret upper bound of Theorem 2 now replaces
ER(F ;x1∶n) with ER(F[x1∶n];x1∶n).

The ability to change the set of policies according to the actual data allows an extra degree of
flexibility. This flexibility can be realized via additional global constraints in terms of x1∶n, as we
show in the next few sections. We also discuss a concrete example.

6.2 Data-based constraints

A particular way to define a data-dependent subset of F is via constraints. Suppose we let C(f ;x1∶n)
be the degree to which f ∈ F violates constraints with respect to the given data x1∶n. We then

7



define

FK[x1∶n] = {f ∈ F ∶ C(f ;x1∶n) ≤K}, (11)

a pruning of the original class that keeps only those policies that do not violate the constraints by
more than K. Let us give an example.

Example: Product Recommendation Suppose at each time step we are asked to recommend
one of d products to a person, based on her covariate information xt. Let F be a set of policies that
map xt to the particular choice of the product (e.g. the label achieving maximum projection of xt
onto d vectors wj; here F may consist of all such unit vector tuples). The payoff is whether the
person decided to buy the recommended product. However, suppose xt also encodes the location
(physical, or within a network), and we believe it is a good idea to focus recommendations such that
near-by people are targeted with the same product. The marketing motivation here is two-fold:
first, the recommendations would reinforce each other when individuals communicate, or if one
of them buys the product; second, in a social network near-by individuals (friends) tend to have
similar tastes, and thus a good policy would suggest similar items.

The objective of enforcing similarity of recommendations is a global constraint that can only be
checked once we know all the x1, . . . , xn. We can easily incorporate the constraint into the definition
of FK[x1∶n] as follows. Let w(xs, xr) be the cost of providing different recommendations to xs and
xr (which is smaller if the two individuals are “far”). In the case of a network, we may set, for
instance, w(xs, xr) = 0 if the sth person is more than a hop away from the rth person. Define

C(f ;x1∶n) = ∑
s,r∈[n]

w(xs, xr)I{f(xs) ≠ f(xr)} , (12)

the constraint violation by f in assigning products to the given set of individuals. Let FK[x1∶n]
be defined as in (11). Note that the constraint is not on the behavior of the recommendation
engine, but on the set of policies that we hope will do well for the problem. If there is indeed the
effect of reinforcement of recommendations or similarity of tastes within the local neighborhood,
the restriction to a smaller set FK[x1∶n] is justified.

Within the same setting of product recommendation, we might instead take a set of policies
ensuring that within each neighborhood at least k individuals receive each particular product rec-
ommendation. This constraint, which roughly corresponds to “coverage” of the relevant population,
can be written as

C(f ;x1∶n) =∑
ℓ

∑
j∈[d]

⎡⎢⎢⎢⎢⎣k − ∑s∈Tℓ

f(xs)[j]⎤⎥⎥⎥⎥⎦+
where {Tℓ}ℓ is a partition of [n] into neighborhoods according to information contained in x1∶n.
The above two examples give a flavor of the constraints that can be encoded — the framework is
flexible enough to fit a wealth of scenarios.

From the computational point of view, it might be difficult to obtain the ERM value over
a constrained set FK[x1∶n]. Instead, we consider an additional form of relaxation, where the
constraint is subtracted off as a Lagrangian term. We will then employ certain linear programming
relaxations to solve the product recommendation problem. Notably, by going to a regularized
version of relaxations we are not changing the regret definition, which is still with respect to the
constrained set.
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6.3 Regularized relaxation

Let FK[x1∶n] = {f ∈ F ∶ C(f ;x1∶n) ≤ K} be the constrained set for some value K and a constraint
function C, as in the previous section. Let us write C(M ;x1∶n) for the matrix representation the
corresponding f ∈ F . The following form of a relaxation may be better suited for approximation
algorithms than the one where the constraint is strictly enforced.

Lemma 4. For any λ,K > 0, the partial-information relaxation

E

(x,ǫ)t+1∶n

sup
M∈M̂

{− n∑
s=1

MT

s Ỹ
(t)
s − λC(M ;x1∶n)}

+ λK + (n − t)γ (13)

is admissible, where M̂ denotes the matrix representation of the original (unconstrained) set F of
policies.

Proof of Lemma 4. We check that the initial condition is satisfied. For this purpose, let M̂K be
the set of matrices corresponding to the constrained set FK[x1∶n]. Similarly to (18) in the proof of
Theorem 2,

− inf
f∈FK[x1∶n]

n∑
t=1

f(xt)Tct ≤ E sup
M∈M̂K

n∑
t=1

−MT

t Ỹ
(n)
t ≤ E sup

M∈M̂

{ n∑
t=1

−MT

t Ỹ
(n)
t − λC(M ;x1∶n)} + λK.

The second inequality holds since all the matrices in the former supremum have the constraint value
bounded by K. The recursive condition argument follows exactly as in the proof of Theorem 2.

The only change required for BISTRO is to define the optimization objective in terms of regu-
larized ERM values

min
M∈M̂

{∑
s≠t

γMT

s Ỹ
(t)
s +MT

t ej + γ
−1λC(M ;x1∶n)} (14)

over the unconstrained set of matrices corresponding to F . While the required minimization prob-
lem is over an unconstrained set of policies, we can control the expected regret

n∑
t=1

qTt ct − inf
f∈FK[x1∶n]

n∑
t=1

f(xt)Tct. (15)

of the modified BISTRO with respect to the constrained set FK[x1∶n], which is the original goal.
The regret is given by Rel (∅), which is at most

E sup
M∈M̂

{−γ−1 n∑
t=1

MT

t ǫt − λC(M ;x1∶n)} + ndγ + λK.
It is possible to optimally balance λ with respect toK and the Rademacher averages in a data-driven
manner, but we omit this step for brevity.

As we illustrate in the next section, optimization problems of the form (14) may admit a linear
programming (or other) relaxation, offering an alternative to the optimization problem over the
constrained set.
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6.4 Optimization-based relaxations

To make the algorithm of this paper more applicable, we discuss here the situation where the
ERM oracle or the regularized ERM oracle for the class FK[x1∶n] (or the unconstrained set F) is a
difficult or even an NP-hard integer program. The idea is to choose a superset M̃ ⊇ M̂ for which
the linear optimization problem is easier.

Lemma 5. Let M̃ ⊇ M̂ be a set of matrices such that the column sum ∑d
j=1Mt(j) ≤ 1 for any

M ∈ M̃ and t ∈ [n]. Then the partial information relaxation

Rel (I1∶t) = E

(x,ǫ)t+1∶n

sup
M∈M̃

{− n∑
s=1

MT

s Ỹ
(t)
s } + (n − t)γ

is admissible. BISTRO (with ERM over M̃ rather than M) is an admissible strategy for this
relaxation and the expected regret is upper bounded by

2
√

2d ⋅ n ⋅ER(M̃).
Similarly, using M̃ in (13) yields an admissible relaxation, and BISTRO with the corresponding
regularized ERM is an admissible strategy.

The set M̃[x1∶n] may be defined via linear programming or SDP relaxations for integer pro-
grams, or via Lasserre/Parrilo hierarchies [Las01, Par03]. There is a large body of literature that
aims at understanding the integrality gap in relaxing the integer program. These results are directly
applicable to the present problem.

As a concrete example, consider the product recommendation example in the previous section,
and consider the cost (12) for each policy and the restriction FK[x1∶n] in (11). We assume here
that F is the set of all possible labelings, since in general the optimization problem will depend on
the structure of F and its description. Let us phrase the regularized ERM integer program (14) as
a Metric Labeling Constraint [KT02] problem. The general form of this integer program is given
for z ∈ [d]n by

g(z) = ∑
v∈V

d1(v, zv) + ∑
(u,v)∈E

W(u,v)d2(zu, zv) (16)

where G = (V,E,W ) is a graph with nonnegative weights, ∣V ∣ = n, the value d1 ∶ V × [d] → R is
a cost of assigning a label to a node, and the separation cost d2 ∶ [d] × [d] → R≥0 on the edges is
a metric on the space of labels. The Metric Labeling Constraint problem asks for a solution that
minimizes g(z) over [d]n.

For our application to product recommendation we convert the regularized minimization ob-
jective of (14) with the constraint (12) into the above form (16) by matching the assignment costs
to the linear part and the separation costs to the constraint part (12). More precisely, let G be a
fully connected graph with weights W(s,r) = γ

−1λ ⋅w(xs, xr) between nodes corresponding to xs and
xr. The indices of vertices correspond to time steps in [n], and zv corresponds to the coordinate

chosen by the particular M at time v. We take d1(v, zv) to be the value γeT

zv
Ỹ
(t)
v if v ≠ t and e

T

zv
ej

if v = t. Define d2(a, b) = I{a ≠ b} to be the uniform metric. We may also define a metric on the
space of products, assigning smaller distance to similar items.

10



[KT02] give an LP relaxation for the Metric Labeling Constraint problem. The set that defines
the relaxation is precisely the set M̃ we seek. Furthermore, the authors prove a 2-approximation
ratio for the uniform metric, which is the case here. ([CKNZ04] prove an integrality gap of O(log k)
for the general case).

Given the 2-approximation ratio result, we conclude that the regret bound for BISTRO with the
LP program as the relaxation of the regularized ERM is only a constant worse than the bound with
the constrained set FK[x1∶n]. The exact optimization over the latter set may be computationally
intractable, while we provide an efficient method to achieve a bound, optimal to within a constant.
As already noted in [RS15], such an approach that fuses approximation algorithms and online
relaxations is able to produce polynomial-time methods with regret defined as 1× the benchmark,
while the benchmark itself may be NP-hard. This phenomenon can be attributed to the improper
nature of the predictions, which need not be consistent with any particular policy in F .

More generally, by obtaining a multiplicative approximation of gap for the integer program, one
may derive

ER(M̃[x1∶n]) ≤ O(gap) × ER(M[x1∶n]). (17)

Then one obtains a method with better computational properties and a regret bound which is only
O(√gap) worse. Once again, the factor in front of the comparator in the definition (1) of regret is

still one when using M̃ as a relaxation.
Finally, we remark that (17) is comparing an average width of M̃ (largest projection onto

noise) with an average width ofM. Such a comparison of average widths (and, therefore, “average
gap”) for useful sets of contextual bandit policies F appears to be an interesting area of further
investigation. We refer to [RS15], where some of these ideas have been developed in the context of
cut-based constraints for node prediction on graphs.

6.5 Adversarial contexts

Suppose we place no assumption on the evolution of xt’s, which may now be treated as worst-case.
This problem subsumes the full information online classification setting, and, hence, one cannot
hope to have nontrivial regret against policy classes F with infinite Littlestone dimension. More
generally, the best one can hope for is to say that the adversarial contextual bandit problem can
be solved whenever the corresponding full information problem may be solved. We now present
essentially this result: if there is a full-information relaxation, then one may use it to solve the
adversarial contextual bandit problem. Moreover, based on the work of [RSS12, FRS15], all the
known online learning methods appear to be relaxation based. Hence, we essentially prove below
that

If a problem is online learnable in the full-information adversarial setting, then it is
learnable in the adversarial contextual bandit setting. Furthermore, if the former is
computationally tractable, then so is the latter.

To be precise, the full information version of contextual problem is as follows. On round t, we
observe xt ∈ X , predict ŷt ∈ [d], and observe ct ∈ [0,1]d. The regret is defined as before, with our
cumulative cost being ∑ ct(ŷt).

A full information relaxation Rel† (c1, . . . , ct) is admissible if

sup
xt

inf
qt

max
ct

E
ŷt∼qt

{ct(ŷt) +Rel† (c1∶t)} ≤Rel† (c1∶t−1)

11



and

Rel† (c1∶n) ≥ − inf
f∈F

n∑
t=1

f(xt)Tct .
Similarly, a partial information relaxation is admissible in this adversarial case when c1∶t are replaced
with I1∶t in the above admissibility definition, as in Section 4.

Lemma 6. If Rel† () is an admissible full-information relaxation for the adversarial scenario, then

Rel (I1∶t) ≜ γ−1Rel† (γc̃1, . . . , γc̃t) + (n − t)dγ
is admissible for the partial information scenario. Prediction qt is obtained as qt = (1 − dγ)q∗t + γ1
where q∗t is computed by solving for a full-information strategy with the scaled unbiased estimates
of costs. The resulting regret upper bound is

2
√
d ⋅ n ⋅Rel† (∅).

Proof of Lemma 6. Let us first check the initial condition. We have that

E
ŷ1∶n∼q1∶n

Rel (I1∶n) = E
ŷ1∶n∼q1∶n

γ−1Rel† (γc̃1, . . . , γc̃n)
≥ E

ŷ1∶n∼q1∶n

− inf
f∈F

n∑
t=1

f(xt)Tc̃t ≥ − inf
f∈F

n∑
t=1

f(xt)Tct
where the first inequality is due to admissibility of the full-information relaxation, and the second
is due to Jensen’s inequality and unbiasedness of c̃t. For the recursive part, we follow the proof of
Theorem 2 and note that all the statements, until the end, are done conditionally on xt. Define
the strategy q∗t as

q∗t = argmin
q∈∆d

sup
c̃∈γ−1[0,1]d

{qT(γc̃t) +Rel† (γc̃1, . . . , γc̃t)}
and let qt = (1 − dγ)q∗t + γ1. Given xt, (22) tells us

max
ct∈[0,1]d

Eŷt∼qt{ct(ŷt) +Rel (I1, . . . , It) } ≤ sup
c̃t∈γ−1[0,1]d

{(q∗t )Tc̃t +Rel (I1, . . . , It)} + dγ
which is equal to

γ−1 sup
c̃t

{(q∗t )T(γc̃t) +Rel† (γc̃1, . . . , γc̃t)} + (n − t + 1)dγ
≤ γ−1Rel† (γc̃1, . . . , γc̃t−1) + (n − t + 1)dγ

by admissibility of the full-information relaxation. Observe that the use of the full-information
relaxation on γc̃t’s is warranted since these vectors are in [0,1]d. This concludes the proof.

We remark that the time complexity of the adversarial contextual bandit solution in Lemma 6
is the same as the time complexity of the corresponding full information procedure.

12



7 Open Problems and Future Directions

The main open problem is whether the regret upper bound for BISTRO or a related method can
be improved. In the inequality (22) we decouple the distribution q′t from qt, and this appears to
be the source of the loseness, at least in the analysis. A more precise analysis at this step might
resolve the issue. It is unclear what kind of structure of F may be used to improve computation
and/or regret guarantees of BISTRO.

Under structural assumptions on F one may come up with sufficient statistics for the information
I1∶t and, therefore, avoid keeping around all the estimates c̃t. Of course, this is the case in non-
contextual bandits, where the sum ∑ c̃t is sufficient (at least as evidenced by existing near-optimal
bandit methods).

An interesting avenue of investigation is to study the more general case when x’s are drawn from
a stochastic process with a parametrized form. One may then attempt to estimate the parameters
of the process on-the-go and use the estimate to hallucinate future data for random playout.

8 Proofs

Proof of Lemma 1. In the proof, we use the shorthand ⟪. . .⟫nt=1 do denote repeated application
of the operators within the brackets from t = 1 to n. As an example, the sequence of operators

E
x1

max
c1

E
x2

max
c2

[G(x1, c1, x2, c2)]
acting on the function G is abbreviated as ⟪Ext

maxct⟫2t=1 [G(x1, c1, x2, c2)].
Let q1, . . . , qn be an admissible strategy. The expected regret of this strategy can be upper

bounded by

E[Reg] ≤ sup
c1∶n

E[Reg] ≤ ⟪E
xt

sup
ct

⟫n

t=1

[ n∑
t=1

qTt ct − inf
f∈F

n∑
t=1

f(xt)Tct]
by Jensen’s inequality (pulling Ext

out of multiple suprema until its t-th position). The last
expression is further upper bounded by

⟪E
xt

sup
ct

⟫n

t=1

[ n∑
t=1

qTt ct + E
ŷ1∶n∼q1∶n

Rel (I1∶n)]
by admissibility of the partial information relaxation. By linearity of expectation for Eŷt and
Jensen’s inequality (to pull it out through multiple suprema as before), we obtain an upper bound
of

⟪E
xt

sup
ct

E
ŷt∼qt

⟫n

t=1

[ n∑
t=1

ct(ŷt) +Rel (I1∶n)] .
We now start from step n and observe that ∑n−1

t=1 ct(ŷt) does not depend on xn, cn, ŷn, and thus we
rewrite the preceding expression as

⟪E
xt

sup
ct

E

ŷt∼qt

⟫n−1

t=1

[n−1∑
t=1

ct(ŷt) + E
xt

sup
ct

E

ŷt∼qt

{cn(ŷn) +Rel (I1∶n)}] .

13



By admissibility of qt and (5), we pass to the upper bound of

⟪E
xt

sup
ct

E

ŷt∼qt

⟫n−1

t=1

[n−1∑
t=1

ct(ŷt) +Rel (I1∶n−1)] .
Continuing in this fashion leads to a bound of Rel (∅).
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A Proof of Theorem 2

Admissibility: initial condition For any c1∶n, q1∶n, x1∶n, it holds that

− inf
f∈F

n∑
t=1

f(xt)Tct = sup
M∈M[x1∶n]

−

n∑
t=1

MT

t Y
(n)
t ≤ Eŷ1∶n∼q1∶n sup

M∈M[x1∶n]

−

n∑
s=1

MT

s Ỹ
(n)
s = Eŷ1∶n∼q1∶nRel (I1∶n) .

(18)

In the remainder of the proof we will often writeM instead ofM[x1∶n] for brevity.
Admissibility: recursion Let D ≜ {γ−1ej ∶ j ∈ [d]} ∪ {0}, the set of scaled standard basis
vectors, together with the origin. Observe that c̃t ∈ conv(D) by our definition of unbiased estimates
(in fact, it is only a scaling of one coordinate).

We now reason conditionally on xt. As before, let ǫs ∈ {±1}d denote a vector of independent
Rademacher random variables. Let us abbreviate by ρ = (ǫt+1∶n, xt+1∶n), a draw of independent
Rademacher variables and covariates from Px for the “future rounds”, as part of the random
playout procedure. Together with the estimates c̃s for s < t, we may now construct Ỹ (t) and M

matrices and define the randomized prediction algorithm as

q∗t (ρ) = argmin
q∈∆d

sup
c̃∈D

⎧⎪⎪⎨⎪⎪⎩q
Tc̃ + sup

M∈M[x1∶n]
−∑

s≠t

MT

s Ỹ
(t)
s −MT

t c̃

⎫⎪⎪⎬⎪⎪⎭ (19)

= argmin
q∈∆d

sup
ŷt,q

′
t

max
ct

⎧⎪⎪⎨⎪⎪⎩q
Tc̃t(ct, q′t, ŷt) + sup

M∈M[x1∶n]

−∑
s≠t

MT

s Ỹ
(t)
s −MT

t c̃t(ct, q′t, ŷt)⎫⎪⎪⎬⎪⎪⎭ (20)

We remark that xt enters the above definition of q∗t (ρ), but we leave this dependence implicit until
the end of the proof. For the purposes of the proof also define

qt(ρ) = (1 − dγ) ⋅ q∗t (ρ) + γ1, (21)
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a version of q∗t (ρ) that is shifted away from the boundary of the simplex (a step that allows for
estimation of ct). Also define qt = Eρ[qt(ρ)] and q∗ = Eρ[q∗t (ρ)]. Observe that

Eŷt∼qt[ct(ŷt)] = qTt ct ≤ (q∗t )Tct + γ1Tct ≤ Eŷt∼qt[(q∗t )Tc̃t(ct, qt, ŷt)] + dγ
Hence,

max
ct∈[0,1]d

Eŷt∼qt{ct(ŷt) +Rel (I1, . . . , It) }
≤ max

ct∈[0,1]d
Eŷt∼qt{(q∗t )Tc̃t(ct, qt, ŷt) +Rel (I1∶t−1, It(xt, qt, ŷt, ct)) } + dγ

≤ sup
ŷt∈[d],q′t

max
ct∈[0,1]d

{(q∗t )Tc̃t(ct, q′t, ŷt) +Rel (I1∶t−1, It(xt, q′t, ŷt, ct))} + dγ. (22)

In the last expression, the supremum is over q′t of the form (1− dγ) ⋅ q + γ1, q ∈∆d. This last upper
bound holds because qt is one of such distributions. The importance of this upper bound is that
it decouples the q∗t from q′t in the first term, a step that yields a simple optimization problem that
defines q∗t (ρ). Writing out the form of the relaxation, the last expression is equal to

sup
ŷt,q′t

max
ct

{(q∗t )Tc̃t(ct, q′t, ŷt) + Eρ sup
M∈M

−∑
s≠t

MT

s Ỹ
(t)
s −MT

t c̃t(ct, q′t, ŷt)} + (n − t + 1)dγ
≤ sup

c̃t∈conv(D)

{(q∗t )Tc̃t + Eρ sup
M∈M

−∑
s≠t

MT

s Ỹ
(t)
s −MT

t c̃t} + (n − t + 1)dγ
since c̃t(ct, q′t, ŷt) ∈ conv(D). The expression inside the supremum is a convex function of c̃t, and
thus the supremum is achieved at a vertex, an element of D. Since q∗t = Eρ[q∗t (ρ)], we upper bound
the last expression via Jensen’s inequality (omitting (n − t + 1)dγ to simplify the exposition) by

Eρ sup
c̃t∈D
{q∗t (ρ)Tc̃t + sup

M∈M
−∑

s≠t

MT

s Ỹ
(t)
s −MT

t c̃t} (23)

Since q∗t (ρ) is precisely defined to be the minimizer (given ρ) of the supremum in (23), the preceding
expression is equal to

Eρ inf
q∈∆d

sup
c̃t∈D
{qTc̃t + sup

M∈M
−∑

s≠t

MT

s Ỹ
(t)
s −MT

t c̃t}
The rest of the upper bounds will be derived conditionally on ρ. Observe that

inf
q∈∆d

sup
c̃t∈D
{qTc̃t + sup

M∈M
−∑

s≠t

MT

s Ỹ
(t)
s −MT

t c̃t} = sup
pt

inf
q
Ec̃t∼pt {qTc̃t + sup

M∈M
−∑

s≠t

MT

s Ỹ
(t)
s −MT

t c̃t}
by the minimax theorem, where pt ranges over the set of distributions on D. By linearity of
expectation, the preceding expression is equal to

sup
pt

inf
q
{qTEc̃t∼pt[c̃t] + Ec̃t∼pt sup

M∈M
−∑

s≠t

MT

s Ỹ
(t)
s −MT

t c̃t}
= sup

pt

⎧⎪⎪⎨⎪⎪⎩min
j∈[d]

e
T

jEc̃t∼pt[c̃t] + Ec̃t∼pt sup
M∈M

−∑
s≠t

MT

s Ỹ
(t)
s −MT

t c̃t

⎫⎪⎪⎬⎪⎪⎭ . (24)
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Observe that for any M ∈M, ∑d
j=1Mj,t = 1 and the elements of Mt are nonnegative. Thus

min
j

e
T

jEc̃t∼pt[c̃t] ≤MT

t Ec̃t∼pt[c̃t]
Therefore, (24) is equal to

sup
pt

⎧⎪⎪⎨⎪⎪⎩Ec̃t∼pt sup
M∈M

−∑
s≠t

MT

s Ỹ
(t)
s +min

j∈[d]
e

T

jEc̃t∼pt[c̃t] −MT

t c̃t

⎫⎪⎪⎬⎪⎪⎭
≤ sup

pt

{Ec̃t∼pt sup
M∈M

−∑
s≠t

MT

s Ỹ
(t)
s +MT

t Ec̃t∼pt[c̃t] −MT

t c̃t}
= sup

pt

{Ec̃t,c̃
′
t
∼pt sup

M∈M
−∑

s≠t

MT

s Ỹ
(t)
s +MT

t (c̃′t − c̃t)}
Since exchanging c̃t and c̃′t switches the sign in the last term, we may introduce an independent
Rademacher random variable δt via the standard technique of symmetrization. The last expression
is then equal to

sup
pt

{Ec̃t,c̃′t∼pt
Eδt sup

M∈M
−∑

s≠t

MT

s Ỹ
(t)
s + δtM

T

t (c̃′t − c̃t)}
≤ sup

pt

{Ec̃t∼ptEδt sup
M∈M

−∑
s≠t

MT

s Ỹ
(t)
s + 2δtM

T

t c̃t}
The above inequality follows by splitting the supremum into two parts equal parts. Let us now
reason conditionally on c̃t. There are two cases: either c̃t = 0 or c̃t = γ

−1
ej for some coordinate

j ∈ [d]. Let us consider the second case, and the first follows from the same reasoning. Take Z to be
a random vector with independent coordinates and values in {−γ−1, γ−1}d. For the jth coordinate,
Zj is identically γ−1, while for all other coordinates i ≠ j the distribution Zi is symmetric. Clearly,
EZ = c̃t. By Jensen’s inequality,

Eδt sup
M∈M

{−∑
s≠t

MT

s Ỹ
(t)
s + 2δtM

T

t c̃t} ≤ EδtEZ sup
M∈M

{−∑
s≠t

MT

s Ỹ
(t)
s + 2δtM

T

t Z}
It is not hard to see that the distribution of δtZ is uniform on {−γ−1, γ−1}d, and we can write it as
γ−1ǫt, a scaled vector of independent Rademacher random variables. The overall bound (together
with the omitted term (n − t + 1)dγ) is then
max

ct∈[0,1]d
Eŷt∼qt{ct(ŷt) +Rel (I1, . . . , It) } ≤ Eρ sup

pt

{Ec̃t∼ptEǫt sup
M∈M

−∑
s≠t

MT

s Ỹ
(t)
s + 2γ−1MT

t ǫt} + (n − t + 1)dγ
= EρEǫt sup

M∈M
{−∑

s≠t

MT

s Ỹ
(t)
s + 2γ−1MT

t ǫt} + (n − t + 1)dγ
since the expression no longer depends on pt and c̃t. The above inequality holds for any xt. Hence,
we may take expectation on both sides, yielding

Ext
max

ct∈[0,1]d
Eŷt∼qt{ct(ŷt) +Rel (I1, . . . , It) } ≤ Eǫt∶n,xt∶n sup

M∈M[x1∶n]

{−∑
s≠t

MT

s Ỹ
(t)
s + 2γ−1MT

t ǫt} + (n − t + 1)dγ
=Rel (I1∶t−1)

because ρ = (ǫt+1∶n, xt+1∶n). This proves admissibility.
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Omitting 0 from objective Examining the algorithm in (19), we note that the optimization
problem may be taken over c̃ ∈ {e1, . . . ,ed}; that is, the argmin over q does not change upon the

removal of 0. To see this, suppose that q∗t (ρ) is the optimal response when c̃ ∈ {e1, . . . ,ed}. Then
it is also an optimal response to c̃ ∈ {e1, . . . ,ed} ∪ {0} since for c̃ = 0 the value of q does not make
any difference in terms of the value. This proves our claim, and is reflected in the definition of
Algorithm 1.

Regret bound The final bound is given by

Rel (∅) = ExEǫ sup
M∈M[x1∶n]

−

n∑
t=1

MT

t Ỹ
(0)
t + ndγ =

2

γ
ER(F ;x1∶n) + ndγ = 2√2dnER(F ;x1∶n)
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