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Abstract— We provide a principled way of proving Õ(
√

T )
high-probability guarantees for partial-information (bandit)
problems over arbitrary convex decision sets. First, we prove
a regret guarantee for the full-information problem in terms
of “local” norms, both for entropy and self-concordant bar-
rier regularization, unifying these methods. Given one of such
algorithms as a black-box, we can convert a bandit problem
into a full-information problem using a sampling scheme. The
main result states that a high-probability Õ(

√
T ) bound holds

whenever the black-box, the sampling scheme, and the estimates
of missing information satisfy a number of conditions, which
are relatively easy to check. At the heart of the method is a
construction of linear upper bounds on confidence intervals.
As applications of the main result, we provide the first known
efficient algorithm for the sphere with an Õ(

√
T ) high-probability

bound. We also derive the result for the n-simplex, improving
the O(

p
nT log(nT )) bound of Auer et al [3] by replacing the

log T term with log log T and closing the gap to the lower bound
of Ω(

√
nT ). While Õ(

√
T ) high-probability bounds should hold

for general decision sets through our main result, construction
of linear upper bounds depends on the particular geometry of
the set; we believe that the sphere example already exhibits
the necessary ingredients. The guarantees we obtain hold for
adaptive adversaries (unlike the in-expectation results of [1]) and
the algorithms are efficient, given that the linear upper bounds
on confidence can be computed.

I. INTRODUCTION

The problem of Online Convex Optimization, in which
a player attempts to minimize his regret against a possibly
adversarial sequence of convex cost functions, is now quite
well-understood. The more recent research trend has been to
consider various limited-information versions of this problem.
In particular, the “bandit” version of Online Linear Optimiza-
tion (OLO) has received much attention in the past few years.

To be precise, the problem we are interested in can be
phrased as a repeated game between the player and the
adversary. At each round, the player picks a decision from the
allowed convex set of moves, and the adversary simultaneously
picks a linear cost function from her allowed set of moves.
Unlike the well-understood OLO game, in the bandit version
only the cost of the decision is revealed to the player, not the
cost function itself. The adversary, on the other hand, is aware
of the complete history. The aim of the player is to minimize
regret, the cumulative cost incurred over the course of the
game minus the cumulative cost of the best fixed decision.

The scarcity of information revealed to the player makes
the problem difficult. The first efficient algorithm with an
Õ(
√

T ) guarantee on the regret for optimization over arbitrary

convex sets was recently obtained in [1]. This guarantee was
shown to hold in expectation and the question of obtaining
guarantees in high probability was left open. In this paper, we
develop a general framework for obtaining high-probability
statements for bandit problems. We aim to provide a clean
picture, building upon the mechanism employed in [3], [5]. We
also simplify the proof of [1] for the regret of regularization
with a self-concordant barrier and put it into the context of a
general class of regret bounds based on local norms.

A reader surveying the literature on bandit optimization
can easily get confused trying to distinguish between the
results. Thus, we first itemize some recent papers according
to the following criteria: (a) efficient algorithm vs inefficient
algorithm, (b) arbitrary convex set vs simplex or the set of
flows in a graph, (c) optimal Õ(

√
T ) vs suboptimal (e.g.

O
(
T 2/3

)
) guarantee, (d) in-expectation vs high-probability

guarantee, and (e) whether the result holds for an adaptive
adversary or only an oblivious one. For all the results we are
aware of (including the ones in this paper), a high-probability
guarantee on the regret naturally covers the case of an adaptive
adversary. This is not necessarily true for the in-expectation
results.

With respect to these parameters,
• Auer et al [3] obtained an efficient algorithm for the

simplex, with an optimal guarantee which holds in high
probability.

• McMahan and Blum [13] and Flaxman et al [11] obtained
efficient algorithms for an arbitrary convex set with
suboptimal guarantees which hold in expectation against
an adaptive adversary.

• Awerbuch and Kleinberg [4] obtained an efficient algo-
rithm for the set of flows with a suboptimal guarantee
which holds in expectation against an adaptive adversary.

• György et al [12] obtained an efficient algorithm for the
set of flows with a suboptimal guarantee which holds in
high probability.1

• Dani et al [9] obtained an inefficient algorithm for an
arbitrary set, with an optimal guarantee which holds in
expectation against an oblivious adversary. The algorithm
can be implemented efficiently for the set of flows.

• Bartlett et al [5] extended the result of [9] to obtain an
inefficient algorithm for an arbitrary set, with an optimal

1The authors also obtained an optimal guarantee for the set of flows in the
setting where the lengths of all edges on the chosen path are revealed. This
does not match the bandit problem considered in this paper.



guarantee which holds in high probability. The algorithm
cannot be (in a straightforward way) implemented effi-
ciently for the set of flows.

• Abernethy et al [1] exhibited an efficient algorithm for
an arbitrary convex set, with an optimal guarantee which
holds in expectation against an oblivious adversary.

• In this paper, we obtain an efficient algorithm for a
sphere and simplex with an optimal guarantee which
holds in high probability (and, thus, against an adaptive
adversary). Analogous results can be obtained for other
convex sets; however, such results would have to be
considered on the per-case basis, as the specific geometry
of the set plays an important role for obtaining an efficient
algorithm with an optimal high-probability guarantee.

This paper is organized as follows. In Section II, we discuss
full-information algorithms which will be used as black-
boxes for bandit optimization. In Section II-B we prove the
known regret guarantees which arise from regularization with
a strongly convex function. We argue that these guarantees
are not strong enough to be used for bandit optimization and,
in Section II-C, we introduce a notion of “local” norms. We
prove general regret guarantees with respect to these norms for
regularization with a self-concordant barrier and, for the case
of the n-simplex, with the entropy function. This allows us
to have a unified analysis of bandit optimization with either
of these two methods as a black-box. Section III discusses
the method of using a randomized algorithm for converting
a full-information algorithm into a bandit algorithm. We
discuss the advantages of “high-probability” results over the
“in-expectation” results and explain why the straightforward
way of applying concentration inequalities does not work.
Section IV contains the main results of the paper. We state
the main result, Theorem 4.1, and then apply it to various
settings in the subsequent sections. The multiarmed bandit
setting (the simplex case) is considered in Section V-A, and
we improve upon the result of Auer et al [3] by removing the
log T factor. We provide a solution for the sphere in Section V-
B. In passing, we mention how the “in-expectation” result for
general convex sets of [1] immediately follows Theorem 2.3.
Another sampling scheme for general bodies is suggested,
although we do not go into the details. The proof of our main
result, Theorem 4.1, is given in Section VI. It is based on
lemmas whose proofs can be found in the technical report [2].

II. FULL-INFORMATION ALGORITHMS

In this paper, we strive to obtain the most general results
possible. To this end, bandit algorithms in Section IV will
take as a sub-routine an abstract full-information black-box for
regret minimization. We devote the present section to describ-
ing known guarantees for some full-information algorithms,
as well as to developing a new family of guarantees under
“local norms”. The latter are suited to the study of bandit
optimization.

To make things concrete, the full-information setting is that
of online linear optimization, which is phrased as the follow-

ing game between the learner (player) and the environment
(adversary). Let K ⊆ Rn be a closed convex set.

At each time step t = 1 to T ,
• Player chooses xt ∈ K
• Adversary independently chooses ft ∈ Rn

• Player suffers loss f T
t xt and observes ft

The aim of the player (algorithm) is to minimize the regret
against any “comparator” u ∈ K

RT (u) :=
T∑

t=1

f T

t xt −
T∑

t=1

f T

t u.

A. Algorithms

Let R(x) be a convex function. We consider the following
family (with respect to the choice of R) of Follow the
Regularized Leader algorithms:

Algorithm 1 Follow the Regularized Leader (FTRL)
Input: η > 0. On the first round, play x1 :=
arg minx∈KR(x). On round t + 1, play

xt+1 := arg min
x∈K

[
η

t∑
s=1

f T

sx +R(x)

]
. (1)

Without loss of generality, we assume that R takes its
minimum at 0, since arg min is the same modulo constant
shifts of R. We begin with a well-known fact, whose easy
induction proof can be found e.g. in [16].

Proposition 2.1: The regret of Algorithm 1, relative to a
comparator u ∈ K, can be upper bounded as

RT (u) ≤
T∑

t=1

f T

t (xt − xt+1) + η−1R(u). (2)

The FTRL algorithm is closely related to the following
Mirror Descent-style algorithm [8], [16].

Algorithm 2 Mirror Descent with Projections
On the first round, play x1 := arg minx∈KR(x). On round
t + 1, compute

x̃t+1 := arg min
x∈Rn

ηf T

t x + DR(x,xt)

and then play the projected point

xt+1 := arg min
x∈K

DR(x, x̃t+1)

This algorithm is given in two steps although it can be
described in one. Indeed, the point xt+1 can simply be
obtained as the solution to

arg min
x∈K

ηf T

t x + DR(x,xt).

However, we emphasize the unprojected point x̃t+1 as it gives
us an occasionally more useful regret bound:



Proposition 2.2: The regret of Algorithm 2, relative to a
comparator u ∈ K, can be upper bounded as

RT (u) ≤
T∑

t=1

f T

t (xt − x̃t+1) + η−1R(u). (3)

The analogue of Proposition 2.1 also holds:

RT (u) ≤
T∑

t=1

f T

t (xt − xt+1) + η−1R(u). (4)

We also note that the two algorithms coincide if R is a barrier.
We refer to [16] for the proofs of these facts.

B. Regret Bounds with Respect to “Fixed” Norms

The regret bounds stated in Propositions 2.1 and 2.2 are
not ultimately satisfying. In particular, it is not immediately
obvious whether the terms f T

t (xt−xt+1) are small. Notice that
the point xt+1 depends on both ft as well as on the behavior of
R. It would be much more appealing if we could remove the
dependence on the points xt and have the regret depend solely
on the Adversary’s choices ft and our choice of regularizer.

This can indeed be achieved if we require certain conditions
on our regularizer. The typical approach is to require that R is
strongly convex with respect to some norm ‖·‖, which implies
that

‖xt − xt+1‖2 ≤ 〈∇R(xt)−∇R(xt+1),xt − xt+1〉 (5)
≤ ‖∇R(xt)−∇R(xt+1)‖∗‖xt − xt+1‖.

where ‖ · ‖∗ is the norm dual to ‖ · ‖, and the last step follows
by Hölder’s Inequality. Hence, strong convexity of R implies

‖xt − xt+1‖ ≤ ‖∇R(xt)−∇R(xt+1)‖∗,

making possible the following result.
Proposition 2.3: When R is strongly convex with respect

to the norm ‖ · ‖, then for Algorithms 1 and 2 we have the
following regret bound2:

RT (u) ≤ η

T∑
t=1

‖ft‖∗2 + η−1R(u).

Proof: For the case of FTRL (Algorithm 1), when R is a
barrier function (and thus xt is always attained on the interior
of K) it is a convenient fact that ∇R(xt)−∇R(xt+1) = ηft.
Applying Hölder’s inequality in the statement of Proposi-
tion 2.1 leads to the desired result. If R is not a barrier,
an application of the Kolmogorov criterion (see [7], Theo-
rem 2.4.2) for generalized projections at step (5) yields the
statement of the Proposition. For Algorithm 2, the proof is a
bit more involved, but is well-known (see e.g. [6]). Again, we
refer the reader to [16], [17] for details.

The easiest way to see Proposition 2.3 at work is to assume
that ft ∈ Bp and K ⊆ Bq, the unit zero-centered balls with
respect to `p and `q norms, where (p, q) is a dual pair. When
faced with the particular choice of (`∞, `1) pair of norms, the

2We also mention that a more refined proof leads to a constant of 1
2

instead
of 1 in front of the η

PT
t=1 ‖ft‖∗2 term.

natural choice of regularization is the unnormalized negative
entropy function

R(x) =
∑

i

(x[i] log x[i]− x[i]) + (1 + log n), (6)

defined over the positive orthant. Here the 1 + log n term
ensures that minR = 0 over the n-simplex K. It is easy
to see that this regularization function leads to the so-called
“exponential weights”:

xt+1[i] =
exp

(
η
∑t

s=1 ft[i]
)

∑n
j=1 exp

(
−η
∑t

s=1 ft[j]
) ,

and indeed this is true for both Algorithm 1 and Algorithm 2.
For the future, it is useful to note that the unprojected updated
x̃t+1 has the very simple “unnormalized form”:

x̃t+1[i] = xt[i] exp(−ηft[i]). (7)

It is well-known that the entropy function has the useful
property of strong convexity with respect to the `1 norm. We
can thus apply Proposition 2.3 to obtain:

RT (u) ≤ η
T∑

t=1

‖ft‖2∞ + η−1 log N.

where the log N arises by taking R(·) at any corner of the
n-simplex. In the “expert setting” it is typical to assume that
‖ft‖∞ ≤ 1, and so setting η =

√
(log N)/T appropriately we

obtain

RT (u) ≤ ηT + η−1 log N = 2
√

T log N.

C. Regret Bounds with Respect to “Local” Norms

The analysis of Proposition 2.3 is the typical approach, and
indeed it can be shown that the above bound for exponential
weights is very tight, i.e. within a small constant factor from
optimal. On the other hand, there are times when we cannot
make the assumption that ft is bounded with respect to a fixed
norm. This is particularly relevant in the bandit setting, when
we will be estimating the functions ft yet our estimates will
blow up depending on the location of the point xt. In such
cases, to obtain tighter bounds, it will be necessary to measure
the size of ft with respect to a changing norm. While it may
not be obvious at present, the ideal choice of norm is the
inverse Hessian of R at the point xt.

From now on, define ‖z‖x :=
√

zT∇2R(x)z, where z ∈
Rn is arbitrary and where R is assumed to be the regularizer
in question. The dual of this norm ‖z‖∗x is identically the
norm with respect to the inverse Hessian, i.e. ‖z‖∗x :=√

zT∇2R(x)−1z. Our goal will now be to obtain bounds of
the form

RT (u) ≤ η
T∑

t=1

(‖ft‖∗xt
)2 + η−1R(u). (8)

Let us introduce the following shorthand: ‖z‖t := ‖z‖xt
for

the norm defined with respect to xt.



For the case when R(x) = ‖x‖22 (leading to the “on-
line gradient descent” algorithm), this bound is easy: since
∇2R(x) = In, and R is strongly convex with respect to the
`2 norm, we already know that

RT (u) ≤ η
T∑

t=1

‖ft‖22+η−1R(u) = η
T∑

t=1

(‖ft‖∗t )2+η−1R(u).

1) Regret guarantee for the entropy regularizer.: For the
entropic regularization case mentioned above, proving a
regret bound with respect to the local norm ‖ · ‖x re-
quires a little bit more work. First notice that ∇2R(x) =
diag(x[1]−1, . . . ,x[n]−1), and that 1 − e−x ≤ x for all real
x. Next, using Eq. (7),

‖xt − x̃t+1‖t =

√√√√ n∑
i=1

(xt[i]− x̃t+1[i])2/xt[i]

=

√√√√ n∑
i=1

xt[i](1− e−ηft[i])2 ≤ η

√√√√ n∑
i=1

xt[i]ft[i]2 = η‖ft‖∗t .

Now we make special use of Proposition 2.2. By Hölder’s
Inequality,

RT (u) ≤ η
T∑

t=1

(‖ft‖∗t )2 + η−1R(u).

It can be verified that Algorithms 1 and 2 produce the same
xt when R is the entropy function and K is the simplex. Thus,
we have proved the following Theorem.

Theorem 2.1: The exponential weights algorithm (either
Algorithm 1 or Algorithm 2) enjoys the following bound in
terms of “local” norms:

RT (u) ≤ η

T∑
t=1

(‖ft‖∗t )
2 + η−1R(u).

As a side remark, we mention that one can prove the same
guarantee (with a slightly worse constant) by starting from
Eq. (2) instead of Eq. (3). A lemma which can be found in
the Appendix of [2], implies that

‖xt − xt+1‖2t =
n∑

i=1

xt[i]

(
1− e−ηft[i]∑n

j=1 xt[j]e−ηft[j]

)2

=
∑n

i=1 xt[i]
(
e−ηft[i]

)2(∑n
j=1 xt[j]e−ηft[j]

)2 − 1

≤ β
n∑

i=1

xt[i](ηft[i])2 = β(‖ηft‖∗t )2

for a small constant β.
2) Regret guarantee for the self-concordant regularizer.: It

was shown in [1] that, for the case of linear bandit optimiza-
tion, the regularization function must have the property that
it curves strongly near the boundary. Indeed, it was observed
that the Hessian of R must behave roughly as inverse distance
1/d, or even inverse squared distance 1/d2, to the boundary.

Indeed, the entropy function discussed above possesses the
former property on the n-simplex, but functions with this 1/d
growth property are not readily available for general convex
sets. To obtain a function whose Hessian grows as 1/d2 is
much easier: the self-concordant barrier, commonly known
as “log barrier”, is the central object of study in Interior Point
Methods. In particular, self-concordant barriers always exist
and can be efficiently computed for many known bodies (see,
e.g., [14]).

For a convex set with linear constraints, the typical choice
of a self-concordant barrier is simply the sum of negative log
distance to each boundary. That is, if the set is defined by
Ax ≤ b, then we would let R(xt) =

∑
i− log(bi − eT

iAx).
It is true that, up to a constant, R is strongly convex with
respect to the `2 norm, and we can then easily prove a bound
in terms of

∑
t ‖ft‖22. On the other hand, it is precisely the case

of bandit linear optimization for which it is useful to bound
the regret in terms of the local norms ‖ft‖∗xt

as in (8). It was
shown in [1] that the Hessian of a self-concordant barrier not
only plays a crucial role in bounding the regret, but also gives
a handle on the local geometry through the notion of a Dikin
ellipsoid. We refer the reader to [1] for more information on
the Dikin ellipsoid and its relation to sampling.

As before, we can use Hölder’s in equality to bound

f T

t (xt − x̃t+1) ≤ ‖ft‖∗t ‖xt − xt+1‖t,

and now, as in the previous section, we would like to replace
‖xt − xt+1‖t with the dual norm η‖ft‖∗t . While it is not
immediately obvious how this should be accomplished, we can
appeal to several nice results about self-concordant functions
which makes our job easy. Define the objective of Algorithm 1
as Φt(x) = η

∑t
s=1 f T

t x +R(x). Since the barrier R goes to
infinity at the boundary of the set K, we have that xt+1 is the
unconstrained minimizer of Φt.

To begin our short journey to the land of Interior Point
Methods, define the Newton decrement for Φt as

λ(x,Φt) := ‖∇Φt(x)‖∗x = ‖∇2Φt(x)−1∇Φt(x)‖x

and note that since R is self-concordant then so is Φt. The
above quantity can be used to measure roughly how far a point
is from the global optimum:

Theorem 2.2 (e.g. [14]): For any self-concordant function
g, whenever λ(x, g) ≤ 1/2, we have

‖x − arg min g‖x ≤ 2λ(x, g)

where the local norm ‖ · ‖x is defined with respect to g, i.e.
‖y‖x :=

√
yT(∇2g(x))y.

We can immediately apply this theorem using the objective Φt

and the point xt. Recalling that ∇2Φt = ∇2R, we see that,
under the conditions of the Theorem,

‖xt − xt+1‖t = ‖xt − arg minΦt‖t ≤ 2λ(xt,Φt) = 2η‖ft‖∗t

The last equality holds because, as is easy to check,
∇Φt(xt) = ηft. We therefore have



Theorem 2.3: Suppose for all t ∈ {1 . . . T} we have
η‖ft‖∗t ≤ 1

2 , and R(·) is self-concordant. Then

RT (u) ≤ 2η
T∑

t=1

[‖ft‖∗t ]
2 + η−1R(u).

Given Theorem 2.3, the result of Abernethy, Hazan, and
Rakhlin [1] follows immediately, as we show in Section V-C.

III. BANDIT FEEDBACK

In the bandit version of online linear optimization, the
function ft is not revealed to us except for its value at xt. The
mechanism employed by all algorithms known to the authors
is to construct a biased or unbiased estimate f̃t of the vector
ft from the single number revealed to us and feed it to the
black box full-information algorithm. In order to construct f̃t,
the algorithm has to randomly sample yt around xt instead
of deterministically playing xt. Hence, the template bandit
algorithm is: at round t to predict yt such that Eyt ≈ xt,
obtain f T

t yt, construct f̃t, feed it into the black box, and obtain
the new xt+1. The particular method for sampling yt and
constructing f̃t will be called the sampling scheme.

The regret of the above procedure, relative to a comparator
u, is

RT (u) =
T∑

t=1

f T

t (yt − u).

However, the guarantees for the black-box are for a different
quantity, which we denote as

R̃T (u) =
T∑

t=1

f̃ T

t (xt − u).

Let Et denote the conditional expectation, given the random
variables for time steps 1 . . . t−1. If it is the case that Etf̃t = ft
and Etyt = xt, then for any fixed u,

Et

[
f̃ T

t (xt − u)
]

= Et [f T

t (yt − u)] . (9)

We conclude that ERT (u) = ER̃(u). Hence, expected regret
against a fixed u can be bounded through the expected regret
of the black-box.

There are two downsides to the above argument. The first
is that an “in expectation” result is much weaker than the
corresponding “high probability” statement as the variance of
the quantities involved can be (and, in fact, is) very large. It
is not very satisfying to say that the regret is of the correct
order in expectation but has fluctuations of a higher order of
magnitude. The second weakness is in the fact that u is fixed
and, therefore, cannot depend on the random moves of the
player; in other words, the adversary must be oblivious. Both
of the downsides are overcome by proving a high probability
guarantee.

It is tempting to use the following (incorrect) argument for
proving a high-probability bound on RT (u) given an Õ(

√
T )

bound on ER̃T (u): To obtain a high-probability bound, fix
a u ∈ K and use Azuma-Hoeffding inequality to show
an O(

√
T ) concentration of RT (u) around ERT (u). Next,

replace ERT (u) by ER̃T (u), which is Õ(
√

T ), and take a
union bound over a discretization of u. The last step only
introduces a log T factor into the bound, as we discuss later.
This approach fails3 for the simple reason that through the
martingale difference argument RT (u) is concentrated around
the sum of conditional expectations

∑T
t=1 Etf̃ T

t (xt − u), not
the full expectation E

∑
t f̃

T
t (xt − u). The sum of conditional

expectations of f T
t (yt − u) terms is indeed equal to the sum

of conditional expectations of f̃ T
t (xt−u) terms. However, we

do not know how to bound the latter: the regret guarantee for
the black-box comes for the expected regret, not the sum of
conditional expectations, thus breaking the argument.

Indeed, for proving high probability bounds, a more refined
analysis is needed. We try to convey the big picture in the next
section and illustrate it by proving a high-probability bound for
the sphere and the simplex, using the regularization with self-
concordant barrier and entropy, respectively, as black-boxes.

IV. HIGH PROBABILITY BOUNDS

We now present a template algorithm for bandit optimiza-
tion. We assume that a full-information black-box algorithm
for linear optimization is available to us.

At each time step t = 1 to T ,
• Decide on the sampling scheme for this round, i.e.

construct a distribution for yt with Etyt ≈ xt.
• Draw a sample yt ∈ K from the distribution and observe

the loss f T
t yt.

• Construct f̃t such that Etf̃t = ft.
• Construct a linear bias-function gt(u) = g̃T

tu + µt.
• Feed f̃t − αg̃t into the black-box and receive xt+1.

The algorithm requires two parameters, α and η, which in turn
depend on various aspects of the problem. The following is
the main result of the paper.

Theorem 4.1: Suppose ft ∈ Bp for all t and K ⊆ Bq, where

p and q are dual. Let α =
√

log(2 log(T )/δ′)
nT . Suppose we can

find c1, c2, c3, c4, c5, c6 ≥ 0, such that for all t ∈ {1, . . . , T}
all of the following hold:
(A) The black-box full information algorithm enjoys a regret

bound of the form

RT (u) ≤ c1η
T∑

t=1

[‖ft‖∗t ]
2 + η−1R(u)

with the “local” norm ‖ · ‖t defined by ∇2R(xt).
(B) ‖Etyt − xt‖q ≤ c2

√
n
T .

(C) |̃f T
t u| ≤ c3

√
nT for all u ∈ K.

(D) We can construct a linear function gt(u) = g̃T
tu + µt

such that

(xt − u)TEtf̃tf̃ T

t (xt − u) ≤ gt(u) ∀u ∈ K

and gt(xt) ≤ c4n.

(E) The construction satisfies
[∥∥∥f̃t − αg̃t

∥∥∥∗
t

]2
≤ c5

√
T .

(F ) On average, the norm is small: Et

[∥∥∥f̃t − αg̃t

∥∥∥∗
t

]2
≤ c6.

3We thank Ambuj Tewari for very helpful discussions in understanding this.



(G) Conditions for the regret bound in (A) to hold are
satisfied (e.g. η

∥∥∥f̃t − αg̃t

∥∥∥∗
t
≤ 1

2 for log-barrier )

Then, for any fixed u ∈ K, with probability at least 1− (δ +
δ′ + δ′′)

T∑
t=1

f T

t (yt − u) ≤ η−1R(u) + ηTA1 +
√

TA2,

where
A1 = c1

(
c6 + c5

√
8 log(1/δ′′)

)
and

A2 =
√

8 log(1/δ)+c2

√
n+(2c3+c4+2)

√
n log(2 log(T )/δ′).

Remark 4.1: As long as c1, . . . , c6 depend only “weakly”
(e.g. logarithmically) on T , we obtain the optimal Õ(

√
T )

dependence by setting η ∝ T−1/2. The growth of the bound
in terms of n depends on the problem at hand and the sampling
method.

Remark 4.2: To obtain a statement “with probability at least
1− δ, for all u the guarantee holds”, a union bound needs to
be taken. For a set K, which can be represented as a convex
hull of a number of its vertices, the union bound introduces
an extra logarithm of this number of vertices (see the simplex
example below). For a set such as sphere, an extra step of
discretizing the set into a fine grid and taking a union over
this (exponential) discretization is required. This technique can
introduce an extra n log T into the bound (see [10], [5] for
details). Since this step depends on the particular K at hand,
we leave it out of the main result.

Remark 4.3: The requirement (B) is a relaxation of Etyt =
xt. This slack is absolutely crucial for (D) to be even possible.
In the simplex case the slack corresponds to mixing in a
uniform distribution, which Auer et al [3] interpret as an
exploration step. For the sphere case, it corresponds to staying
O(T−1/2) away from the boundary. From the point of view
of the proof, the relaxation allows us to construct gt, i.e. to
control the sum of conditional variances of f̃ T

t (xt − u). We
note that the slack is not necessary for bounding the expected
regret only. This points to the large variance of the estimates
and the weakness of the “in-expectation” results.

A. A Proof Sketch

Let us sketch the mechanism for proving high-probability
bounds, which is applicable to a wide variety of sets and
assumptions.

We already mentioned that RT (u) is concentrated, for
a fixed u ∈ K around the sum of conditional expecta-
tions

∑T
t=1 Etf T

t (yt − u) with typical deviations of O(
√

T ).
The latter is equal to the sum of conditional expectations∑T

t=1 Etf̃ T
t (xt −u). The tricky part is in proving that R̃T (u)

is concentrated around this sum. The typical fluctuations of
R̃(u) are more than

√
T , as the magnitude of f̃t depends on

T . Thus, the only statement we can make is that, with high
probability,

∑T
t=1 Etf̃ T

t (xt−u) ≤
∑T

t=1 f̃ T
t (xt−u) + c

√
Var,

where Var is the sum of conditional variances, growing faster

than linear in T . The magic comes from splitting the
√

Var
term into T terms by the arithmetic-geometric mean inequality
and absorbing each of these terms into f̃t, thereby biasing the
estimates. At a high level, we are adding the standard deviation
at each time step to the estimates f̃t. Since this confidence
interval is a concave function, the black-box optimization over
the modified f̃t’s will not work; the second magic step (due to
this paper) is to find a linear function which uniformly bounds
the confidence over the whole set K. If this can be done,
the modified linear functions are fed to the black-box, which
enjoys an upper bound of η

∑T
t=1(‖f̃ ′t‖∗t )2, with the norms

of modified functions. Finally, we show that this quantity is
concentrated around the sum of conditional expectations of
the terms with the typical deviations of O(

√
T ), and the sum

of conditional expectations itself is bounded by O(
√

T ) if
f̃t’s have been constructed carefully. The last result critically
depends on availability of a regret guarantee with local norms,
which have been exhibited earlier in the paper.

The above paragraph is an informal description of the proof,
which can be found in Section VI. We refer to [2] for the
details.

V. APPLICATIONS: THEOREM 4.1 AT WORK

For the sampling schemes below, we show that our con-
struction satisfies conditions of Theorem 4.1, implying a high-
probability guarantee of Õ(

√
T ).

For each scheme, we provide a visual depiction of the
distribution from which we draw yt. The size of the dots
represents the relative probability mass, while the dotted
ellipsoid represents a sphere in the local norm at xt. Note
that in the case of self-concordant R, this ellipsoid (the Dikin
ellipsoid) is contained in the set, which allows us to sample
from its eigenvectors (see [1]).

A. Example 1: Solution for the simplex

This case corresponds to the non-stochastic multiarmed
bandit problem [3]. We assume that K is the simplex (i.e.
q = 1) and 0 ≤ ft[i] ≤ 1 (p = ∞).

• Regularizer R: We set our regularization function to be
the entropy (6) and use Algorithm 1 or 2 as the black-box.

• Sampling of yt:

Let γ =
√

n
T . Given the point xt in

the simplex, sample yt = ei with
prob. pt[i] := (1− γ)xt[i] + γ/n.

• Construction of f̃t: Given the above sampling scheme,
we define our estimates f̃t the usual way:

f̃t =
(f T

t ei)ei

pt[i]
=

ft[i]ei

pt[i]
when yt = ei. (10)



• Construction of g̃t: The following gt is appropriate for
this problem:

gt(u) := 2 +
n∑

i=1

eT
iu

pt[i]
.

Before we get started, we note a couple of useful facts that
we use several times below:

xt[i] ≤
pt[i]
1− γ

pt[i]−1 ≤ n

γ

Now we check the conditions of the theorem.
(A) Since we are using entropy as our regularization, we

have already shown in Theorem 2.1 how to obtain the
necessary bound with c1 = 1.

(B) Notice that Eyt = (1−γ)xt+γunif(n) and thus ‖Eyt−
xt‖1 = γ‖xt − unif(n)‖1 ≤ 2

√
n
T , i.e. c2 = 2.

(C) Since u is in the simplex, we see that c3 = 1:

|̃f T

t u| ≤ max
i
|̃ft[i]| ≤ max

i
pt[i]−1 ≤ n

γ
=
√

nT .

(D) We check that gt does indeed bound the variance. We
can first compute

Etf̃tf̃ T

t =
n∑

i=1

pt[i]
(

ft[i]
pt[i]

)2

eieT

i �
n∑

i=1

pt[i]−1eieT

i .

We can now upper bound the variance of the estimated
losses, but we need to do this on the entire simplex.
Fortunately, since we are upper bounding a quadratic (a
convex function) it suffices to check the corners u = ei:

(xt − ei)TEtf̃tf̃ T

t (xt − ei) ≤
n∑

j=1

(xt[j]− 1[i = j])2

pt[j]

<
1

pt[i]
+
∑
j 6=i

xt[j]2

pt[j]
≤ 1

pt[i]
+
∑
j 6=i

(pt[j])2

(1− γ)2pt[j]

≤ 2 +
1

pt[i]
= gt(ei).

where we use the fact that (1 − γ)2 ≥ 1/2 when T ≥
16n. Additionally, we see that c4 = 3:

gt(xt) = 2 +
n∑

i=1

xt[i]
pt[i]

≤ 2 +
n∑

i=1

pt[i]
1−γ

pt[i]
≤ 3n.

(E) We now check that, in the xt-norm, the biased estimate
is not too big. It is easy to check that

∇2
xt
R =

n∑
i=1

xt[i]−1eieT

i ⇒ ∇2
xt
R−1 =

n∑
i=1

xt[i]eieT

i .

Now assume yt = ej , we can bound:

‖f̃t − αg̃t‖∗2xt
=

n∑
i=1

(
1[i = j]− α

pt[i]

)2

xt[i]

≤
n∑

i=1

(
1[i = j]− α

pt[i]

)2( pt[i]
1− γ

)
≤ 2

α2n2

γ
+ 2

n(1− α)2

γ

Substituting γ =
√

n
T , we obtain c5 = 2α2n3/2 +

2
√

n(1− α)2.
(F ) We also must check that, in expectation, the biased

estimate is of constant order in the xt-norm:

Et

[∥∥∥f̃t − αg̃t

∥∥∥∗]2 ≤ Et

[
2‖f̃t‖∗2xt

+ 2α2‖g̃t‖∗2xt

]
≤ 2

(
n∑

i=1

pt[i]
1

pt[i]2
xt[i] + α2

n∑
i=1

1
pt[i]2

xt[i]

)

≤ 2
1− γ

(
n + α2

n∑
i=1

1
pt[i]

)
≤ 4

(
n +

α2n2

γ

)
= 4(n + (α2

√
T )n3/2) =: c6 .

We conclude that

A1 = 4(n + (α2
√

T )n3/2)

+
(
2α2n3/2 + 2

√
n(1− α)2

)√
8 log(1/δ′′)

and

A2 =
√

8 log(1/δ) + 2
√

n + 7
√

n log(2 log(T )/δ′).

Now we switch to the Big-O notation to elucidate the depen-
dence on T and n. Recalling that α2 = O(log log T/(nT )),
we observe that A1 = O(n) and A2 = O(

√
n log log T ).

Theorem 4.1 now states that with probability at least 1− (δ +
δ′ + δ′′),

T∑
t=1

f T

t (yt − u) ≤ η−1R(u) + ηTA1 +
√

TA2

for any fixed u. Since the regret is a linear functional, it attains
its maximum at one of the vertices of the simplex. Hence,
unlike in the next section, we only need to take a union bound
over these vertices to arrive at a statement for all u ∈ K. We
thus set δ = δ′ = δ′′ = δ∗/n. Observe that A1’s asymptotic
dependence on n does not change, while A2 now becomes
O(
√

n log(n log T )).
For any vertex u, the (shifted) entropy is R(u) = log n.

Setting η =
√

log n
nT , we conclude that, with high probability,

∀u ∈ K,
T∑

t=1

f T

t (yt − u) = O(
√

Tn log(n log T )).

This bound improves upon the result of Auer et al [3],
who obtained an O(

√
nT log(nT )) bound for the problem

(Algorithm EXP3.P). Our bound replaces the log T term with
log log T , closing the gap to the lower bound of Ω(

√
nT ).

We conjecture that
√

T log log T growth in terms of T is the
most sharp bound possible, due to the Law of the Iterated
Logarithm. In the full version of the paper, we will use sharper
concentration inequalities to keep log log T under the square
root.



B. Example 2: Solution for the Euclidean sphere

Suppose that K = B2 ⊂ Rn and that the choices of the
adversary are also `2-bounded by 1, i.e. p = q = 2.

We point out that with the sampling scheme of [1] it
is impossible to construct gt to satisfy the requirements of
Theorem 4.1 (see also Section V-C). The modified sampling
procedure below is key to reducing the variance of the esti-
mates.

• Regularizer R: We set our regularization function to be
the standard log-barrier R(x) = − log(1−‖x‖2) for the
sphere and use Algorithm 1 as the black-box.

• Sampling of yt: We can assume without loss of gener-
ality that xt 6= 0, so define zt := xt/‖xt‖2. Towards
the goal of keeping our sampled point yt away from
the boundary, define γ := max(1 − ‖xt‖2,

√
n
T ). Now

construct some n− 1 orthonormal basis of the subspace
perpendicular to zt, which we will call Perp(zt).

Sample our prediction yt as follows:

yt =


zt w.p. 1− 3γ

4

−zt w.p. γ
4

±w ∈ Perp(zt) w.p. γ
4(n−1)

(11)

• Construction of f̃t: Given the above sampling scheme,
we define our estimates f̃t as follows,

f̃t =
(fT

t yt)yt

2 Pr(yt)
(12)

where the probabilities Pr(·) are defined in equation (11).
It is straightforward to check that Etf̃t = ft.

• Construction of g̃t: The following choice of gt will be
shown to satisfy the requirements:

gt(u) := 4n

(
3 +

2− 2zT
tu

γ

)
.

We now check the conditions of the theorem to verify that this
construction leads to a high-probability bound.

(A) Since we are using a self-concordant regularizer, we
already showed in Theorem 2.3 how to obtain the
necessary bound with c1 = 2.

(B) Notice that Eyt = (1 − γ)zt = (1−γ)xt

‖xt‖2 and because
|(1− γ)− ‖xt‖2| ≤

√
n
T it follows that ‖Eyt − xt‖ ≤√

n
T . Hence, c2 = 1.

(C) Since we assume that ‖u‖2 ≤ 1, we see that c3 = 2:

|̃f T

t u| ≤ ‖f̃t‖2‖u‖2 ≤ ‖f̃t‖2

≤ (2 Pr(yt))−1 ≤ 2n

γ
≤ 2

√
nT .

(D) We check that gt does indeed bound the variance. We
first upper bound the matrix Etf̃tf̃ T

t :

Etf̃tf̃ T

t =
∑
yt

Pr(yt)
(

f T
t yt

2 Pr(yt)

)2

ytyT

t

� 1
2
(max

yt

Pr(yt)−1)In,

since the range of yt is over ± vectors from an orthonor-
mal basis. By construction each of these probabilities is
≥ γ/(4n). Now we can bound:

(xt − u)TEtf̃tf̃ T

t (xt − u) ≤ 2n

γ
‖xt − u‖22

≤ 2n

γ

(
2‖Etyt − u‖22 + 2‖xt − Etyt‖22

)
≤ 4n

γ
‖(1− γ)zt − u‖22 + 4n

≤ 4n

γ
(2− 2uTzt + 2γuTzt) + 4n ≤ gt(u).

Additionally, we check that the bias is not large at xt.
Recalling that zt = xt/‖xt‖ and since γ ≥ 1−‖xt‖ by
construction,

gt(xt) = 4n

(
3 + 2

1− ‖xt‖
γ

)
≤ 20n, i.e. c4 = 20.

(E) We now check that, in the xt-norm, the biased estimate
is not too big. We can roughly lower bound

∇2
xt

R =
2

1− ‖xt‖2
I +

4
(1− ‖xt‖2)2

xtxT

t

� 1
1− ‖xt‖

I +
‖xt‖2

(1− ‖xt‖)2
ztzT

t

where we used that 1
1−‖xt‖2 = 1

(1−‖xt‖)(1+‖xt‖) ≥
1

2(1−‖xt‖) whenever ‖xt‖ ∈ [0, 1]. This tells us that
the eigenvalues of ∇2

xt
R are bounded from below

(1− ‖xt‖)−1 in all directions orthogonal to xt, and by
1

1−‖xt‖

(
1 + ‖xt‖2

1−‖xt‖

)
in the direction of xt. Thus,

∇2
xt

R−1 � (1− ‖xt‖)(I − ztzT

t) +
(1− ‖xt‖)2

1− ‖xt‖+ ‖xt‖2
ztzT

t

� (1− ‖xt‖)(I − ztzT

t) + 2(1− ‖xt‖)2ztzT

t

where the last inequality holds since 1− x + x2 > 1/2
when x ∈ [0, 1]. Now that we have control of the norm
∇2

xt
R−1, we can bound

‖g̃t‖∗2xt
≤ g̃T

t∇2
xt

R−1g̃t =
(

8n

γ

)2

zT

t∇2
xt

R−1zt

≤ 64n2 · 2(1− ‖xt‖)2

γ2
≤ 128n2

If yt = zt or − zt,

‖f̃t‖∗2xt
≤ (

4
γ

)2zT

t∇2
xt

R−1zt ≤
16
γ2

2(1− ‖xt‖)2 ≤ 32,



If ±yt ∈ Perp(zt),

‖f̃t‖∗2xt
≤
(

2(n− 1)
γ

)2

yT

t∇2
xt

R−1yt

≤ 4(n− 1)2

γ2
(1− ‖xt‖) ≤ 4n3/2T 1/2.

These last two bounds give us, for large enough T :

‖f̃t − αg̃t‖∗2xt
≤ 8n3/2T 1/2 + 128n2α2

i.e. c5 = 8n3/2 + 128n2α2
√

T
.

(F ) We also must check that, in expectation, the biased
estimate is of constant order in the xt-norm:

Et

[∥∥∥f̃t − αg̃t

∥∥∥∗
t

]2
≤ Et

[
2‖f̃t‖∗2xt

+ 2α2‖g̃t‖∗2xt

]
≤ 2

∑
y∈{±zt,Perp(zt)}

Pr(y)
[
‖f̃t‖∗2xt

| yt = y
]

+ 128n2α2

< 64 + 4n2 + 128n2α2 =: c6 .

(G) Theorem 2.3 comes with the requirement that η‖f̃t −
αg̃t‖∗t ≤ 1/2. From (E), ‖f̃t − αg̃t‖∗xt

= O(T 1/4). By
taking η = O(T−1/2), the requirement is satisfied for
large enough T .

We conclude that

A1 = 2
(
64 + 4n2 + 128n2α2

+
(

8n3/2 +
128n2α2

√
T

)√
8 log(1/δ′′)

)
and

A2 =
√

8 log(1/δ) +
√

n + 26
√

n log(2 log(T )/δ′).

Recalling that α =
√

log(2 log(T )/δ′)
nT , we observe that

A1 = O(n2) and A2 = O(
√

n log log T ).

Theorem 4.1 then gives us, with η =
√

log T

n
√

T
,

T∑
t=1

f T

t (yt−u) ≤ η−1R(u)+ηTA1+
√

TA2 = O(n
√

T log T )

with high probability for any u ∈ K which is T−1/2 away
from the boundary. The asymptotic behavior in terms of n
and T exactly matches the “in-expectation” result of [1], as
the self-concordance parameter ϑ = 1 for the sphere. Now, to
make the result uniform for any u, we discretize the set K into
a grid of size Tn/2 and take a union bound for all u in this
set (see [9], [5] for details). Setting δ = δ′ = δ′′ = δ∗

T n/2 leads
to replacing all three “log 1/δ” terms by n log T + log 1/δ∗.
Inspecting A1, we observe that this substitution introduces√

n log T in front of 8n3/2, which, when balanced with η,
exhibits ηTA1 = O(n

√
T log T ) behavior. However, A2 =

O(n3/2
√

T log T ) now becomes the dominating term, as the
log log T/δ′ is not under the square root. We conclude that,
with high probability,

∀u ∈ K,

T∑
t=1

f T

t (yt − u) = O(n3/2
√

T log T ).

A more careful analysis, involving a sharper inequality in one
of the steps of the proof of Theorem 4.1 (see [2]), should
reduce the dependence on n to linear. This will be carried out
in the full version of this paper.

C. Example 3: Recovering the result of [1]

While it does not require Theorem 4.1, for the sake of
completeness we show that the in-expectation result of [1]
immediately follows from Theorem 2.3. For any convex set,
the sampling procedure proposed in that paper is

• Regularizer R: The regularization function is a ϑ-self-
concordant barrier for K, whose existence is guaranteed
(see [15], [14]). We use Algorithm 1 as the black-box.

• Sampling of yt:

Let {e1, . . . , en} and {λ1, . . . , λn}
be the set of eigenvectors and eigen-
values of ∇2R(xt). Choose it uni-
formly at random from {1, . . . , n}
and εt = ±1 with probability 1/2.
Sample yt = xt + εtλ

−1/2
it

eit .

• Construction of f̃t: Define f̃t := n (f T
t yt) εtλ

1/2
it

· eit
.

Since here we are not interested in high-probability bounds, we
do not need to construct g̃t. Appealing to (9) and Theorem 2.3,
it only remains to bound ‖f̃t‖∗t . By construction, (‖f̃t‖∗t )2 =
f̃ T
t∇−1R(xt)f̃t ≤ n2. For any u which is T−1/2 away from the

boundary, R(u) ≤ 2ϑ log T (see [1]). Thus, with η =
√

ϑ log T

n
√

T
,

we obtain
ERT (u) ≤ 4n

√
ϑT log T ,

which recovers the in-expectation result with a slightly better
constant.

The sampling scheme presented here does not satisfy con-
ditions of Theorem 4.1. Indeed, following the discussion in
Remark 4.3, it is easy to prove (even for K = [0, 1]) that it is
impossible to construct gt with the desired properties. In other
words, the variance of the estimates is larger than the desired
regime. This realization was indeed the main motivation for
this paper.

D. Example 4: Sampling schemes for general bodies

We remark that, while R has to be fixed throughout the
game, the sampling scheme does not. As long as the require-
ments of Theorem 4.1 are satisfied at each step, the high
probability bound holds true. The main difficulty in obtaining
a result for general convex bodies K is in construction of
gt(u), an upper-bound on the variance. Such a function heavily
depends on the geometry and must be constructed on per-case
basis. We conjecture that the following two sampling schemes,
one for the curved boundary (similar to the spherical case) and
one for the flat boundary (similar to the simplex case), should
be enough to deal with most “nice” sets K.



Put large mass (e.g. O( 1
n ) on n− 1

points along the flat boundary, and
put a small probability mass on a far
away point.

As in the spherical case, put large
mass (close to 1) on a single point
close to xt and small mass on 2n−1
other points far away.

VI. PROOFS

We state four lemmas whose proof can be found in the
technical report [2].

Lemma 6.1: With probability at least 1− δ,
T∑

t=1

f T

t (yt − u) ≤
T∑

t=1

f T

t (xt − u) +
√

8T log(1/δ) + c2

√
nT .

The following lemma is based on a result proved in [5].
Lemma 6.2: For any δ < e−1 and T ≥ 4, with probability

at least 1− 2 log(T )δ,
T∑

t=1

f T

t (xt − u) ≤ R̃T (u)

+ 2 max

2

√√√√ T∑
t=1

(xt − u)TEtf̃tf̃ T
t (xt − u),

(1 + 2c3

√
nT )

√
log(1/δ)

}√
log(1/δ).

Lemma 6.3: For any δ < e−1 and T ≥ 4, with probability
at least 1− δ′,

T∑
t=1

f T

t (xt − u) ≤
T∑

t=1

(
f̃t − αg̃t

)T

(xt − u)

+
[
(2c3 + c4 + 2)

√
nT
]
log(2 log(T )/δ′).

The final ingredient is the following concentration result.
Lemma 6.4: With probability at least 1− δ′′,

η
T∑

t=1

[∥∥∥f̃t − αg̃t

∥∥∥∗]2 ≤η
T∑

t=1

Et

[∥∥∥f̃t − αg̃t

∥∥∥∗]2
+ ηTc5

√
8 log(1/δ′′).

Combining the above lemmas, we now prove the Theorem.
Proof: [Proof of Theorem 4.1] Combining Lemma 6.1

and Lemma 6.3, we obtain that
T∑

t=1

f T

t (yt−u) ≤
T∑

t=1

(
f̃t − αg̃t

)T

(xt − u) +
√

8T log(1/δ)

+ c2

√
nT + (2c3 + c4 + 2)

√
nT log(2 log T/δ′)

with probability at least 1−(δ+δ′). By the black-box guarantee
applied to functions

(
f̃t − αg̃t

)
, for any fixed u ∈ K,

T∑
t=1

(
f̃t − αg̃t

)T

(xt−u) ≤ η−1R(u)+c1η
T∑

t=1

∥∥∥f̃t − αg̃t

∥∥∥∗2
t

.

Combining the results, with probability at least 1− (δ + δ′),
T∑

t=1

f T

t (yt − u) ≤ η−1R(u) + c1η
T∑

t=1

∥∥∥f̃t − αg̃t

∥∥∥∗2
t

+ c2

√
nT

+
√

8T log(1/δ) + (2c3 + c4 + 2)
√

nT log(2 log T/δ′).

Finally, by Lemma 6.4 and our assumption (F ), with a bit of
algebra we arrive at the statement of Theorem 4.1.
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