
IDS.160 – Mathematical Statistics: A Non-Asymptotic Approach

Lecturer: A Rakhlin Lectures 14-26
Scribe: A. Rakhlin Spring 2020

By now you have seen a number of finite-sample guarantees: estimation of a mean vector,
matrix estimation, constrained and unconstrained linear regression. In all the examples, the
key technical step was a control of the maximum of some collection of random variables.
Over the next few lectures, we will extend the toolkit to arbitrary classes of functions
and then apply it to questions of parametric and nonparametric estimation and statistical
learning.

First, we present a couple of motivating examples.

1. KOLMOGOROV’S GOODNESS-OF-FIT TEST

Given n indepenent draws of a real-valued random variable X, you may want to ask whether
it has a hypothesized distribution with cdf F0. For instance, can you test the hypothesis
that heights of people are N(63, 32) (in inches)? Of course, we can try to see if the sample
mean is “close” to the mean of the hypothesized distribution. We can also try the median,
or some quantiles. In fact, we can try to compare all the quantiles at once and see if they
match the quantiles of F0. It turns out that comparing “all quantiles” is again a question
about control of a maximum of a collection of correlated random variables. We will make
this connection precise.

If you have taken a course on statistics, you might have seen several approaches to the
hypothesis testing problem of whether X has a given distribution. One classical approach
is the Kolmogorov-Smirnov test. Let

F (θ) = P (X ≤ θ)

be the cdf of X, and let

Fn(θ) =
1

n

n∑

i=1

1 {Xi ≤ θ}

be the empirical cdf obtained from n examples. The Glivenko-Cantelli Theorem (1933)
states that

Dn = sup
θ∈R
|Fn(θ)− F (θ)| → 0 a.s.

Hence, given a candidate F , one can test whether X has distribution with cdf F , but
for this we need to know the (asymptotic) distribution of Dn. Assuming continuity of F ,
Kolmogorov (1933) showed that the distribution of Dn does not depend on the law of X,
and he calculated the asymptotic distribution (now known as the Kolmogorov distribution).
Without going into details, we can observe that F (X) has cdf of a uniform random variable
supported on [0, 1], and this transformation does not change the supremum. Hence, it is
enough to calculate Dn for the uniform distribution on [0, 1]. Dn fluctuates on the order of
1/
√
n and √

nDn −→ sup
θ∈R
|B(F (θ))|.

Here B(x) is a Brownian bridge on [0, 1] (a continuous-time stochastic process with distri-
bution being Wiener process conditioned on being pinned to 0 at the endpoints).
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In particular, Kolmogorov in his 1933 paper calculates the asymptotic distribution, as
well a table of a few values. For instance, he states that

P (Dn ≤ 2.4/
√
n) −→ approx 0.999973.

In the spirit of this course, we will take a non-asymptotic approach to this problem. While
we might not obtain such sharp constants, the deviation inequalities will be valid for finite
n.

We will now come to the same question of uniform deviations from a different angle –
Statistical Learning Theory.

2. STATISTICAL LEARNING

2.1 Empirical Risk Minimization

Let S = {(x1, y1), . . . , (xn, yn)} be n i.i.d. copies of a random variable (X,Y ) with distribu-
tion P = PX × PY |X , where the X variable lives in some abstract space X and y ∈ Y ⊆ R.
Fix a loss function ` : Y × Y → R.

Fix a class of functions F = {f : X → Y}. Given the dataset S, the empirical risk
minimization (ERM) method is defined as

f̂ ∈ argmin
f∈F

1

n

n∑

i=1

`(f(Xi), Yi)

Examples:

• Linear regression: X = Rd, Y = R, F = {x 7→ 〈w, x〉 : w ∈ Rd}, `(a, b) = (a− b)2

• Linear classification: X = Rd, Y = {0, 1}, F = {x 7→ (sign(〈w, x〉) + 1)/2 : w ∈ B2},
`(a, b) = 1 {a 6= b}

We now define expected loss (error) as

L(f) = E(X,Y )`(f(X), Y )

and empirical loss (error) as

L̂(f) =
1

n

n∑

i=1

`(f(Xi), Yi)

For any f∗ ∈ F , The decomposition

L(f̂)− L(f∗) =
[
L(f̂)− L̂(f̂)

]
+
[
L̂(f̂)− L̂(f∗)

]
+
[
L̂(f∗)− L(f∗)

]

holds true. By definition of ERM, the second term is nonpositive. If f∗ is independent of
the random sample, the third term is a difference between an average of random variables
`(f∗(Xi), Yi) and their expectation. Hence, this term is zero-mean, and its fluctuations can
be controlled with the tail bounds we have seen in class. The first term, however, is not
zero in expectation (why?).
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Let us proceed by taking expectation (with respect to S) of both sides:

E
[
L(f̂)

]
− L(f∗) ≤ E

[
L(f̂)− L̂(f̂)

]
≤ E sup

f∈F

[
L(f)− L̂(f)

]
(2.1)

Here we “removed the hat” on f̂ by “supping out” this data-dependent choice. We are
only using the knowledge that f ∈ F , and nothing else about the method. We will see later
that for “curved” loss functions, such as square loss, the supremum can be further localized
within F .

2.2 Classification

We now specialize to the classification scenario with indicator loss `(a, b) = 1 {a 6= b}.
Observe that 1 {a 6= b} = a + (1 − 2a)b for a, b ∈ {0, 1}. Hence, by taking a = Y and
b = f(X),

E sup
f∈F

[
L(f)− L̂(f)

]
= E sup

f∈F

[
E(Y + (1− 2Y )f(X))− 1

n

n∑

i=1

(Yi + (1− 2Yi)f(Xi))

]

= E sup
f∈F

[
E((1− 2Y )f(X))− 1

n

n∑

i=1

(1− 2Yi)f(Xi)

]

Observe that (1− 2Y ) is a random sign that is jointly distributed with X. Let us omit this
random sign for a moment, and consider

E sup
f∈F

[
Ef(X)− 1

n

n∑

i=1

f(Xi)

]
. (2.2)

Over the next few lectures, we will develop upper bounds on the above expected supremum
for any class F . For now, let us gain a bit more intuition about this object by looking at a
particular class of 1D thresholds:

F = {x 7→ 1 {x ≤ θ} : θ ∈ R}.

Substituting this choice, (2.2) becomes

E sup
θ∈R

[
P (X ≤ θ)− 1

n

n∑

i=1

1 {Xi ≤ θ}
]

= E sup
θ∈R

[F (θ)− Fn(θ)] . (2.3)

which is precisely the quantity from the beginning of the lecture (albeit without absolute
values and in expectation). Again, (2.3) is the expected largest pointwise (and one-sided)
distance between the CDF and empirical CDF. Does it go to zero as n→∞? How fast?

Let’s introduce the shorthand

Uθ = E1 {X ≤ θ} − 1

n

n∑

i=1

1 {Xi ≤ θ}

{Uθ}θ∈R is an uncountable collection of correlated random variables, so how does the max-
imum behave? We have already encountered the question (e.g. Lecture 5) in the context
of linear forms 〈X, θ〉, indexed by θ ∈ B2 and we were able to use a covering argument to
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control the expected supremum. Recall the key step in that proof: we can introduce a cover
θ1, . . . , θN such that control of supUθ can be reduced to control of maxj=1,...,N Uθi . Does
this idea work here? Problems with this approach start appearing immediately: how do we
cover R by a finite collection?

We will now present two approaches for upper-bounding (2.3); both extend to the general
case of (2.2).

2.2.1 The bracketing approach

While we cannot provide a finite ε-grid of R directly, we observe that we should be placing
the covering elements according to the underlying measure P . Informally, Uθ is likely to be
constant over regions of θ with small mass.

For simplicity assume that P does not have atoms, and let θ1, θ1, . . . , θN (with θ0 =
−∞, θN+1 = +∞) correspond to the quantiles: P (θi ≤ X ≤ θi+1) = 1

N+1 . For a given θ,
let u(θ) and `(θ) denote, respectively, the upper and lower elements corresponding to the
discrete collection θ0, . . . , θN+1. Then, trivially,

E1 {X ≤ θ} − 1

n

n∑

i=1

1 {Xi ≤ θ} ≤ E1 {X ≤ u(θ)} − 1

n

n∑

i=1

1 {Xi ≤ `(θ)}

≤ E1 {X ≤ `(θ)} − 1

n

n∑

i=1

1 {Xi ≤ `(θ)}+
1

N + 1

and thus

E sup
θ∈R

[
IE1 {X ≤ θ} − 1

n

n∑

i=1

1 {Xi ≤ θ}
]

≤ 1

N + 1
+ E max

j∈{0,...,N}
E1 {X ≤ θj} −

1

n

n∑

i=1

1 {Xi ≤ θj}

Now, each random variable E1 {X ≤ θ} − 1 {Xi ≤ θ} is centered and 1/2-subGaussian.

Hence, for each j, Uθj is 1
2
√
n

-subGaussian, and the expected maximum is at most

√
2 log(N+1)

2n .

The overall upper bound is then

1

N + 1
+

√
log(N + 1)

n
= O

(√
log n

n

)

if we choose, for instance, N = n.

2.2.2 The symmetrization approach

An alternative is a powerful technique that replaces the expected value by a ghost sample.
To motivate the technique, recall the following inequality for variance:

E(X − EX)2 ≤ E(X −X ′)2 = 2E(X − EX)2

where X ′ is an independent copy of X.
Observe that

E1 {X ≤ θ} = E

[
1

n

n∑

i=1

1
{
X ′i ≤ θ

}
]

4



where X ′1, . . . , X
′
n are n independent copies of X. We have the following upper bound on

(2.3):

E sup
θ∈R

[
E1 {X ≤ θ} − 1

n

n∑

i=1

1 {Xi ≤ θ}
]

(2.4)

≤ E sup
θ∈R

[
1

n

n∑

i=1

1
{
X ′i ≤ θ

}
− 1 {Xi ≤ θ}

]
(2.5)

by convexity of the sup. Now, since distribution of 1 {X ′i ≤ θ} − 1 {Xi ≤ θ} is the same
as the distribution of − (1 {X ′i ≤ θ} − 1 {Xi ≤ θ}), we can insert arbitrary signs εi without
changing the expected value:

E sup
θ∈R

[
1

n

n∑

i=1

εi(1
{
X ′i ≤ θ

}
− 1 {Xi ≤ θ})

]
. (2.6)

Since the quantity is constant for all the choices of ε1, . . . , εn, we have the same value by
taking an expectation. We have

E sup
θ∈R

[
E1 {X ≤ θ} − 1

n

n∑

i=1

1 {Xi ≤ θ}
]

(2.7)

≤ E sup
θ∈R

[
1

n

n∑

i=1

εi(1
{
X ′i ≤ θ

}
− 1 {Xi ≤ θ})

]
, (2.8)

where εi’s are now Rademacher random variables. Breaking up the supremum into two
terms leads to an upper bound

E sup
θ∈R

[
1

n

n∑

i=1

εi1
{
X ′i ≤ θ

}
]

+ E sup
θ∈R

[
1

n

n∑

i=1

−εi1 {Xi ≤ θ}
]

(2.9)

= 2E sup
θ∈R

[
1

n

n∑

i=1

εi1 {Xi ≤ θ}
]

(2.10)

by symmetry of Rademacher random variables.
Now comes the key step. Let us condition on X1, . . . , Xn and think of the random

variables

Vθ =
1

n

n∑

i=1

εi1 {Xi ≤ θ}

as a function of the Rademacher random variables. How many truly distinct Vθ’s do we
have? Since X1, . . . , Xn are now fixed, there are only at most n+ 1 choices (say, midpoints
between datapoints), and so the last expression is

2E

[
E

[
sup
θ∈R

1

n

n∑

i=1

εi1 {Xi ≤ θ}
∣∣∣∣∣X1:n

]]
= 2EE

[
max

θ∈{θ1,...,θn+1}
Vθ

∣∣∣∣X1:n

]

Since each Vθ is 1-subGaussian, and we get an overall upper bound
√

2 log(n+ 1)

n

which, up to constants, matches the bound with the bracketing approach.
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2.3 Discussion

The bracketing and symmetrization approaches produced similar upper bounds for the case
of thresholds. We will see, however, that for more complex classes of functions, the two
approaches can give different results.

In view of (2.1), the upper bounds we derived guarantee (modulo the fact that we
omitted “1− 2Y ”) that for empirical risk minimization,

EL(f̂)− min
f∗∈F

L(f∗) .

√
log(n+ 1)

n

It is worth stating the symmetrization lemma more formally:

Lemma: Let F = {f : X → Y} be a class of real-valued functions. Let X,X1, . . . , Xn

be i.i.d. random variables with values in X , and let ε1, . . . , εn be i.i.d. Rademacher
random variables. Then

E sup
f∈F

[
Ef(X)− 1

n

n∑

i=1

f(Xi)

]
≤ 2E sup

f∈F

[
1

n

n∑

i=1

εif(Xi)

]
.

Furthermore,

E sup
f∈F

[
1

n

n∑

i=1

εif(Xi)

]
≤ 2E sup

f∈F

∣∣∣∣∣Ef(X)− 1

n

n∑

i=1

f(Xi)

∣∣∣∣∣+
1√
n

sup
f∈F
|Ef |

Proof. We only prove the second part since the first statement was proved earlier (for
indicators). Write

E sup
f∈F

[
1

n

n∑

i=1

εif(Xi)

]
≤ E sup

f∈F

[
1

n

n∑

i=1

εi(f(Xi)− Ef)

]
+ E sup

f∈F

[
1

n

n∑

i=1

εiEf

]

Consider the first term on the RHS:

E sup
f∈F

[
1

n

n∑

i=1

εi(f(Xi)− Ef)

]
≤ E sup

f∈F

[
1

n

n∑

i=1

εi(f(Xi)− f(X ′i))

]

= E sup
f∈F

[
1

n

n∑

i=1

(f(Xi)− Ef + Ef − f(X ′i))

]

≤ E sup
f∈F

[
1

n

n∑

i=1

(Ef − f(Xi))

]
+ E sup

f∈F

[
1

n

n∑

i=1

(f(Xi)− Ef)

]
.

As for the second term,

E sup
f∈F

[
1

n

n∑

i=1

εiEf

]
≤ sup

f∈F
|Ef | · E

∣∣∣∣∣
1

n

n∑

i=1

εi

∣∣∣∣∣ (2.11)
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Of course, the symmetrization lemma can also be applied to the class of functions

{(x, y) 7→ (1− 2y)f(x)}.

Since (1− 2y) is {±1}-valued, the distribution of (1− 2Yi)εi is also Rademacher. Hence,

E sup
f∈F

[
1

n

n∑

i=1

εi(1− 2Yi)f(Xi)

]
= E sup

f∈F

[
1

n

n∑

i=1

εif(Xi)

]
.

This justifies omitting (1 − 2Y ) for binary classification, at least with the symmetrization
approach.

2.4 Empirical Process

Let us also define an empirical process:

Definition: Let F = {f : X → R} and X,X1, . . . , Xn are i.i.d. The stochastic process

νf = Ef(X)− 1

n

n∑

i=1

f(Xi)

is called the empirical process indexed by F .

We note that it is also customary to scale the empirical process as

νf =
√
n

(
Ef(X)− 1

n

n∑

i=1

f(Xi)

)

Second, empirical process theory often employs the notation

νf =
√
n(P− Pn)f

where P is the distribution of X and Pn is the empirical measure. You may also see the
notation

E sup
f∈F
|νf | = ‖P− Pn‖F

3. SUPREMA OF GAUSSIAN AND SUBGAUSSIAN PROCESSES

Definition: Stochastic process (Uθ)θ∈Θ, indexed by θ ∈ Θ, is a collection of random
variables on a common probability space.

The index θ can be “time,” but we will be primarily interested in cases where Θ has
some metric structure.

We will be interested in the behavior of the supremum of the stochastic process, and in
particular

E sup
θ∈Θ

Uθ.
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To understand this object, we need to have a sense of the dependence structure of Uθ and
Uθ′ for a pair of parameters, but also about the metric structure of Θ.

Gaussian process is a collection of random variables such that any finite collection
Uθ1 , . . . , Uθn , for any n ≥ 1, is zero-mean and jointly Gaussian. In this case

E exp {λ(Uθ − Uθ′)} = exp{λ2d(θ, θ′)2/2}

with d(θ, θ′)2 = E(Uθ − U ′θ)2. Hence, there is a natural metric for Gaussian process.

3.1 SubGaussian Processes

Definition: Stochastic process (Uθ)θ∈Θ is sub-Gaussian with respect to a metric d on
Θ if Uθ is zero-mean and

∀θ, θ′ ∈ Θ, λ ∈ R, E exp {λ(Uθ − Uθ′)} ≤ exp{λ2d(θ, θ′)2/2}

The main examples we will be studying have a particular linearly parametrized form:

Gaussian process: Let Gθ = 〈g, θ〉, g = (g1, . . . , gn), gi ∼ N(0, 1) i.i.d. Take d(θ, θ′) =
‖θ − θ′‖. Then

Gθ −G′θ = 〈g, θ − θ′〉 ∼ N(0,
∥∥θ − θ′

∥∥2
)

In particular, this Gaussian process is also, trivially, sub-Gaussian with respect to the
Euclidean distance on Θ.

Rademacher process: Let Rθ = 〈ε, θ〉, ε = (ε1, . . . , εn), ε i.i.d. Rademacher. Again,
take d(θ, θ′) = ‖θ − θ′‖. Then

Rθ −R′θ = 〈ε, θ − θ′〉
is subGaussian with parameter ‖θ − θ′‖2.

Note that in this linear parametrization of Uθ, the expected supremum can be seen as
a kind of average ‘width’ of the set Θ.

Definition: We will call R̂(Θ) = E supθ∈Θ〈ε, θ〉 the (empirical) Rademacher averages
of Θ. The corresponding expected supremum of the Gaussian process will be called the
Gaussian averages or the Gaussian width of Θ and denoted by Ĝ(Θ).

3.1.1 A few examples

Let Uθ = 〈ε, θ〉, Θ ⊂ Rn, and take Euclidean distance as the metric. We have

R̂(Bn∞) = E sup
θ∈Bn

∞

Uθ = E sup
θ∈Bn

∞

〈ε, θ〉 = n.

To get a sublinear growth in n, we have to make sure Θ is significantly smaller than Bn∞.
A few other sets:

R̂(Bn2 ) = E sup
θ∈Bn

2

〈ε, θ〉 = E ‖ε‖2 =
√
n
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and
Ĝ(Bn2 ) ≤ √n.

However, we observe that

R̂(Bn1 ) = E sup
θ∈Bn

1

〈ε, θ〉 = E ‖ε‖∞ = 1.

and yet for the Gaussian process,

Ĝ(Bn1 ) = E sup
θ∈Bn

1

〈g, θ〉 = Emax
i∈[n]
|gi| ≤

√
2 log(2n).

In fact, this discrepancy between the Rademacher and Gaussian averages for Bn1 is the worst
that can happen and for any Θ

R̂(Θ) . Ĝ(Θ) .
√

log n · R̂(Θ). (3.12)

Furthermore, the discrepancy is only there because Bn1 has a small `1 diameter, and for
many of the applications in statistics, we will work with a function class that will not have
such a small `1 diameter.

For a singleton,
R̂({θ}) = 0

while for the vector 1n = (1, . . . , 1),

R̂({−1n,1n}) = Emax{〈ε,1n〉,−〈ε,1n〉} = E

∣∣∣∣∣
n∑

i=1

εi

∣∣∣∣∣ ≤
√
n.

Some further properties of both Rademacher and Gaussian averages:

R̂(Θ) . diam(Θ)
√

log card(Θ),

R̂(conv(Θ)) = R̂(Θ),

R̂(cΘ) = |c|R̂(Θ) for constant c

3.2 Finite-class lemma and a single-scale covering argument

Lemma: Let d be a metric on Θ and assume (Uθ) is a subGaussian process. Then for
any finite subset A ⊆ Θ×Θ,

E max
(θ,θ′)∈A

Uθ − Uθ′ ≤ max
(θ,θ′)∈A

d(θ, θ′) ·
√

2 log card(A) (3.13)

How do we go beyond finite cover?

Definition: Let (Θ, d) be a metric space. A set θ1, . . . , θN ∈ Θ is a (proper) cover of Θ
at scale ε if for any θ there exists j ∈ [N ] such that d(θ, θj) ≤ ε. The covering number
of Θ at scale ε is the size of the smallest cover, denoted by N (Θ, d, ε).

As a simple consequence,
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Lemma: If (Uθ)θ∈Θ is subGaussian with respect to d on Θ, then for any δ > 0,

E sup
θ∈Θ

Uθ ≤ 2E sup
d(θ,θ′)≤δ

(Uθ − Uθ′) + 2diam(Θ)
√

logN (Θ, d, δ)

Proof. Observe that

E sup
θ∈Θ

Uθ = E sup
θ∈Θ

Uθ − Uθ′ ≤ E sup
θ,θ′∈Θ

Uθ − Uθ′

Let Θ̂ be a δ-cover of Θ. Then

Uθ − Uθ′ = Uθ − Uθ̂ + Uθ̂ − Uθ̂′ + Uθ̂′ − Uθ′ (3.14)

≤ 2 sup
d(θ,θ′)≤δ

(Uθ − Uθ′) + sup
θ̂,θ̂′∈Θ̂

(Uθ̂ − Uθ̂′) (3.15)

The last term is

E sup
θ̂,θ̂′∈Θ̂

Uθ̂ − Uθ̂′ ≤ diam(Θ)

√
2 log(card(Θ̂)2)

3.3 Example: Rademacher/Gaussian processes

Let Uθ = 〈g, θ〉 or 〈ε, θ〉, Θ ⊂ Rn, and take Euclidean distance as the metric. Then

E sup
d(θ,θ′)≤δ

Uθ − Uθ′ ≤ E sup
‖θ‖≤δ

〈g, θ〉 ≤ δE ‖g‖ ≤ δ√n

Hence,

E sup
θ∈Θ

Uθ ≤ 2δ
√
n+ 2diam(Θ)

√
logN (Θ, ‖·‖2 , δ) (3.16)

Roughly speaking, the supremum over Θ can be upper bounded by the supremum within a
ball of radius δ (“local complexity”) and the maximum over a finite collection of centers of
δ-balls. We will see this decomposition/idea again within the context of optimal estimators
with general (possibly nonparametric) classes of functions.

Let’s step back and ask what kind of generic statement we can say about a d-dimensional
subset of a Euclidean ball. Suppose that Θ ⊆ Bn2 and assume that Θ lives in a d-dimensional
subspace. Then

N (Θ, ‖·‖2 , δ) ≤
(

1 +
2

δ

)d

and by taking δ =
√
d/n the estimate in (3.16) becomes

E sup
θ∈Θ

Uθ ≤ 2
√
d+ 4

√
d log

(
1 + 2

√
n/d

)
.
√
d log(n/d). (3.17)

Here we tacitly assumed d < n. Recall that in Lecture 5 we obtained an upper bound of
O(
√
d) in this setup by having a cover at scale 1/2 and comparing the supremum to the

maximum multiplicatively. Another way to see it is

E sup
θ∈Bd

2

〈ε, θ〉 = E ‖ε‖ =
√
d
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and similarly

E sup
θ∈Bd

2

〈g, θ〉 = E ‖g‖ ≤

√√√√
n∑

i=1

Eg2
i ≤
√
d

Hence, we lost a logarithmic factor by appealing to the general machinery of the previous
section. We will also see that we can remove the extraneous logarithm by looking at a cover
at multiple scales.

3.4 Function class

In particular, we will be interested in the following indexing set Θ. Let x1, . . . , xn be fixed,
and let F = {f : X → R}. We call

Θ =
1√
n
F|x1,...,xn =

{
1√
n

(f(x1), . . . , f(xn)) : f ∈ F
}
⊆ Rn

a (scaled by 1/
√
n) projection of F onto x1, . . . , xn. Take

d(θ, θ′)2 =
∥∥θ − θ′

∥∥2
=
∥∥f − f ′

∥∥2

n
=

1

n

n∑

i=1

(f(xi)− f ′(xi))2

where θ = (f(x1), . . . , f(xn)) and θ′ = (f ′(x1), . . . , f ′(xn)), f, f ′ ∈ F . With these defini-
tions, we can define a Gaussian or Rademacher process with respect to Θ and d.

Important point: the symmetrization lemma allows us to relate supremum of the em-
pirical process to supremum of a Rademacher process.

3.4.1 Example: Linear Function Class

We now focus on a specific example of linear functions

F = {x 7→ 〈w, x〉 : w ∈ Bd2}.

Then for fixed x1, . . . , xn ∈ Bd2, a direct calculation yields

E sup
w∈Bd

2

1√
n

n∑

i=1

εi〈w, xi〉 =
1√
n
E

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥ ≤
1√
n

√√√√E

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥

2

≤ 1. (3.18)

Let’s see if we can recover this via our machinery. After all, the above object is precisely a
supremum of a subgaussian process. Observe that

Θ =
1√
n
F|x1,...,xn ⊆

1√
n
Bn∞ ⊂ Bn2 (3.19)

and that

F|x1,...,xn =
{

(〈w, x1〉, . . . , 〈w, xn〉) ∈ Rn : w ∈ Bd2

}
= {Xw : w ∈ Bd2}

is a subset of a d-dimensional subspace. Hence, appealing to the previous example (3.17),
we get an upper bound of O(

√
d log(n/d)).

Looking back at (3.18), however, we see that we also gained an extra
√
d factor, which

can be a big loss in high-dimensional situations. Where did we gain it? We can see that
the set 1√

n
F|x1,...,xn in (3.19) is, in fact, much smaller than a d-dimensional Euclidean ball.

11



4. CHAINING

Theorem: Let (Uθ)θ∈Θ be a (mean-zero) subGaussian stochastic process with respect
to a metric d. Let D = diam(Θ). Then for any δ ∈ [0, D],

E sup
θ∈Θ

Uθ ≤ 2E sup
d(θ,θ′)≤δ

(Uθ − U ′θ) + 8
√

2

∫ D/2

δ/4

√
logN (Θ, d, ε)dε (4.20)

Proof. Let Θj be a cover of Θ at scale 2−jD. We have card(Θ0) = 1. Let

N = min
{
j : 2−jD ≤ δ

}

(which means 2−ND ≤ δ ≤ 2−(N−1)D) and card(ΘN ) = N (Θ, d, 2−ND) ≥ N (Θ, d, δ). As
before, we start with a single (finest-scale) cover:

E sup
θ∈Θ

Uθ ≤ 2E sup
d(θ,θ′)≤δ

(Uθ − Uθ′) + E sup
θN ,θ

′
N∈ΘN

(UθN − Uθ′N ).

For θN ∈ ΘN ,

UθN =
N∑

i=1

Uθi − Uπi−1(θi) + Uθ0 (4.21)

where, recursively, we define θi−1 = πi−1(θi) to be the element of Θi−1 closest to θi. The
sequence θ0, θ1, . . . , θN is a “chain” linking an element of the covering to the corresponding
closest element at the coarser scale.

Let the corresponding chain for θ′N ∈ ΘN be denoted by θ′0, θ
′
1, . . . , θ

′
N . Then

UθN − Uθ′N =

(
N∑

i=1

Uθi − Uπi−1(θi)

)
−
(

N∑

i=1

Uθ′i − Uπi−1(θ′i)

)

and

E max
θ,θ′∈ΘN

Uθ − Uθ′ ≤
N∑

i=1

E max
θi∈Θi

(Uθi − Uπi−1(θi)) +

N∑

i=1

E max
θ′i∈Θi

(Uπi−1(θ′i)
− Uθ′i) (4.22)

≤ 2

N∑

i=1

D2−(i−1)
√

2 logN (Θ, d, 2−iD) (4.23)

= 8
N∑

i=1

D2−(i+1)
√

2 logN (Θ, d, 2−iD) (4.24)

≤ 8

N∑

i=1

∫ 2−iD

2−(i+1)D

√
2 logN (Θ, d, ε)dε (4.25)

Observe that 2−(N+1)D ≥ δ/4, which concludes the proof.

Sudakov’s theorem gives a single-scale lower bound:
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Figure 1: Illustration of the Dudley integral upper bound

Theorem: For a Gaussian process (Uθ)θ∈Θ,

C sup
α≥0

α
√

logN (Θ, d, α) ≤ E sup
θ∈Θ

Uθ

for some constant C.

We can interpret this lower bound as the largest rectangle under the curve in Figure 1. This
lower bound can be tight in the applications we consider (whenever the sum of the areas of
rectangles Figure 1 is of the same order as the largest one).

5. COVERING AND PACKING

Given a probability measure P on X , we define

‖f‖2L2(P ) = Ef(X)2 =

∫
f(x)2P (dx).

Similarly, for a given X1, . . . , Xn we define a random pseudometric

‖f‖2L2(Pn) =
1

n

n∑

i=1

f(Xi)
2 = ‖f‖2n .

Of course, the second definition is just a special case of the first for empirical measure
1
n

∑n
i=1 δXi .

Definition: An ε-net (or, ε-cover) of F with respect to L2(P ) is a set of functions
f1, . . . , fN such that

∀f ∈ F , ∃j ∈ [N ] s.t. ‖f − fj‖L2(P ) ≤ ε.

The size of the smallest ε-net is denoted by N (F , L2(P ), ε).

The above definition can be also generalized to Lp(P ). Next, we spell out the above defini-
tion specifically for the empirical measure Pn:
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Definition: Let Pn = 1
n

∑n
i=1 δxi be the empirical measure supported on x1, . . . , xn.

A set V = {v1, . . . , vN} of vectors in Rn forms an ε-net (or, ε-cover) of F with respect
to Lp(Pn) if

∀f ∈ F , ∃j ∈ [N ] s.t.
1

n

n∑

i=1

|f(xi)− vj(i)|p ≤ εp

The size of the smallest ε-net is denoted by N (F , Lp(Pn), ε). Similarly, an ε-net (or,
ε-cover) with respect to L∞(Pn) requires

∀f ∈ F , ∃j ∈ [N ] s.t. max
i∈[n]
|f(xi)− vj(i)| ≤ ε

The size of the smallest ε-net is denoted by N (F , L∞(Pn), ε).

Observe that the elements of the cover V can be “improper,” i.e. they do not need to
correspond to values of some function on the data. However, one can go between proper
and improper covers at a cost of a constant (check!).

Second, observe that

N (F , Lp(Pn), ε) ≤ N (F , Lq(Pn), ε)

for p ≤ q since ‖f‖Lp(Pn) increases with p. Note that this is different for unweighted metrics:
e.g. ‖x‖p is nonincreasing in p, and hence N (Θ, ‖·‖p , ε) is also nonincreasing in p.

Definition: An ε-packing of F with respect to Lp(Pn) is a set f1, . . . , fN ∈ F such
that

1

n

n∑

i=1

|fj(xi)− fk(xi)|p ≥ εp

for any j 6= k. The size of the largest ε-packing is denoted by D(F , Lp(Pn), ε).

A standard relationship between covering and packing holds for any P :

D(F , Lp(P ), 2ε) ≤ N (F , Lp(P ), ε) ≤ D(F , Lp(P ), ε)

6. UPPER AND LOWER BOUNDS FOR RADEMACHER AVERAGES

As before, we let Uθ = 〈ε, θ〉, Θ = 1√
n
F|x1,...,xn , and d Euclidean distance. Then from last

lecture

E sup
f∈F

1√
n

n∑

i=1

εif(xi) = E sup
θ∈Θ

Uθ

≤ 2δ
√
n+ 8

√
2

∫ D/2

δ/4

√
logN (Θ, d, ε)dε

Trivially,
N (Θ, d, ε) = N (F , L2(Pn), ε).
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Corollary: For any X1, . . . , Xn,

Eε sup
f∈F

1

n

n∑

i=1

εif(Xi) ≤ inf
δ≥0

{
8δ +

12√
n

∫ D/2

δ

√
logN (F , L2(Pn), ε)dε

}

with D = supf,g∈F ‖f − g‖n ≤ 2 supf∈F ‖f‖n ≤ 2 supf∈F ‖f‖∞.

Putting together the symmetrization lemma and above Corollary, we have

Corollary: Let F = {f : X → R} be a class of functions and let X1, . . . , Xn ∼ P be
independent. Then

E sup
f∈F

{
Ef(X)− 1

n

n∑

i=1

f(Xi)

}
≤ E inf

δ≥0

{
16δ +

24√
n

∫ D

δ

√
logN (F , L2(Pn), ε)dε

}

(6.26)

where D = supf∈F

√
1
n

∑n
i=1 f(Xi)2.

Expectations on both sides are with respect to X1, . . . , Xn. Note that the above results
hold for the absolute value of the empirical process if we replace logN by log 2N , and the
log 2 can be further absorbed into the multiplicative constant.

The Sudakov lower bound for the Gaussian process implies (together with the rela-
tionship between Rademacher and Gaussian processes) the following lower bound for the
Rademacher averages:

Corollary: For any X1, . . . , Xn,

Eε sup
f∈F

1

n

n∑

i=1

εif(Xi) ≥
c√

log n
· sup
α≥0

α

√
logN (F , L2(Pn), α)

n

for some absolute constant c.

We note that a version of the lower bound (for a particular choice of α) without the log-
arithmic factor is available, under some conditions, and it often matches the upper bound
(see a few pages below).

7. PARAMETRIC AND NONPARAMETRIC CLASSES OF FUNCTIONS

There is no clear definition of what constitutes a “nonparametric class,” especially since
the same class of functions (e.g. neural networks) can be treated as either parametric or
nonparametric (e.g. if neural network complexity is measured by matrix norms rather than
number of parameters).

Consider the following (slightly vague) definition as a possibility:
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Definition: We will say that a class F is parametric if for any empirical measure Pn,

N (F , L2(Pn), ε) .

(
1

ε

)dim

.

We will say that F is nonparametric if for any empirical measure Pn,

logN (F , L2(Pn), ε) �
(

1

ε

)p
. (7.27)

The requirement that (7.27) holds for all measures Pn and values of n is quite strong.
Yet, we will show that as an upper bound, it is true for a variety of function classes.
However, one should keep in mind that there are also cases where dependence of the upper
bound on n can lead to better overall estimates. The quantity

sup
Q

logN (F , L2(Q), ε),

where supremum is taken over all discrete measures, is called Koltchinskii-Pollard entropy.
Let’s consider a “parametric” class F such that functions in F are uniformly bounded:

|f |∞ ≤ 1. This provides an upper bound on the diameter: D/2 ≤ 1. Then, taking δ = 0,
conditionally on X1, . . . , Xn,

Eε sup
f∈F

1

n

n∑

i=1

εif(Xi) ≤
12√
n

∫ 1

0

√
logN (F , L2(Pn), ε)dε

≤ 12√
n

∫ 1

0

√
d log(1/ε)dε

≤ c
√
d

n

Here it’s useful to note that

∫ a

0

√
log(1/ε)dε ≤

{
2a
√

log(1/a) a ≤ 1/e

2a a > 1/e

The following theorem is due to D. Haussler (an earlier version with exponent O(d) is
due to Dudley ’78):

Theorem: Let F = {f : X → {0, 1}} be a class of binary-valued functions with VC
dimension vc(F) = d. Then for any n and any Pn,

N (F , L2(Pn), ε) ≤ Cd(4e)d
(

1

ε

)2d

.

We will explain what “VC dimension” means a bit later, and let’s just say here that the
class of thresholds has dimension 1 and the class of homogenous linear classifiers in Rd has
dimension d. In particular, this removes the extraneous log(n+ 1) factor we had in Lecture
14 when analyzing thresholds.
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7.1 A phase transition

Let us inspect the Dudley integral upper bound. Note that when we plug in

logN (F , L2(Pn), ε) .

(
1

ε

)p
,

the integral becomes ∫ D/2

δ
ε−p/2dε

If p < 2, the integral converges, and we can take δ = 0. However, when p > 2, the lower
limit of the integral matters and we get an overall bound of the order

δ + n−1/2
[
ε1−p/2

]D/2
δ
≤ δ + n−1/2δ1−p/2

By choosing δ to balance the two terms (and thus minimize the upper bound) we obtain
δ = n−1/p. Hence, for p > 2, the estimate on Rademacher averages provided by the Dudley
bound is

R̂(F) . n−1/p.

On the other hand, for p < 2, the Dudley entropy integral upper bound becomes (by setting
δ = 0) on the order of

n−1/2D1−p/2 = O(n−1/2),

yielding
R̂(F) . n−1/2.

We see that there is a transition at p = 2 in terms of the growth of Rademacher averages
(“elbow” behavior). The phase transition will be important in the rest of the course when
we study optimality of nonparametric least squares.

Remark that in the p < 2 regime, the rate n−1/2 is the same rate CLT rate we would
have if we simply considered E

∣∣ 1
n

∑n
i=1 f(Xi)− Ef

∣∣ (or the average with random signs)
with a single function. Hence, the payment for the supremum over class F is only in a
constant that doesn’t depend on n.

7.2 Single scale vs chaining

It is also worthwhile to compare the single-scale upper bound we obtained earlier to the
tighter upper bound given by chaining. In other words, we are comparing

δ +

√
logN (δ)

n

versus

δ +

∫ D/2

δ

√
logN (ε)

n
dε,

simplifying the notation for brevity.
In the parametric case, the single-scale bound becomes (with the choice of δ = 1/n)

√
dim log n

n

17



while chaining gives √
dim

n
.

In the nonparametric case, the difference is more stark:

δ +

√
δ−p

n
� n−

1
2+p

vs
n−1/2

for p < 2, and

δ +
δ1−p/2
√
n
� n−1/p

for p > 2.

7.3 Linear class: Parametric or Nonparametric?

Let’s take a closer look at the function class

F = {x 7→ 〈w, x〉 : w ∈ Bd2}

and take X = Bd2. Recall that for a given x1, . . . , xn,

F|x1,...,xn = {(f(x1), . . . , f(xn)) : f ∈ F} =
{
Xw : w ∈ Bd2

}

where X is the n× d data matrix. As we have seen, the key quantity we need to compute
is

N (F , L2(Pn), ε).

What is a good upper bound for this quantity? What we had done in Lecture 16 was to
discretize the set Bd2 to create a ε-net w1, . . . , wN of size N (Bd2, ‖·‖2 , ε). Clearly, for any w
and the corresponding ε-close element wj of the cover,

1

n

n∑

i=1

(〈w, xi〉 − 〈wj , xi〉)2 ≤ max
i∈[n]
〈w − wj , xi〉2

≤ max
i∈[n]
‖w − wj‖2 · ‖xi‖2

≤ ε2.

Hence,

N (F , L2(Pn), ε) ≤ N (Bd2, ‖·‖2 , ε). (7.28)

In fact, a much stronger statement can be made: Since for any x ∈ X

|〈w, x〉 − 〈wj , x〉| ≤ ‖w − wj‖ ‖x‖ ≤ ε,

the cover of the parameter space induces a cover of the function class pointwise (in the
sup-norm ‖f − g‖∞ = supx∈X |f(x)− g(x)|) over the domain:

N (F , L2(Pn), ε) ≤ N (F , ‖·‖∞ , ε) ≤ N (Bd2, ‖·‖2 , ε). (7.29)
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Recall that the covering number of Bd2 is

(
1 +

2

ε

)d
.

This gives a “parametric” growth of entropy

logN (F , L2(Pn), ε) . d log(1 + 2/ε).

However, if d is large or infinite, this bound is loose. We will show that it also holds that

logN (F , L2(Pn), ε) . ε−2,

which is a nonparametric behavior. Hence, the same class can be viewed as either parametric
or nonparametric. In fact, in the parametric behavior, it is not important that the domain
of w is Bd2 since we would expect a similar estimate for other sets (including Bd∞). In
contrast, it will be crucial in nonparametric estimates that the norm of w is `2-bounded.

Jumping ahead, we will study neural networks and show a similar phenomenon: we
can either count the number of neurons or connections (parameters) or we can calculate
nonparametric “norm-based” estimates by looking at the norms of the layers in the network.

It’s worth emphasizing again that (7.29) can lead to very loose bounds in high-dimensional
situations. A cover of function values on finite set of data can be significantly smaller than
a cover with respect to sup norm.

7.4 A more general result (Optional)

We have that for any fixed function

E

∣∣∣∣∣
1√
n

n∑

i=1

(f(Xi)− Ef(X))

∣∣∣∣∣ ≤ var(f)1/2 = ‖f − Ef‖L2(P ) .

Obviously this implies

sup
f∈F

E

∣∣∣∣∣
1√
n

n∑

i=1

(f(Xi)− Ef(X))

∣∣∣∣∣ ≤ sup
f∈F

var(f)1/2 =: σ

If we could ever prove

E sup
f∈F

∣∣∣∣∣
1√
n

n∑

i=1

(f(Xi)− Ef(X))

∣∣∣∣∣ ≤ C(F) · σ,

it would imply that we only paid C(F) for having a statement uniform in f ∈ F .
Next, rather than assuming that functions in F are uniformly bounded, it will be enough

to assume that they have an L2(P )-integrable envelope F :

F (x) = sup
f∈F
|f(x)|.

Rather than assuming that F (x) ≤ 1, we shall assume that ‖F‖2L2(P ) = EF (X)2 ≤ ∞ and

everything will be phrased in terms of ‖F‖2L2(P ).
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Now, let H : [0,∞) 7→ [0,∞) is such that H(z) is non-decreasing for z > 0 and
z
√
H(1/z) is non-decreasing for z ∈ (0, 1]. Assume

∫ D

0

√
H(1/x)dx ≤ CHD

√
H(1/D)

for all D ∈ (0, 1], and suppose that

sup
Q

log 2N (F , L2(Q), τ ‖F‖L2(Q)) ≤ H(1/τ)

for all τ > 0. With this control on Koltchinskii-Pollard entropy, it follows that

E sup

∣∣∣∣∣
1√
n

n∑

i=1

(f(Xi)− Ef(X))

∣∣∣∣∣ . σ

√√√√H

(
2 ‖F‖L2(P )

σ

)
(7.30)

if n is large enough. We refer to [5] for more details, in particular Theorem 3.5.6 and the
following corollaries.

Remarkably, under additional mild conditions on size of n, the inequality (7.30) can be
reversed for a given P as soon as the entropy with respect to L2(P ) indeed grows at least

as H

(
‖F‖L2(P )

σ

)
.

Hence, the price we pay for uniformity in f ∈ F is truly

C(F) �

√√√√H

(
‖F‖L2(P )

σ

)
.

Of course, this expression is even simpler if σ2 = supf∈F E(f(X) − Ef)2 is on the same

order as ‖F‖2L2(P ) = E supf |f(X)|2.

8. COMBINATORIAL PARAMETERS

Let us gain some intuition for what can make R̂(Θ) large. First, recall that

R̂({±1}n) = E sup
θ∈{±1}n

〈θ, ε〉 = n.

Next, suppose that for α > 0 and v ∈ Rn,

α{±1}n + v ⊆ Θ.

Then
R̂(Θ) ≥ R̂(α{±1}n + v) = R̂(α{±1}n) = αR̂({±1}n) ≥ αn

Hence, “large cubes” inside Θ make Rademacher averages large. It turns out, this is the
only reason R̂(F|x1,...,xn) can be large!

The key question is whether F|x1,...,xn contains large cubes for a given class F .
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8.1 Binary-Valued Functions

Let’s start with function classes of {0, 1}-valued functions. In this case, Fx1,...,xn is either a
full {0, 1}n cube or not. Consider the particular example of threshold functions on the real
line. Take any point x1. Clearly, F|x1 = {0, 1}, which is a one-dimensional cube. Take two
points x1, x2. We can only realize sign patters (0, 0), (0, 1), (1, 1), but not (1, 0). Hence, for
no two points can we get a cube.

Definition: Let F = {f : X → {0, 1}}. We say that F shatters x1, . . . , xn ∈ X if
F|x1,...,xn = {0, 1}n. The Vapnik-Chervonenkis dimension of F is

vc(F) = max{n : F shatters some x1, . . . , xn}

Lemma (Sauer-Shelah-Vapnik-Chervonenkis): If vc(F) = d <∞,

card (F|x1,...,xn) ≤
d∑

i=0

(
n

i

)
≤
(en
d

)d

This result is quite remarkable. It says that as soon as n > vc(F), the proportion of the
cube that can be realized by F becomes very small (nd vs 2n). This combinatorial result is
at the heart of empirical process theory and the early developments in pattern recognition.

In particular, the lemma can be interpreted as a covering number upper bound:

N (F , L∞(Pn), ε) ≤
(en
d

)d

for any ε > 0. Observe that these numbers are with respect to L∞(Pn) rather than
L2(Pn), and hence can be an overkill. Indeed, L∞(Pn) covering numbers are necessar-
ily n-dependent while we can hope to get dimension-independent L2(Pn) covering numbers.
Indeed, this result (Dudley, Haussler) was already mentioned: for a binary-valued class with
finite vc(F) = d,

N (F , L2(Pn), ε) .

(
C

ε

)Cd
.

Hence, a class with finite VC dimension is “parametric”. On the other hand, if vc(F) is
infinite, then F|x1,...,xn is a full cube for arbitrarily large n (for some appropriately chosen
points). Hence, Rademacher averages of this set are too large and there is no uniform
convergence for all P (to see this, consider P supported on the shattered set). Hence,
finiteness of VC dimension is a characterization (of both distribution-free learnability and
uniform convergence).

8.2 Real-Valued Functions

For binary-valued functions, the size of the cube contained in F|x1,...,xn was trivially 1, and
we only varied n to see where the phase transition occurs. In contrast, for a general real-
valued function class, it is feasible that F|x1,...,xn contains a cube of size α, but not larger
than α; this extra parameter is in addition to the dimensionality of the cube. To deal with
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this extra degree of freedom, we fix the scale α and ask for the largest size n such that
F|x1,...,xn contains a (translate of a) cube of size α. A true containment statement would
read s+ (α/2){−1, 1}n ⊆ F|x1,...,xn . However, it is enough to ask that the equalities for the
vertices are replaced with inequalities:

Definition: We say that F shatters a set of points x1, . . . , xn at scale α if there exists
s ∈ Rn such that

∀ε ∈ {±1}n, ∃f ∈ F s.t.

{
f(xt) ≥ st + α/2 if ε = +1

f(xt) ≤ st − α/2 if ε = −1

The combinatorial dimension vc(F , α) of F (on domain X ) at scale α is defined as the
size n of the largest shattered set.

8.2.1 Example: non-decreasing functions

Consider the class of nondecreasing functions f : R → [0, 1]. First, observe that a point-
wise cover of this class does not exist (N (F , ‖·‖∞ , ε) = ∞ for any ε < 1/2). However,
N (F , L∞(Pn), ε) is necessarily finite. Let’s calculate the scale-sensitive dimension of this
class.

Claim: vc(F , ε) ≤ ε−1. Indeed, fix any x1, . . . , xn and assume these are arranged in
an increasing order. Suppose F shatters this set. Take the alternating sequence ε =
(+1,−1, . . .). We then must have a nondecreasing function that is at least s1 + α/2 at
x1 but then no greater than s2 − α/2 at x2. The nondecreasing constraint implies that
s2 ≥ s1 +α. A similar argument then holds for the next point and so forth. Since functions
are bounded, nα ≤ 1, which concludes the proof.

8.2.2 Control of covering numbers

The following generalization of the earlier result for binary-valued functions is due to
Mendelson and Vershynin:

Theorem: Let F be a class of functions X → [−1, 1]. Then for any distribution P ,

N (F , L2(P ), ε) ≤
(c
ε

)c·vc(F ,ε/c)

for all ε > 0. Here c is an absolute constant.

In particular, plugging into the entropy integral yields
∫ √

vc(F , ε) log(1/ε)dε

Rudelson-Vershynin: log(1/ε) can be removed.
Back to the class of non-decreasing functions, we immediately get

logN (F , L2(Pn), ε) . ε−1 · log
(c
ε

)
.
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In particular, Rademacher averages of this class scale as n−1/2 since this is a nonparametric
class with entropy exponent p < 2.

8.3 Scale-sensitive dimension of linear class via Perceptron

In this section, we will prove that

Proposition: For
F = {x 7→ 〈w, x〉 : w ∈ Bd2}

and X ⊆ Bd2, it holds that
vc(F , α) . 16α−2.

We turn to the Perceptron algorithm, defined as follows. We start with ŵ0 = 0. At
time t = 1, . . . , T , we observe xt ∈ X and predict ŷt = sign(〈ŵt, xt〉), a deterministic guess
of the label of xt given the hypothesis ŵt. We then observe the true label of the example
yt ∈ {±1}. If ŷt 6= yt, we update

ŵt+1 = ŵt + ytxt,

and otherwise ŵt+1 = ŵt.

Lemma (Novikoff’62): For any sequence (x1, y1), . . . , (xT , yT ) ∈ Bd2 ×{±1} the Per-
ceptron algorithm makes at most γ−2 mistakes, where γ is the margin of the sequence,
defined as

γ = max
w∗∈Bd

2

min
t
yt〈w∗, xt〉

Proof. If a mistake is made on round t,

‖ŵt+1‖2 = ‖ŵt + ytxt‖2 ≤ ‖ŵt‖2 + 2yt〈ŵt, xt〉+ 1 ≤ ‖ŵt‖2 + 1

Denote the number of mistakes at the end as m. Then ‖ŵT ‖2 ≤ m. Next, for w∗,

γ ≤ 〈w∗, ytxt〉 = 〈w∗, ŵt+1 − ŵt〉,

and so by summing and telescoping, mγ ≤ 〈w∗, ŵT 〉 ≤
√
m. This concludes the proof.

Remarkably, the number of mistakes does not depend on the dimension d. We will now
show that the mistake bound translates into a bound on the scale-sensitive dimension.

Proof of Proposition. Suppose there exist a shattered set x1, . . . , xm ∈ Bd2: there exists
s1, . . . , sm ∈ [−1, 1] such that for any sequence of signs ε = (ε1, . . . , εm) there exists a
wε ∈ Bd2 such that

εi(〈wε, xi〉 − si) ≥ α/2.
Claim: we can reparametrize the problem so that si = 0. Indeed, take

w̃ε = [wε, 1], x̃i = [xi,−si].
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Then we have
εi〈w̃ε, x̃i〉 ≥ α/2.

while the norms are at most
√

2:

‖w̃ε‖2 = ‖wε‖2 + 1 ≤ 2, ‖x̃i‖2 ≤ 2

Now comes the key step. We run Perceptron on the sequence x̃1/
√

2, . . . , x̃m/
√

2 and
yi = −ŷi. That is, we force Perceptron to make mistakes on every round, no matter what
the predictions are. It is important that Perceptron makes deterministic predictions for this
argument to work. Note that the sequence of predictions of Perceptron defines the sequence
y = (y1, . . . , yn) with

yi〈w̃y/
√

2, x̃i/
√

2〉 ≥ α/4.
Hence, by Novikoff’s result,

m ≤ 16/α2.

Interestingly, both Perceptron and VC theory were developed in the 60’s as distinct
approaches (online vs batch), yet the connection between them runs deeper than was recog-
nized, until recently. In particular, the above proof in fact shows that a stronger sequential
version of vc(F , α) is also bounded by 16α−2, where (roughly speaking) sequential analogues
allow the sequence to evolve as a predictable process with respect to a dyadic filtration. It
turns out that there are sequential analogues of Rademacher averages, covering numbers,
Dudley chaining, and combinatorial dimensions, and these govern online (rather than i.i.d.)
learning. If there is time, we will mention these towards the end of the course.

9. REGRESSION. PREDICTION VS ESTIMATION

As before, let S = {(X1, Y1), . . . , (Xn, Yn)} be a set of i.i.d. pairs with distribution P =
PX × PY |X on X × Y. Let f∗(x) = E[Y |X = x] be the regression function. One can show
that

f∗ ∈ argmin
f

E(f(X)− Y )2

where minimization is over all measurable functions.
Given a class F of functions X → Y, we also define

fF ∈ argmin
f∈F

E(f(X)− Y )2

to be the best predictor within the class F .
Risk of a function f is defined as

E(f(X)− f∗(X))2 = ‖f − f∗‖2L2(P ) = ‖f − f∗‖2

We will be interested in analyzing estimators f̂ constructed on the basis of n datapoints.
The hat on f̂ reminds us about the dependence on S.

Note that for any function f ,

E(f(X)− Y )2 −min
h

E(h(X)− Y )2 = E(f(X)− Y )2 − E(f∗(X)− Y )2

= E(f(X)− f∗(X) + f∗(X)− Y )2 − E(f∗(X)− Y )2

= E(f(X)− f∗(X))2
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Question: given i.i.d. data S, can we select estimator f̂ such that risk
∥∥∥f̂ − f∗

∥∥∥
2

is small in expectation or high-probability (with respect to the draw of S)? Without further
assumptions this is not possible.

Two standard scenarios:

• Well-specified case: given some class F , assume f∗ ∈ F . More precisely, P is such
that the regression function is in the class F .

• Misspecified case (agnostic learning in CS community): Redefine goal as
∥∥∥f̂ − f∗

∥∥∥
2
−min

f∈F
‖f − f∗‖2 (9.31)

= E(f̂(X)− Y )2 −min
f∈F

E(f(X)− Y )2

but do not insist that f∗ ∈ F . Upper bounds on (9.31) are called Oracle Inequalities
in statistics, while the prediction form has been also studied in statistical learning
theory.

We see that the problem of prediction and the problem of estimation naturally coincide
for square loss. Moreover, the misspecified problem arises naturally as a relaxation of an
assumption on the form of the distribution.

Here, the road naturally forks into at least several paths: analyze the well-specified case,
analyze the misspecified case, or change the loss function altogether. Let us briefly consider
the last generalization.

10. PREDICTION WITH OTHER LOSS FUNCTIONS

This will be a brief but useful detour. Consider changing the loss function in the prediction
problem (9.31) on the previous page:

E`(f(X), Y )−min
f∈F

E`(f(X), Y ) (10.32)

for some ` : Y × Y → R. In Lecture 14 we already showed that ERM

f̂ ∈ argmin
f∈F

1

n

n∑

i=1

`(f(Xi), Yi)

enjoys

E`(f̂(X), Y )−min
f∈F

E`(f(X), Y ) ≤ E sup
f∈F

E`(f(X), Y )− 1

n

n∑

i=1

`(f(Xi), Yi).

The latter is at most

2E sup
f∈F

1

n

n∑

i=1

εi`(f(Xi), Yi) (10.33)

by symmetrization, which is Rademacher averages of the loss class

` ◦ F|(X1,Y1),...,(Xn,Yn)

We would like to further upper bound this with Rademacher averages of the function class
itself. This can be done if ` is Lipschitz in the first argument.
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Lemma (Contraction): Let φi : R → R be 1-Lipschitz, i = 1, . . . , n. Let Θ ⊂ Rn
and φ ◦ θ = (φ1(θ1), . . . , φn(θn)) for θ ∈ Θ. Denote φ ◦Θ = {φ ◦ θ : θ ∈ Θ}. Then

R̂(φ ◦Θ) ≤ R̂(Θ).

Proof. Conditionally on ε1, . . . , εn−1,

Eεn sup
θ∈Θ
〈φ ◦ θ, ε〉 =

1

2

(
sup
θ∈Θ
{〈φ ◦ θ1:n−1, ε1:n−1〉+ φn(θn)}+ sup

θ′∈Θ

{
〈φ ◦ θ′1:n−1, ε1:n−1〉 − φn(θ′n)

})

≤ 1

2
sup
θ,θ′∈Θ

〈φ ◦ θ1:n−1, ε1:n−1〉+ 〈φ ◦ θ′1:n−1, ε1:n−1〉+ |θn − θ′n|

=
1

2
sup
θ,θ′∈Θ

〈φ ◦ θ1:n−1, ε1:n−1〉+ 〈φ ◦ θ′1:n−1, ε1:n−1〉+ θn − θ′n

=
1

2

(
sup
θ∈Θ
{〈φ ◦ θ1:n−1, ε1:n−1〉+ θn}+ sup

θ′∈Θ

{
〈φ ◦ θ′1:n−1, ε1:n−1〉 − θ′n

})

= Eεn sup
θ∈Θ
〈φ ◦ θ1:n−1, ε1:n−1〉+ εnθn

The inequality follows from the Lipschitz condition and the following equality is justified be-
cause of the symmetry of the other two terms with respect to renaming θ and θ′. Proceeding
to remove the other signs concludes the proof.

We now apply this lemma to functions φi(·) = `(·, Yi). As long as these functions are
L-Lipschitz, contraction lemma gives

E sup
f∈F

1

n

n∑

i=1

εi`(f(Xi), Yi) ≤ L · E sup
f∈F

1

n

n∑

i=1

εif(Xi) = L · 1

n
ER̂(F|X1,...,Xn), (10.34)

the (expected) Rademacher averages of F . The argument can be seen as a generalization of
the argument we did in Lecture 14 for classification where we “erased” multipliers (1−2Yi).

The simple analysis we just performed applies to any Lipschitz loss function. For uni-
formly bounded F and Y, square loss is Lipschitz, but that is no longer true for unbounded
Y (e.g. for real-value prediction with Gaussian noise). Hence, such an analysis only goes so
far.

Second, observe that one would only obtain rates n−1/2 or worse with such an analysis,
while we might hope to have faster decrease. For instance, in finite-dimensional regression,
one can recall the classical d · n−1 rates for Least Squares.

A quick inspection tells us that the second step (see Lecture 14) in the sequence of
inequalities

E
[
L(f̂)

]
− L(f∗) ≤ E

[
L(f̂)− L̂(f̂)

]
≤ E sup

f∈F

[
L(f)− L̂(f)

]
(10.35)

for ERM f̂ may be too loose. The second step only used the fact that f̂ belongs to F . It
turns out one can localize its place in F better than that.

Next few lectures will be on nonparametric regression. We will start with well-specified
models.
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11. NONPARAMETRIC REGRESSION: WELL-SPECIFIED CASE

We will start with “fixed design”: x1, . . . , xn ∈ X are fixed. Let

Yi = f∗(xi) + ηi

where ηi are zero-mean independent subGaussian. Suppose f∗ ∈ F . Goal: estimate f∗

on the points x1, . . . , xn (denoise the observed values). That is, the goal is to provide
nonasymptotic bounds on

Eη
∥∥∥f̂ − f∗

∥∥∥
2

L2(Pn)
,

where f̂ is the least squares (ERM) constrained to F . In constrast, in random design the
goal is w.r.t. L2(P ) with P unknown, while here Pn is known. We write the L2(Pn) norm

more succinctly as E
∥∥∥f̂ − f∗

∥∥∥
2

n
.

Since

f̂ ∈ argmin
f∈F

1

n

n∑

i=1

(f(xi)− Yi)2 = ‖f − Y ‖2n

we have

‖f∗ − Y ‖2n ≥
∥∥∥f̂ − Y

∥∥∥
2

n
=
∥∥∥f̂ − f∗ + f∗ − Y

∥∥∥
2

n
=
∥∥∥f̂ − f∗

∥∥∥
2

n
+‖f∗ − Y ‖2n+2〈f̂−f∗, f∗−Y 〉n

where 〈a, b〉n = 1
n〈a, b〉. Thus,

∥∥∥f̂ − f∗
∥∥∥

2

n
≤ 2〈η, f̂ − f∗〉n (11.36)

which we will call the basic inequality.

11.1 Informal intuition for localization

Before developing the localization approach, we provide some intuition. The first intuition
comes from viewing (11.36) as a fixed point.

Let’s assume for simplicity that ηi are 1-subGaussian. For a ∈ Rn, we have that with
high probability

〈η, a〉 . ‖a‖
Hence, if it holds that

‖a‖2 ≤ 〈η, a〉,
then ‖a‖ . 1.

We can try to repeat this argument with a being the values of f̂ − f∗ on the data.
However, since f̂ depends on η, we do not have the averaging that we need. Still, we can
do the mental experiment of assuming that the dependence is “weak” (e.g. we fit linear

regression in small d and large n). Then a bound on the size of
∥∥∥f̂ − f∗

∥∥∥
n

would lead to

an improved bound on the RHS of the basic inequality, which would in turn tighten the
bound on the LHS of the basic inequality, suggesting some kind of a fixed point. It also
seems intuitive that this fixed point likely depends on F and its richness.
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11.2 1st approach to localization: ratio-type inequalities

To simplify the proof somewhat, we will assume that η1, . . . , ηn are independent standard
normal N(0, 1).

We proceed as in the linear case earlier in the course. First, we divide both sides of the

Basic Inequality (11.36) by
∥∥∥f̂ − f∗

∥∥∥
n

and further upper bound the right-hand side by a

supremum over f , removing the dependence of the algorithm on the data:

∥∥∥f̂ − f∗
∥∥∥
n
≤ 2 sup

f∈F
〈η, f − f∗
‖f − f∗‖n

〉n (11.37)

By squaring both sides, we would get an upper bound on the estimation error (in probability
or in expectation).

Let us use the shorthand F∗ = F−f∗. The rest of the discussion will be about complex-
ity of the neighborhood around f∗ in F , or, equivalently, complexity of the neighborhood
of 0 in F∗. Observe that we only care about values of functions on the data x1, . . . , xn, so
the discussion is really about the set F∗|x1,...,xn , drawn in blue below.

At this point, one can say that there is no difference from the linear case, and we should
just go ahead and analyze

sup
g∈F∗
〈η, g

‖g‖n
〉n

After all, this is just the Gaussian width (normalized by
√
n) of the subset of the sphere

obtained by rescaling all the functions:

K = {v ∈ Sn−1 : ∃g ∈ F∗ s.t. v = (g(x1), . . . , g(xn))/(
√
n ‖g‖n)}.

(here the normalization is because ‖g‖n is scaled as 1/
√
n times the `2 norm.) How big is

this subset of the sphere? Note: if the set is all of Sn−1, we are doomed since in that case

sup
g∈F∗
〈η, g

‖g‖n
〉n = sup

v∈Sn−1

1√
n
〈η, v〉 =

1√
n
‖η‖ ∼ 1

and does not converge to zero. What we would need is that K is a significantly smaller
subset of the sphere. In the linear case, this was easy: we simply used the fact that the
subset is d-dimensional. However, for nonlinear functions, it is not easy to see what the set
is.

There is a bigger problem, however. Upon rescaling every vector to the sphere, all the
functions are treated equally even if their unscaled versions are very close to being zero
(that is, close to f∗ in the original class F). In other words, the quantity

sup
g∈F∗:‖g‖n≥u

〈η, g

‖g‖n
〉n
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can be potentially much smaller than the unrestricted supremum. This is depicted in the
above figure. If we look at functions within the smaller green sphere, its rescaled version is
the whole sphere. However, at larger scales (e.g. the larger green sphere), the set can be
much smaller. Understanding the map

u 7→ sup
g∈F∗:‖g‖n≥u

〈η, g

‖g‖n
〉n

will be key. In particular, we can break up the balance at scale u and instead have a better
upper bound

∥∥∥f̂ − f∗
∥∥∥
n
≤ u+ 2 sup

g∈F∗:‖g‖n≥u
〈η, g

‖g‖n
〉n (11.38)

Indeed, to show (11.38), write
∥∥∥f̂ − f∗

∥∥∥
n

=
∥∥∥f̂ − f∗

∥∥∥
n

1
{∥∥∥f̂ − f∗

∥∥∥
n
< u

}
+
∥∥∥f̂ − f∗

∥∥∥
n

1
{∥∥∥f̂ − f∗

∥∥∥
n
≥ u

}

≤ u+
∥∥∥f̂ − f∗

∥∥∥
n

1
{∥∥∥f̂ − f∗

∥∥∥
n
≥ u

}

≤ u+ 2〈η, f̂ − f∗∥∥∥f̂ − f∗
∥∥∥
n

〉n × 1
{∥∥∥f̂ − f∗

∥∥∥
n
≥ u

}

≤ u+ 2 sup
g∈F∗:‖g‖n≥u

〈η, g

‖g‖n
〉n

Consider the following assumption:

Definition: A class H is star-shaped (around 0) if h ∈ H implies λh ∈ H for h ∈ [0, 1].
In particular, if H is convex and contains 0, it is star-shaped.

We will assume that F∗ is star-shaped. In particular, if F is convex, then F∗ is star-shaped.
The key property of a star-shaped class is that by increasing the radius, the sets cannot
become more complex, as for any function there is a scaled copy of it at a smaller magnitude.

In light of this last remark, we claim that the inequality ‖g‖n ≥ u in the supremum in
(11.38) can be replaced with an equality if the class is star-shaped. Indeed, for any g ∈ F∗
with ‖g‖n ≥ u, there is a corresponding function h = u g

‖g‖n
with norm ‖h‖n = u and

〈η, g

‖g‖n
〉n = 〈η, h

u
〉n

Hence,

〈η, g

‖g‖n
〉n ≤

1

u
sup

h∈F∗:‖h‖n=u
〈η, h〉n

Taking a supremum on the LHS over g with ‖g‖n ≥ u gives an upper bound on (11.38) as

∥∥∥f̂ − f∗
∥∥∥
n
≤ u+

2

u
sup

g∈F∗:‖g‖n=u
〈η, g〉n

≤ u+
2

u
sup

g∈F∗:‖g‖n≤u
〈η, g〉n (11.39)
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where in the last step we included all the functions below level u. We will use concentration
to replace the second term with its expectation. In particular, define

Z(u) = sup
g∈F∗:‖g‖n≤u

〈η, g〉n

and
G(u) = EZ(u).

If we were to replace Z(u) on the RHS of (11.39) with G(u), the natural balance between
the two terms would be

u =
2

u
G(u)

Definition: The critical radius δn will be the minimum δ satisfying

G(δ) ≤ δ2/2

One can ask if this critical radius is actually well-defined. This follows from the follow-
ing:

Lemma: If F∗ is star-shaped, the function u 7→ G(u)/u is non-increasing.

Proof. Let δ′ < δ. Take any h ∈ F∗ with δ′ < ‖h‖n ≤ δ. By star-shapedness,

h′ =

(
δ′

δ

)
h ∈ F∗

and ‖h′‖n = δ′

δ ‖h‖n ≤ δ′. Hence,

〈η, h〉n =
δ

δ′
〈η, h′〉n ≤

δ

δ′
Z(δ′)

Taking supremum on the left-hand side over h with ‖h‖n ≤ δ, as well as expectation on
both sides, finishes the proof.

In particular, for any u ≥ δn,
G(u) ≤ u2/2

Indeed,

G(u) = u
G(u)

u
≤ uG(δn)

δn
≤ uδn/2 ≤ u2/2. (11.40)

To formally replace Z(u) with G(u) in the balancing equation, we need a concentration
result.
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Lemma (Gaussian Concentration): Let η = (η1, . . . , ηn) be a vector of independent
standard normals. Let φ : Rn → R be L-Lipschitz (w.r.t. Euclidean norm). Then for
all t > 0

P (φ(η)− Eφ ≥ t) ≤ exp

{
− t2

2L2

}

First, observe that Z(u) is (u/
√
n)-Lipschitz function of η. Omitting the argument u,

Z[η]− Z[η′] ≤ sup
g∈F∗,‖g‖n≤u

〈η, g〉n − 〈η′, g〉n ≤
∥∥η − η′

∥∥
n

sup
g∈F∗,‖g‖n≤u

‖g‖n ≤
u√
n

∥∥η − η′
∥∥

Hence, for any u > 0,

P (Z(u)− EZ(u) ≥ t) ≤ exp

{
−nt

2

2u2

}
(11.41)

In particular, by setting t = u2,

P
(
Z(u) ≥ G(u) + u2

)
≤ exp

{
−nu

2

2

}
(11.42)

In light of (11.40), we have proved

Lemma: Assuming F∗ is star-shaped, with probability at least 1− exp
{
−nu2

2

}
,

Z(u) ≤ 1.5u2 (11.43)

for any u ≥ δn.

Thus, from (11.39), we have

∥∥∥f̂ − f∗
∥∥∥
n
≤ 4u (11.44)

with probability at least 1−exp
{
−nu2

2

}
, for any u ≥ δn. Squaring both sides, yields

Theorem: Assume x1, . . . , xn are fixed, η1, . . . , ηn are i.i.d. standard normal, and
Yi = f∗(xi) + ηi with f∗ ∈ F . Assume F − f∗ is star-shaped and δn the corresponding
critical radius. Then constrained least squares f̂ satisfies

P
(∥∥∥f̂ − f∗

∥∥∥
2

n
≥ 16sδ2

n

)
≤ exp

{
−nsδ

2
n

2

}
(11.45)

for any s ≥ 1. In particular, this implies

E
∥∥∥f̂ − f∗

∥∥∥
2

n
. δ2

n +
1

n
.
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Note: in the literature, you will find a slightly different parametrization. Write ψ(r) =
EZ(
√
r). In other words, ψ(u2) = G(u). Then ψ has the subroot property:

ψ(ra) ≤ √aψ(r)

using the same type of proof as above. The fixed point then reads as the smallest r such
that ψ(r) ≤ r (ignoring the constant).

Let’s quickly discuss the behavior of G(δ)/δ.

The above sketch shows the function δ 7→ G(δ)/δ for two classes of functions. The
purple curve corresponds to a more complex class, since the Gaussian width (normalized
by δ) grows faster as δ → 0. The corresponding fixed point is larger for a more rich class.

11.3 2nd approach to localization: offset

We start again with the basic inequality

∥∥∥f̂ − f∗
∥∥∥

2

n
≤ 2〈η, f̂ − f∗〉n

and trivially write it as

∥∥∥f̂ − f∗
∥∥∥

2

n
≤ 4〈η, f̂ − f∗〉n −

∥∥∥f̂ − f∗
∥∥∥

2

n

Now take the supremum on both sides:

E
∥∥∥f̂ − f∗

∥∥∥
2

n
≤ E sup

f∈F
4〈η, f − f∗〉n − ‖f − f∗‖2n

= E sup
g∈F−f∗

1

n

n∑

i=1

4ηig(xi)− g(xi)
2

which we shall call the offset Rademacher (or Gaussian) averages.
Contrast this approach with the first approach where we divided both sides by the norm∥∥∥f̂ − f∗

∥∥∥
n

and then upper bounded by supremum over an appropriately localized subset,

then squared both sides.
Surprisingly, this somewhat simpler approach yields correct upper bounds. Note that the

negative quadratic term annihilates the fluctuations of the term ηig(xi) when the magnitude
of g becomes large enough (beyond some critical radius). Hence, the supremum is achieved
in a finite radius, no larger than the critical radius:
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Lemma: Let δn be the critical radius. Then for any c ≥ 1,

P

(
sup
g∈F∗

2c〈η, g〉n − ‖g‖2n > 2c2δ2
n +

2c2u

n

)
≤ exp{−u/2} (11.46)

In particular,

E sup
g∈F∗

2〈η, g〉n − ‖g‖2n . δ2
n +

1

n
.

Proof. By Gaussian concentration,

P (Z(δn) ≥ EZ(δn) + tδn) ≤ exp

{
−nt

2

2

}
. (11.47)

We now condition on the complement of the above event. Take g ∈ F∗. Consider two cases.
First, if ‖g‖n ≤ δn then

2c〈η, g〉n − ‖g‖2n ≤ 2cZ(δn) ≤ 2c (EZ(δn) + tδn) ≤ 2c

(
δ2
n

2
+ tδn

)
≤ c(t+ δn)2 (11.48)

Second, if ‖g‖n ≥ δn, we set r = δn/ ‖g‖n ≤ 1. Then

2c〈η, g〉n − ‖g‖2n =
2c

r
〈η, δn
‖g‖n

g〉 − δ2
n

r2
≤ 2c

r
Z(δn)− δ2

n

r2
=

2δn
r

cZ(δn)

δn
− δ2

n

r2
. (11.49)

Using 2ab− b2 ≤ a2, we get a further upper bound of

c2

(
Z(δn)

δn

)2

≤ c2

(
δ2
n/2 + tδn

δn

)2

= c2(δn/2 + t)2 (11.50)

11.3.1 Example: linear regression

To get a sense of the behavior of the offset process, consider the linear class F = {x 7→
〈w, x〉 : w ∈ Rd}. First, F − f∗ = F . Second, note that functions are unbounded, and so
Rademacher averages are unbounded too. However, offset averages are

sup
w∈Rd

n∑

i=1

ηi〈w, xi〉 − c〈w, xi〉2 = sup
w∈Rd

〈w,
n∑

i=1

ηixi〉 − c ‖w‖2Σ (11.51)

=
1

4c

∥∥∥∥∥
n∑

i=1

ηixi

∥∥∥∥∥

2

Σ†

(11.52)

where Σ =
∑n

i=1 xix
T
i and Σ† is the pseudoinverse. Assuming Eη2

i ≤ 1,

E

∥∥∥∥∥
n∑

i=1

ηixi

∥∥∥∥∥

2

Σ−1

≤
n∑

i=1

xTi Σ†xi = tr(ΣΣ†) = rank(Σ)
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We see that, these offset Rademacher/Gaussian averages have the right behavior: we already

saw in the first part of the course that the fast rate for linear regression is O
(

rank(Σ)
n

)

without further assumptions.
We can view the negative term that extinguishes the fluctuations of the zero-mean

process as coming from the curvature of the square loss. Without the curvature, the negative
term is not there and we are left with the usual Rademacher/Gaussian averages.

12. LEAST SQUARES

12.0.1 Nonparametric

We would like to calculate the critical radius δn for some function clases of interest. Recall
that δn is defined as the smallest number such that

E sup
g∈F∗:‖g‖n≤δ

〈η, g〉n ≤ δ2/2.

The strategy is to find upper bounds on the left-hand-side in terms of δ and then solve for
the minimal δ. In particular, we know that for any α ≥ 0,

E sup
g∈F∗:‖g‖n≤δ

〈η, g〉n . α+
1√
n

∫ δ

α/4

√
logN (F∗, L2(Pn), ε)dε

Suppose we have
logN (F∗, L2(Pn), ε) . ε−p

for p ∈ (0, 2). Then, taking α = 0,

E sup
g∈F∗:‖g‖n≤δ

〈η, g〉n . n−1/2[ε1−p/2]δ0 = n−1/2δ1−p/2

Setting
n−1/2δ1−p/2 = δ2

yields

δn = n
− 1

2+p

and thus the rate of the least squares estimator is

E
∥∥∥f̂ − f∗

∥∥∥
2

n
. n

− 2
2+p

It can be shown that minimax optimal rates of estimation (for any estimator) for fixed
design are given by the fixed point (see [16])

logN (F , L2(Pn), δ∗)

n
� δ2
∗ (12.53)

If logN (F , L2(Pn), δ) � δ−p, the balance is

δ−p∗ n−1 � δ2
∗

which gives the same rate of δ2
∗ = n

− 2
2+p . Hence, least squares are optimal in this minimax

sense for p ∈ (0, 2).
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Figure 2: Optimal (in general) rates n
− 2

2+p (obtained with localization for p ∈ (0, 2) by
ERM) vs without localization (e.g. via global Rademacher averages)

Example: Convex L-Lipschitz functions on a compact domain in Rd:

logN (Fcvx,lip, L
2(Pn), ε) ≤ (L/ε)d/2

Example: L-Lipschitz functions on a compact domain in Rd:

logN (Flip, L
2(Pn), ε) ≤ (L/ε)d

12.0.2 Parametric

Consider the parametric case,

logN (F∗, L2(Pn), ε) . d log(1 + 2/ε)

Then

E sup
g∈F∗:‖g‖n≤δ

〈η, g〉n .
1√
n

∫ δ

0

√
d log(1 + 2/ε)dε (12.54)

Change of variables gives an upper bound
√
d

n
δ ·
∫ 1

0

√
log(1 + 2/(uδ))du (12.55)

Unfortunately, this gives a pesky logarithmic factor that should not be there. However, for
some parametric cases one can, in fact, prove that local covering numbers behave as

logN (F∗ ∩ {g : ‖g‖n ≤ δ}, L2(Pn), ε) . d log(1 + 2δ/ε) (12.56)

In this case, the change-of-variables leads to

E sup
g∈F∗:‖g‖n≤δ

〈η, g〉n .

√
d

n
δ ·
∫ 1

0

√
log(1 + 2/ε)dε .

√
d

n
δ (12.57)

Equating

δ

√
d

n
� δ2

yields

δ2
n �

d

n
Note that local covering numbers (12.56) are available in some parametric cases (e.g. when
we discretize the parameter space of linear functions) but may not be available for some
other classes (e.g. for VC classes, except under additional conditions).
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12.1 Remarks

• to bound metric entropy of F∗ = F − f∗, instead consider F −F . This often leads to
only mild increase in a constant. For instance, if F is a class of L-Lipschitz functions,
then F − F is a subset of 2L-Lipschitz functions.

• Note that the rate δ2
n depends on local covering numbers (or, local complexity) around

f∗. This gives a path to proving adaptivity results (e.g. if f∗ is convex but has
only k linear pieces, the rate of estimation is parametric because its neighborhood is
“simple”).

• A simple counting argument (see Yang & Barron 1999, Section 7) shows that for
rich enough classes (e.g. nonparametric) worst-case local entropy (worst-case location
in the class) and global entropies behave similarly. This implies, in particular, that
instead of constructing a local packing for a lower bound (via hypothesis testing), one
can instead use global entropy with Fano inequality, justifying the LHS of (12.53) as
the lower bound for estimation. See also Mendelson’s “local vs global parameters”
paper for an in-depth discussion.

13. ORACLE INEQUALITIES

What if we do not assume the regression function f∗ is in F? How can we prove an oracle
inequality

E
∥∥∥f̂ − f∗

∥∥∥
2

n
− inf
f∈F
‖f − f∗‖2n ≤ φ(F , n)

Again, we will focus on fixed design.

13.1 Convex F

Suppose F is convex (or, rather, F|x1,...,xn is convex). Let f̂ be the constrained least squares:

f̂ ∈ argmin
f∈F

1

n

n∑

i=1

(f(xi)− Yi)2 = argmin
f∈F

‖f − Y ‖2n

For the basic inequality we used

∥∥∥f̂ − Y
∥∥∥

2

n
≤ ‖f∗ − Y ‖2n

but in the misspecified case this is no longer true. However, what is true is that

∥∥∥f̂ − Y
∥∥∥

2

n
≤ ‖fF − Y ‖2n

Unfortunately, this inequality is not strong enough to get us the desired result. Fortunately,
we can do better. Since f̂ is a projection of Y onto F = Fx1,...,xn , it holds that

∥∥∥f̂ − Y
∥∥∥

2

n
≤ ‖f − Y ‖2n −

∥∥∥f̂ − f
∥∥∥

2

n
(13.58)

for any f ∈ F , and in particular for fF . This is a simple consequence of convexity and
pythagorean theorem. The negative quadratic will give us the extra juice we need.
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Adding and subtracting f∗ on both sides and expanding,

∥∥∥f̂ − f∗
∥∥∥

2

n
+‖f∗ − Y ‖2n+2〈f̂−f∗,−η〉n+

∥∥∥fF − f̂
∥∥∥

2

n
≤ ‖fF − f∗‖2n+‖f∗ − Y ‖2n+2〈fF−f∗,−η〉n

which leads to

∥∥∥f̂ − f∗
∥∥∥

2

n
− ‖fF − f∗‖2n ≤ 2〈η, f̂ − fF 〉n −

∥∥∥f̂ − fF
∥∥∥

2

n
(13.59)

≤ sup
h∈F−fF

2〈η, h〉n − ‖h‖2n (13.60)

We conclude that for convex F and fixed design, the upper bounds we find for well-specified
and misspecified cases match. Moreover, since the misspecified case is strictly more general
and lower bounds for the well-specified case and polynomial entropy growth match the
upper bounds, we conclude that constrained least squares are also minimax optimal for
fixed design misspecified case.

Note: a crucial observation is that offset complexity would arise even if (13.58) had a

different constant multiplier in front of −
∥∥∥f − f̂

∥∥∥
2

n
. We will exploit this observation in a

bit.

13.2 General F
What if F is not convex? It turns out that least squares (ERM) can be suboptimal even if
F is a finite class!

13.2.1 A lower bound for ERM (or any proper procedure)

The suboptimality can be illustrated on a very simple example. Suppose X = {x}, Y
is {0, 1}-valued, and F = {f0, f1} such that f0(x) = 0 and f1(x) = 1. The marginal
distribution is the trivial PX = δx and suppose we have two conditional distributions P0(Y =
1) = 1/2−α and P1(Y = 1) = 1/2+α. Clearly, the population minimizer for Pj is fj . Also,
under P0 the regression function is f∗0 = 1/2−α while under P1 it is f∗1 = 1/2 +α. Finally,
ERM is a method that goes after the most frequent observation in the data Y1, . . . , Yn.

However, if α ∝ 1/
√
n, there is a constant probability of error in determining whether

P0 or P1 generated the data. Note that the oracle risk is minf∈{f0,f1} ‖f − f∗i ‖2 = (1/2−α)2

while the risk of the estimator p(1/2 + α)2 + (1 − p)(1/2 − α)2 where p is the probability
of making a mistake and not selecting fi under the distribution Pi. Hence, the overall
comparison to the oracle is at least p((1/2 + α)2 − (1/2− α)2) = Ω(α) when p is constant.

Hence, ERM (or any “proper” method that selects from F) cannot achieve excess loss
smaller than Ω(n−1/2):

max
Pi∈{P0,P1}

{
E
∥∥∥f̂ − f∗i

∥∥∥
2
− min
f∈{f0,f1}

‖f − f∗i ‖2
}

= Ω(n−1/2)

Yet, an improper method that selects f̂ outside F can achieve an O(n−1) rate.
A similar simple lower bound can be constructed for ERM with random design.1

1For more detailed discussion, we refer to [8].
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13.2.2 How about ERM over Convex Hull?

Given that the procedure has to be “improper” (select from outside of F), one can hy-
pothesize that doing ERM over conv(F) may work. Interestingly, this procedure is also
rate-suboptimal for a finite F since conv(F) is too expressive.2

13.2.3 An improper procedure

Somewhat surprisingly, only a small modification of ERM is required to make it optimal
for general classes. Consider the following two-step procedure3 (Star Estimator):

ĝ = argmin
f∈F

‖f − Y ‖2n (13.61)

f̂ = argmin
f∈star(F ,ĝ)

‖f − Y ‖2n (13.62)

where
star(F , g) = {αf + (1− α)g : f ∈ F , α ∈ [0, 1]}.

Note that f̂ need not be in F but is an average of two elements of F .

Note: the method is, in general, different from single ERM over a convex hull of F , and
so it is not clear that a version of (13.58) holds [9]:

Lemma: For any f ∈ F ,

‖f − Y ‖2n −
∥∥∥f̂ − Y

∥∥∥
2

n
≥ 1

18

∥∥∥f̂ − f
∥∥∥

2

n
. (13.63)

The above inequality is an approximate version of (13.58), a generalization of the pythagorean
relationship for convex sets.

As a consequence,
∥∥∥f̂ − f∗

∥∥∥
2

n
− ‖fF − f∗‖2n ≤ 2〈η, f̂ − fF 〉n −

1

18

∥∥∥fF − f̂
∥∥∥

2

n

and the same upper bounds hold as in the convex case, up to constants. The difference is
that the supremum is now in star(F , ĝ) ⊆ F − f∗ + star(F − F) which is not significantly
larger than F in terms of entropy (unless F is finite, which can be handled separately).

Remarks:
2Proof can be found in Lecué & Mendelson
3For a finite class, the above estimator was analyzed by J-Y. Audibert [1].
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1. if the set is convex, f̂ = ĝ.

2. the Star Estimator can be viewed as one step of Frank-Wolfe. More steps can improve
the constant.

Exercise: for any ε > 0 and a set F ⊂ Rn, the covering numbers satisfy

logN (F, ‖·‖ , 2ε) ≤ logN (star(F ), ‖·‖ , 2ε) ≤ log(diam(F )/ε) + logN (F, ‖·‖ , ε)

13.3 Offset Rademacher averages

For a set V ⊂ Rn, the offset process indexed by V is defined as a stochastic process

v 7→
n∑

i=1

εivi − cv2
i = 〈ε, v〉 − c ‖v‖2 .

Here εi are independent Rademacher, but the same results hold for any subGaussian random
variables.

Lemma: Let V ⊂ Rn be a finite set of vectors, card(V ) = N . Then for any c > 0,

Eε max
v∈V
〈ε, v〉 − c ‖v‖2 ≤ logN

2c
.

Furthermore,

P
(

max
v∈V
〈ε, v〉 − c ‖v‖2 ≥ 1

2c
(logN + log(1/δ))

)
≤ δ

Proof. Assuming the random variables are 1-subGaussian,

Emax
v∈V
〈ε, v〉 − c ‖v‖2 =

1

λ
E log exp maxλ〈ε, v〉 − λc ‖v‖2

≤ 1

λ
log
∑

v∈V
E exp{λ〈ε, v〉 − λc ‖v‖2}

≤ 1

λ
log
(
N exp{λ2 ‖v‖2 /2− λc ‖v‖2}

)

=
1

2c
logN

where we chose λ = 2c.

Theorem: Let F be a class of functions X → R. Then for any x1, . . . , xn ∈ X and the
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corresponding empirical measure Pn,

E sup
f∈F

1

n

n∑

i=1

εif(xi)− cf(xi)
2 (13.64)

≤ inf
γ≥0,α∈[0,γ]

{
(2/c) logN (F , L2(Pn), γ)

n
+ 4α+

12√
n

∫ γ

α

√
logN (F , L2(Pn), δ)dδ

}

(13.65)

14. TALAGRAND’S INEQUALITY AND APPLICATIONS

The following version of Talagrand’s inequality is due to Bousquet:

Theorem: Let X1, . . . , Xn be i.i.d., and let F = {f : X → [−1, 1]}. Suppose Ef(X) =
0 and let

sup
f∈F

Ef2(X) ≤ σ2

for some σ > 0. Let

Z = sup
f∈F

n∑

i=1

f(Xi), v = nσ2 + 2EZ

Then for any t ≥ 0,

Z ≤ EZ +
√

2tv +
t

3

with probability at least 1− e−t.

Consider a particular case of a singleton F = {f}. Then Z =
∑n

i=1 f(Xi), σ
2 = Ef2

and v = nEf2 because EZ = Ef = 0. Then the theorem says that

P

(
n∑

i=1

f(Xi) ≥ σ
√

2tn+
t

3

)
≤ e−t

which is Bernstein’s inequality. Moreover, the constants match those in Bernstein’s inequal-
ity, which is remarkable.

Now, recall the definition of empirical Rademacher averages. In this lecture we will scale
these averages by 1/n:

R̂(F) = Eε sup
f∈F

1

n

n∑

i=1

εif(Xi),

conditionally on X1, . . . , Xn and its expectation

R(F) = ER̂(F)

where the expectation is over the data.
The following holds for Rademacher averages (proof via self-bounding, see [3]):
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Theorem: Let F = {f : X → [−1, 1]}. Then

P

(
R̂(F) ≥ R(F) +

√
2tR(F)

n
+

t

3n

)
≤ e−t

In particular, by using the inequality

∀x, y, λ > 0,
√
xy ≤ λ

2
x+

1

2λ
y,

we have

P
(
R̂(F) ≥ 2R(F) +

5t

6n

)
≤ e−t.

This and other deviation inequalities for empirical Rademacher averages around their ex-
pected value immediately result in data-dependent measures of complexity whenever one
can derive a bound in terms of expected (over data) Rademacher averages. Specifically,
Talagrand’s inequality can be used to relate the random supremum of the empirical process
to its expectation; then symmetrization can relate the expected supremum of the empirical
process to the expected supremum of the Rademacher process; then above theorem can be
employed to relate the latter to the random data-dependent Rademacher averages.

For this lecture, we will note that above theorems are at the heart of proving localization
results for random design, both in the well-specified and misspecified settings. We will not
flesh out all the details and instead refer to [2]. In particular, in the remainder of this
lecture, we would like to develop tools for comparing random and population norms. This
will allow us to go from fixed to random design. The tools are also useful more generally.

15. FROM FIXED TO RANDOM DESIGN

Recall that in fixed design regression we aim to prove that for a given set of points x1, . . . , xn,
an estimator (such as constrained least squares) attains

∥∥∥f̂ − f∗
∥∥∥

2

L2(Pn)
≤ . . .

where on the right-hand side we have either a quantity that goes to zero with n or oracle
risk as in the misspecified case. We would like to analyze random design regression where
X1, . . . , Xn are i.i.d from P . Importantly, we also measure the risk through the L2(P ) norm.
However,

E
∥∥∥f̂ − f∗

∥∥∥
2

L2(Pn)
6= E

∥∥∥f̂ − f∗
∥∥∥

2

L2(P )

since the algorithm f̂ depends on X1, . . . , Xn, and so lifting the results from the fixed design
case is not straightforward.

Imagine, however, we could prove that with high probability, for all functions f ∈ F ,

‖f − f∗‖2L2(P ) ≤ 2 ‖f − f∗‖2L2(Pn) + ψ(n,F). (15.66)

In that case, a guarantee for fixed-design regression would translate into a guarantee for
random design regression as long as f̂ ∈ F (for the Star Algorithm, just enlarge F appro-
priately). Furthermore, as long as ψ(n,F) decays with n at least as fast as the rate of fixed
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design regression, we would be able to conclude that random design is not harder than fixed
design. Let’s see if this can be shown.

Our plan of action for proving results of the form (15.66) is to view the inequality as an
instance of a more general uniform comparison

∀g ∈ G, Eg(X) ≤ 2

n

n∑

i=1

g(Xi) + ψ(n,G)

for a class G of uniformly bounded and nonnegative functions.
Let δ̂ satisfy

Eε sup
g∈G: 1

n

∑n
i=1 g(Xi)≤δ2

1

n

n∑

i=1

εig(Xi) ≤ δ2/2 (15.67)

conditionally on X1, . . . , Xn. Then the following result can be proved from the theorems in
the previous section (see e.g. [4]):

Lemma: Let G be a class of functions with values in [0, 1]. Then with probability at
least 1− e−t for all g ∈ G

Eg(X) ≤ 2

n

n∑

i=1

g(Xi) + c · δ̂2 +
c′ · (t+ log log n)

n
(15.68)

where δ̂ = δ̂(G) is any upper bound on the fixed point in (15.67).

Applying this inequality for the class G = {(f − f ′)2 : f, f ′ ∈ F}, assuming F is a class
of [0, 1]-valued functions, yields

∥∥f − f ′
∥∥2

L2(P )
≤ 2

∥∥f − f ′
∥∥2

L2(Pn)
+ c · δ̂2 +

c′ · (t+ log log n)

n
. (15.69)

A few remarks. First, G = (F − F)2 can be replaced by (F − f∗)2, even if f∗ /∈ F , as
long as the resulting class is uniformly bounded. Second, we observe that (15.67) is defined
with a localization restriction 1

n

∑n
i=1 g(Xi) ≤ δ2 rather than 1

n

∑n
i=1 g(Xi)

2 ≤ δ2 in the
previous lecture. Since functions are bounded by 1, the set

M̂ :=

{
g :

1

n

n∑

i=1

g(Xi) ≤ δ2

}
⊆ {‖g‖2n ≤ δ2}

and hence the set in (15.67) is smaller. Thus the fixed point (15.67) is potentially smaller
than the one defined in the previous lecture.

Now, one can ask how to compute a suitable upper bound on the critical radius in
(15.67) for particular classes of interest. As in the earlier lectures, the strategy is to upper
bound the left-hand side of (15.67) in terms of some more tangible measures of complexity
and δ, and then balance with δ2/2.

In particular, we are interested in the case when G = F2 (same analysis works for
(F − F)2 or (F − f∗)2) for some class F of [−1, 1]-valued functions. In this case, it is
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tempting to proceed with the help of contraction inequality and upper bound

Eε sup
g∈F2∩M̂

1

n

n∑

i=1

εig(Xi) ≤ 2Eε sup
f∈F :‖f‖2n≤δ2

1

n

n∑

i=1

εif(Xi) (15.70)

since square is 2-Lipschitz on [−1, 1]. Balancing this with δ2 gives, up to constants, the
critical radius of F as defined in previous lectures. Interestingly, one can significantly
improve upon this argument and show that the localization radius for F2 can be smaller
than that of F . In particular, a useful result is the following:

Lemma: For any class F = {f : X → [−1, 1]} of bounded functions, the critical radius
in (15.67) for the class G = F2 can be upper bounded by a solution to

12√
n

∫ 1

δ/16

√
logN (F , L∞(Pn), u/2))du ≤ δ/4. (15.71)

Proof. We start upper bounding the left-hand side of (15.67), aiming to get an upper bound
proportional to the scale δ. Observe that functions in G are nonnegative and bounded
uniformly in [0, 1]. As discussed earlier, the restriction 1

n

∑n
i=1 g(Xi) ≤ δ2 implies ‖g‖n ≤ δ,

and hence the left-hand-side of (15.67) is upper bounded by

inf
α

{
4α+

12√
n

∫ δ

α

√
logN (G ∩ M̂, L2(Pn), ε)dε

}
. (15.72)

Let V = {f̃1, . . . , f̃N} be a proper L∞(Pn)-cover of F ∩ {‖f‖n ≤ δ} at scale τ ≤ δ (proper

implies
∥∥∥f̃
∥∥∥
n
≤ δ). Fix any g = f2 ∈ G ∩ M̂. Let f̃ be an element of V that is τ -close to

f . Then

1

n

n∑

i=1

(f(xi)
2 − f̃(xi)

2)2 =
1

n

n∑

i=1

(f(xi)− f̃(xi))
2(f(xi) + f̃(xi))

2

≤ max
i

(f(xi)− f̃(xi))
2 · 1

n

n∑

i=1

(f(xi) + f̃(xi))
2

≤ τ2(2 ‖f‖2n + 2
∥∥∥f̃
∥∥∥

2

n
)

≤ 4τ2δ2 := ε2

We conclude that

N (G ∩ M̂, L2(Pn), ε) ≤ N (F ∩ {‖f‖n ≤ δ}, L∞(Pn), ε/(2δ))

≤ N (F , L∞(Pn), ε/(2δ))

Substituting into (15.72), the upper bound on the right-hand side becomes

inf
α≥0

{
4α+

12√
n

∫ δ

α

√
logN (F , L∞(Pn), ε/(2δ))dε

}

≤ δ2/4 + δ × 12√
n

∫ 1

δ/16

√
logN (F , L∞(Pn), u/2))du
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where we performed change-of-variables u = ε/δ and chose α = δ2/16. Using this in (15.67)
and balancing with δ2/2 yields (15.71).

A key outcome of the above lemma is that the critical radius of F2 (or (F − F)2) is
much smaller than that of F . The latter would have δ2 rather than δ on the right-hand
side of (15.71). In particular, if the left-hand side of (15.71) is of order 1/

√
n, the solution

is δ ∝ 1/
√
n and hence the remainder in (15.69) is of the order 1/n, a smaller order term as

compared to the rate of estimation for fixed design. For instance, for a class that exhibits
polynomial growth of entropy

N (F , L∞(Pn), ε) ≤
(cn
ε

)d
,

the localization radius of G can be upper bounded as

δ̂(G) = C

√
d

n
log
(cn
d

)

and for a finite class we immediately have

δ̂(G) ≤ C
√

log |F|
n

.

We can also prove a general and useful result, albeit with extra log factors (due to its
generality). Following [15], we have

Lemma: For any class F = {f : X → [−1, 1]}, the critical radius in (15.71) is at most

C log2 n · R̄(F),

where
R̄(F) = sup

x1,...,xn
R̂(F).

Proof. Substitute the following estimate for L∞ covering numbers in terms of the scale-
sensitive dimension (see e.g. [14]):

logN (F , L∞(Pn), ε) ≤ 2vc(F , cε) · log n ·
(

cn

vc(F , cε) · ε

)
(15.73)

and then use the following fact: for any ε > R̄(F),

vc(F , ε) ≤ 4nR̄(F)2

ε2
. (15.74)

This last inequality can be written in the more familiar form

sup
ε>R̄(F)

ε

√
vc(F , ε)

4n
≤ R̄(F), (15.75)

which bears similarity to Sudakov’s minoration. This inequality is proved by taking the
ε-shattered set, replicating it dn/vc(F , ε)e times, and using our previous argument about
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Rademacher averages being large when there is a cube inside the set. We leave it as an
exercise.

Back to the estimate, we have

1√
n

∫ 1/4

δ/64

√
logN (F , L∞(Pn), ε))dε .

√
log n√
n

∫ 1/4

δ/64

√
vc(F , cε) log

(cn
ε

)
dε (15.76)

.
√

log nR̄(F)

∫ 1/4

δ/64

1

ε

√
log
(cn
ε

)
dε (15.77)

To finish the proof, choose δ = 64R̄(F) and observe that

∫ 1

R̄(F)

1

ε

√
log
(cn
ε

)
dε . log2(cn/R̄(F)).

Hence, ignoring logarithmic factors, δ̂(G) ≤ Õ(n−1) when R̄(F) . n−1/2 and δ̂(G) ≤
Õ(n−2/p) when R̄(F) . n−1/p, which is smaller than the rate of estimation for least squares,
ignoring logarithmic factors.

We conclude that rates of estimation for fixed design translate into rates for estimation
with random design, at least for bounded functions. It is worth emphasizing that the extra
factors one gains from comparing ‖f − f∗‖2L2(P ) to 2 ‖f − f∗‖2L2(Pn) is typically of smaller
order than what one gets from denoising for fixed design. The next section explains why
this happens.

16. BEYOND BOUNDEDNESS: THE SMALL-BALL METHOD

This approach was pioneered by [6] and then developed by Mendelson in a series of papers
starting with [10].

Roughly speaking, the realization is that whenever the population norm ‖f‖L2(P ) is
large enough, it is highly unlikely that the random empirical norm ‖f‖L2(Pn) can be smaller
than a fraction of the population norm. Moreover, conditions for such a statement to be
true are rather weak and definitely do not require boundedness.

We first recall the Paley-Zygmund inequality (1932) stating that for a nonnegative ran-
dom variable Z with finite variance,

P (Z ≥ tEZ) ≥ (1− t)2 (EZ)2

EZ2

for any 0 ≤ t ≤ 1.
Let us use the following shorthand. We will write ‖f‖2 = ‖f‖L2(P ) = (Ef(X)2)1/2 and

‖f‖4 = ‖f‖L4(P ) = (Ef(X)4)1/4. Then

P (|f(X)| ≥ t ‖f‖2) = P
(
f(X)2 ≥ t2 ‖f‖22

)
≥ (1− t2)2 ‖f‖42

‖f‖44
Now, we make an assumption that for every f ∈ F ,

Ef(X)4 ≤ c(Ef(X)2)2
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for some c.
Under this L4 − L2 norm comparison, it holds that

P (|f(X)| ≥ t ‖f‖2) ≥ (1− t2)2c

More generally, the condition

P (|f(X)| ≥ c ‖f‖2) ≥ c′ (16.78)

for some c, c′ is called the small-ball property.
Let’s see how we can compare the empirical and population norms, uniformly over F ,

given such a condition. First, let’s consider any function with norm ‖f‖2 = 1. Observe that
if we could show with high probability

1

n

n∑

i=1

1 {|f(Xi)| ≥ c1} ≥ c2 (16.79)

for some constants c1, c2, we would be done since such a lower bound implies a constant
lower bound on 1

n

∑n
i=1 f(Xi)

2 ≥ c3 ‖f‖2 = c3). By rescaling and assuming star-shapedness,
we would extend the result to all functions in F (above some critical level for which we can
prove (16.79)).

For a given c > 0, we have

1

n

n∑

i=1

1 {|f(Xi)| ≥ c} = E1 {|f(X)| ≥ 2c} −
(
E1 {|f(X)| ≥ 2c} − 1

n

n∑

i=1

1 {|f(Xi)| ≥ c}
)

≥ E1 {|f(X)| ≥ 2c} −
(
Eφ(|f(X)|)− 1

n

n∑

i=1

φ(|f(Xi)|)
)

for φ(u) = 0 on (−∞, c], φ(u) = u/c− 1 on [c, 2c], and φ(u) = 1 on [2c,∞).

≥ inf
f∈F

P (|f(X)| ≥ 2c ‖f‖2)− sup
f∈F ,‖f‖2=1

(
Eφ(|f |)− 1

n

n∑

i=1

φ(|f(Xi)|)
)

Now, using concentration (since φ(|f |) are in [0, 1]), the random supremum

sup
f∈F ,‖f‖2=1

(
Eφ(|f |)− 1

n

n∑

i=1

φ(|f(Xi)|)
)

can be upper bounded with probability at least 1− e−2u2 by its expectation

E sup
f∈F ,‖f‖2=1

(
Eφ(|f |)− 1

n

n∑

i=1

φ(|f(Xi)|)
)

+
u√
n

which, in turn, can be upper bounded via symmetrization and contraction inequality (since
φ is 1/c-Lipschitz) by

4

c
E sup
f∈F ,‖f‖2=1

1

n

n∑

i=1

εif(Xi) +
u√
n
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By choosing u =
√
n · c′′, we can make the additive term an arbitrarily small constant c′′.

Now, we see that (16.79) will hold with a non-zero constant c2 as long as

E sup
f∈F ,‖f‖2=1

1

n

n∑

i=1

εif(Xi) ≤ c′′

for an appropriately small constant c′′. We now need to extend this control to all ‖f‖2
above some critical radius. The key observation is that the critical radius β∗ can be defined
as the smallest β such that

E sup
f∈F ,‖f‖2≤β

1

n

n∑

i=1

εif(Xi) ≤ c′′β (16.80)

Assuming that F is star-shaped around 0, the control extends for all β ≥ β∗.
To summarize, with probability at least e−cn,

inf
f∈F :‖f‖2≥β∗

‖f‖n
‖f‖2

≥ c′

for some constants c, c′. Alternatively, we have with probability at least e−cn, for all f ∈ F ,

‖f‖22 ≤ C ‖f‖2n + (β∗)2.

Observe that β∗ can be significantly smaller than if (16.80) were defined with β2 on the
right-hand side, as before.

17. EXAMPLE: INTERPOLATION

Suppose we observe noiseless values yi = f∗(Xi) at i.i.d. locations X1, . . . , Xn. Let f̂ be
an ERM with respect to square loss over F and assume f∗ ∈ F . Clearly, f̂ achieves zero
error, and the question is what the expected deviation from f∗ is. This is a question of a
“version space size” – what is the L2(P ) diameter of the random subset of F that matches
f∗ on a set of data points. More precisely, define the interpolation set

IX1,...,Xn = {f ∈ F : f(Xi) = f∗(Xi)},

a random subset of the class F , and its diameter as

diam2(IX1,...,Xn) = sup
f,f ′∈IX1,...,Xn

∥∥f − f ′
∥∥
L2(P )

.

Of course, from the earlier calculations, we have that with high probability

∥∥f − f ′
∥∥
L2(P )

. δ̂2

where δ̂ is the localization radius for (F −F)2 and can be upper bounded by supx1:n R̂(F)2.
Alternatively, we can use the fixed point (β∗)2 under the small ball property.
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18. EXAMPLE: RANDOM PROJECTIONS AND
JOHNSON-LINDENSTRAUSS LEMMA

The development here can be seen as a nonlinear generalization of the random projection
method and the Johnson–Lindenstrauss lemma. Let Γ ∈ Rn×d be an appropriately scaled
random matrix. We then prove that for any fixed v ∈ Rd, with high probability

(1− ε)2 ‖v‖22 ≤ ‖Γv‖22 ≤ (1 + ε)2 ‖v‖22 .

Of particular interest in applications is the lower side of this inequality:

‖Γv‖22
‖v‖22

≥ 1− α

where α ∈ (0, 1). A corresponding uniform statement over a set V ⊂ Rd asks that with
high probability,

inf
v∈V

‖Γv‖22
‖v‖22

≥ 1− α.

Statements of this form are very useful in statistics, signal processing, etc. The lower
isometry says that the energy of the signal is preserved under random measurement. Or,
the null space of the random matrix Γ is likely to miss (in a quantitative way) the set V . Of
course, if V is too large, it’s not possible to miss it, and so complexity of V (as quantified
by the measures we have studied) enters the picture.

The connection to today’s lecture can be seen by taking

Γ =
1√
n



−X1−
. . .
−Xn−




with X1, . . . , Xn i.i.d. from an isotropic distribution. Then

‖Γv‖22 =
1

n

n∑

i=1

〈v,Xi〉2

while ‖v‖ = Ex〈v,X〉2. Each v ∈ V then corresponds to f ∈ F in our earlier notation.

19. LARGE MARGIN THEORY

We end this lecture with a result from large margin classification, because its proof utilizes
the same technique (not surprisingly, the authors of [7] and [6] have a nonzero intersection).

Let F be a class of R-valued functions. Consider a classification problem with binary
Y ∈ {±1}. Fix γ > 0 as a margin parameter.

Let φ : R → R be defined by φ(a) = 0 on (−∞, 0], φ(a) = a/γ on [0, γ], and φ(a) = 1
on [γ,∞). Then with probability at least 1− e−2u2 , for any f ∈ F ,

E1 {Y f(X) ≥ 0} − 1

n

n∑

i=1

1 {Yif(Xi) ≥ γ} ≤ sup
f∈F

Eφ(Y f(X))− 1

n

n∑

i=1

φ(Yif(Xi))

≤ E sup
f∈F

Eφ(Y f(X))− 1

n

n∑

i=1

φ(Yif(Xi)) +
u√
n
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since φ is in [0, 1]. By symmetrization, the above expectation is at most

2E sup
f∈F

1

n

n∑

i=1

εiφ(Yif(Xi)) ≤
2

γ
E sup
f∈F

1

n

n∑

i=1

εiYif(Xi) =
2

γ
E sup
f∈F

1

n

n∑

i=1

εif(Xi) ≤
2

γ
R(F)

Hence, with probability at least 1− e−2u2 , for any f ∈ F ,

E1 {Y f(X) ≥ 0} ≤ 1

n

n∑

i=1

1 {Yif(Xi) ≥ γ}+
2

γ
R(F) +

u√
n

As an example, consider the class of linear functions

F = {x 7→ 〈x,w〉 : w ∈ Bd2}

and X ∈ Bd2. We saw earlier that

R(F) ≤ 1√
n

(recall that here we normalized Rademacher averages by 1/n). Thus, one can derive an
upper bound on classification out-of-sample performance that does not depend on the di-
mensionality of the space despite the fact that the VC dimension of the set of hyperplanes
in Rd is d and covering numbers of sign(F) necessarily grow with d. Similarly, one can prove
margin bounds for neural networks in terms of norms of the weight matrices and without
any dependence on the number of neurons.

20. TIME SERIES

Suppose we observe a sequence

xt+1 = f∗(xt) + ηt, t = 1, . . . , n

where xt ∈ Rd and ηt are independent zero mean vectors. The function f∗ is unknown, but
we assume it is a member of a known class F . Let us treat this problem as a fixed-design
regression problem, except that the outcomes are now vectors rather than reals, and the
sequence x1, . . . ,xn is a sequence of dependent random variables.

Consider the least squares solution:

f̂ ∈ argmin
f∈F

1

n

n∑

t=1

‖xt+1 − f(xt)‖22 ,

where the norm is the euclidean norm. This is a natural generalization of least squares to
vector-valued regression. As before, we denote

‖f − g‖2n =
1

n

n∑

t=1

‖f(xt)− g(xt)‖22

The basic inequality can now be written as (exercise):

∥∥∥f̂ − f∗
∥∥∥

2

n
≤ 2

1

n

n∑

t=1

〈ηt, f̂(xt)− f∗(xt)〉.
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Choosing the offset-style approach covered in previous lectures, we have

∥∥∥f̂ − f∗
∥∥∥

2

n
≤ sup

g∈F−f∗

1

n

n∑

t=1

4〈ηt, g(xt)〉 − ‖g(xt)‖2 .

Up until now, the statement is conditional on {η1, . . . , ηn}. What happens if we take expec-
tations on both sides? On the left-hand side we have a denoising guarantee on the sequence.
On the right-hand side, we have a “dependent version” of offset Gaussian/Rademacher com-
plexity where xt is measurable with respect to σ(η1, . . . , ηt−1). To analyze this object, we
first need to understand the simpler R-valued version without the offset: what is the be-
havior of

E sup
f∈F

1

n

n∑

t=1

εtf(xt)

where xt is σ(ε1, . . . , εt−1)-measurable, F is a class of real-valued functions X → R, and
ε1, . . . , εn are i.i.d. Rademacher random variables.

21. SEQUENTIAL COMPLEXITIES

We choose to study the random process generated by Rademacher random variables for
several reasons. First, just as in the classical case, conditioning on the data will lead to
a simpler object (binary tree) and, second, other noise processes can be reduced to the
Rademacher case, under moment assumptions on the noise. The development here is based
on [13], and we refer also to [12] for an introduction.

Let us elaborate on the first point. Note that xt being measurable with respect to
σ(ε1, . . . , εt−1) simply means xt is a function of ε1, . . . , εt−1 (in other words, it’s a predictable
process). Note that the collection x1, . . . ,xn can be “summarized” as a depth-n binary tree
decorated with elements of X at the nodes. Indeed, x1 ∈ X is a constant (root), x2 = x2(ε1)
takes on two possible values depending on the sign of ε1 (left or right), and so forth. It is
useful to think of (x1, . . . ,xn) as a tree, even though it doesn’t bring any more information
into the picture. We shall denote the collection of n functions xi : {±1}i−1 → X as
x = (x1, . . . ,xn) and call it simply as an X -valued tree. We shall refer to ε = (ε1, . . . , εn)
as a path in the tree. We will also talk about R-valued trees, such as f ◦ x for f : X → R.

Given a tree x, we shall call

R̂seq(F ,x) = E sup
f∈F

1

n

n∑

t=1

εtf(xt(ε1, . . . , εt−1))

the sequential Rademacher complexity of F on the tree x.
Comparing to the classical version,

E sup
f∈F

1

n

n∑

t=1

εtf(xt)

where x1, . . . , xn are constant values, we see that it is a special case of a tree with constant
levels xt(ε1, . . . , εt−1) = xt. Hence, sequential Rademacher complexity is a generalization of
the classical notion.

To ease the notation, we will write xt without explicit dependence on ε, or for brevity
write xt(ε) even though xt only depends on the prefix ε1:t−1.
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Observe that for any f ∈ F , the variable

νf =
1

n

n∑

t=1

εtf(xt)

is zero mean. Moreover, it is an average of martingale differences εtf(xt), and so we expect
1/
√
n behavior from Azuma-Hoeffding’s inequality. It should be clear that, say, for F

consisting of a finite collection of [−1, 1]-valued functions on X , we have

Emax
f∈F

1

n

n∑

t=1

εtf(xt) ≤
√

2 log card(F)

n

Given that there is no difference with the classical case, one may wonder if we can just reduce
everything to the classical Rademacher averages. The answer is no, and the differences
already start to appear when we attempt to define covering numbers.

More precisely, since any tree x is defined by 2n−1 values, one might wonder if we could
define a notion of pseudo-distance between f and f ′ as an `2 distance on these 2n−1 values.
It is easy to see that this is a huge overkill. Perhaps one of the key points to understand
here is: what is the equivalent of the projection F|x1,...,xn for the tree case? Spoiler: it’s
not F|x. The following turns out to be the right definition:

Definition: A set V of R-valued trees is an 0-cover of F on a tree x = (x1, . . . ,xn) if

∀f ∈ F , ε ∈ {±1}n,∃v ∈ V s.t. f(xt(ε1:t−1)) = vt(ε1:t−1) ∀t ∈ [n]

The size of the smallest 0-cover of F on a tree x will be denoted by N (F ,x, 0).

The key aspect of this definition is that v ∈ V can be chosen based on the sequence
ε ∈ {±1}n. In other words, in contrast with the classical definition, for the same function f
different elements v ∈ V can provide a cover on different paths. This results in the needed
reduction in the size of V .

As an example, take a set of 2n−1 functions that take a value of 1 on one of the 2n−1

leaves of x and zero everywhere else. Then the projection F|x is of size 2n−1 but the size
of the 0-cover is only 2, corresponding to our intuition that the class is simple (as it only
varies on the last example). Indeed, the size of the 0-cover is the analogue of the size of
F|x1,...,xn in the binary-valued case.

For real-valued functions, consider the following definition.

Definition: A set V of R-valued trees is an α-cover of F on a tree x = (x1, . . . ,xn)
with respect to `2 if

∀f ∈ F , ε ∈ {±1}n, ∃v ∈ V s.t.
1

n

n∑

i=1

(f(xt(ε1:t−1))− vt(ε1:t−1))2 ≤ α2

The size of the smallest α-cover of F on a tree x with respect to `2 will be denoted by
N2(F ,x, α).
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A similar definition can be stated for cover with respect to `p.
The following is an analogue of the chaining bound:

Theorem: For any class of [−1, 1]-valued functions F ,

R̂seq(F ,x) ≤ inf
α≥0

{
4α+

12√
n

∫ 1

α

√
logN2(F ,x, ε)dε

}

Recall the definition of VC dimension and a shattered set. Here is the right sequential
analogue:

Definition: Function class F of {±1}-valued functions shatters a tree x of depth d if

∀ε ∈ {±1}d, ∃f ∈ F , s.t. ∀t ∈ [d], f(xt(ε)) = εt

The largest depth d for which there exists a shattered X -valued tree is called the
Littlestone dimension and denoted by ldim(F).

To contrast with the classical definition, the path on which the signs should be realized is
given by the path itself. But it’s clear that the definition serves the same purpose: if x is
shattered by F then R̂seq(F ,x) = 1. It is also easy to see that vc(F) ≤ ldim(F), and the
gap can be infinite.

The following is an analogue of the Sauer-Shelah-Vapnik-Chervonenkis lemma.

Theorem: For a class of binary-valued functions F with Littlestone dimension ldim(F),

N (F ,x, 0) ≤
d∑

i=0

(
n

i

)
≤
(en
d

)d

Scale-sensitive sequential versions are defined as follows:

Definition: Function class F of R-valued functions shatters a tree x of depth d at
scale α if there exists a witness R-valued tree s such that

∀ε ∈ {±1}d, ∃f ∈ F , s.t. ∀t ∈ [d], εt(f(xt(ε))− st(ε)) ≥ α/2

The largest depth d for which there exists an α-shattered X -valued tree is called se-
quential scale-sensitive dimension and denoted ldim(F , α).

We note that the above definitions reduce to the classical ones if we consider only trees
x with constant levels.
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Theorem: For any class of [−1, 1]-valued functions F and X -valued tree x of depth n

N∞(F ,x, α) ≤
(

2en

α

)ldim(F ,α)

Finally, it is possible to show an analogue of symmetrization lemma: for any joint
distribution of (X1, . . . , Xn),

E sup
f∈F

1

n

n∑

t=1

E[f(Xt)|X1:t−1]− f(Xt) ≤ 2 sup
x
R̂seq(F ,x)

If the sequence (X1, . . . , Xn) is i.i.d., the left-hand side is the expected supremum of the
empirical process. The present version provides a martingale generalization. Furthermore,
if we take supremum over all joint distributions on the left-hand-side, then the lower bound
is also matching the upper bound, up to a constant.

The offset Rademacher complexity has been analyzed in [11].

22. ONLINE LEARNING

Consider the following online classification problem. On each of n rounds t = 1, . . . , n, the
learner observes xt ∈ X , makes a prediction ŷt ∈ {±1}, and observes the outcome yt ∈ {±1}.
The learner models the problem by fixing a class F of possible models f : X → {±1}, and
aims to predict nearly as well as the best model in F in the sense of keeping regret

Reg(F) = E

[
1

n

n∑

t=1

1 {ŷt 6= yt}
]
− inf
f∈F

[
1

n

n∑

t=1

1 {f(xt) 6= yt}
]

(22.81)

small for any sequence (x1, y1), . . . , (xn, yn). At least visually, this looks like oracle inequal-
ities for misspecified models. The distinguishing feature of this online framework is that
(a) data arrives sequentially, and (b) we aim to have low regret for any sequence without
assuming any generative process.

It is also worth noting that in the above protocol there is no separation of training and
test data: the online nature of the problem allows us to first test our current hypothesis
by making a prediction, then observe the outcome and incorporate the datum in to our
dataset.

The expectation on the first term in (22.81) is with respect to learner’s internal ran-
domization. More specifically, let Qt be the distribution on {±1} that the learner uses to
predict ŷt ∼ Qt. Let qt = Eŷt be the (conditional) mean of this distribution. In other words,
qt = 0 would correspond to the learner tossing a fair coin.

A note about the protocol. The results below hold even if the sequence is chosen based
on learner’s past predictions. However, in this case, yt may only depend on qt but not
on the realization ŷt. To simplify the presentation, let us just assume that the sequence
(x1, y1), . . . , (xn, yn) is fixed in advanced (this turns out not to matter).

We will answer the following question: what is the best achievable Reg(F) for a given
F by any prediction strategy?
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Let us first rewrite 1 {ŷt 6= yt} = (1 − ŷtyt)/2 and do the same for the oracle term.
Cancelling 1/2, we have

2Reg(F) =
1

n

n∑

t=1

−qtyt − inf
f∈F

[
1

n

n∑

t=1

−ytf(xt)

]
(22.82)

= sup
f∈F

[
1

n

n∑

t=1

ytf(xt)

]
− 1

n

n∑

t=1

qtyt (22.83)

Now, consider a particular stochastic process for generating the data sequence: fix any
X -valued tree x of depth n, and on round t let xt = xt(y1, . . . , yt−1) and yt = εt be
an independent Rademacher random variable. This defines a stochastic process with 2n

possible sequences (x1, y1), . . . , (xn, yn). Now, clearly

sup
(x1,y1),...,(xn,yn)

2Reg(F) ≥ 2EεReg(F).

Observe that qt = qt(ε1, . . . , εt−1) and thus

Eε

[
1

n

n∑

t=1

qtεt

]
= 0.

Hence,

EεReg(F) = E sup
f∈F

[
1

n

n∑

t=1

εtf(xt)

]
. (22.84)

Since the argument holds for any x, we have proved that the optimal value of Reg(F) is
lower bounded by half of

R̄seq(F) = sup
x
R̂seq(F ,x).

It turns out that this lower bound is within a factor of 2 from optimal. Define the minimax
value

V = min
Algo

max
{(xt,yt)}nt=1

Reg(F)

Theorem: For a binary-valued class F ,

1

2
R̄seq(F) ≤ V ≤ R̄seq(F)

Similar results also holds for absolute value and other Lipschitz loss functions. For square
loss, the sequential Rademacher averages are replaced by offset sequential Rademacher
averages (again, as both upper and lower bounds).

In short, sequential complexities in online learning play a role similar to the role played
by i.i.d. complexities as studied in this course. However, quite a large number of questions
still remains open. But that’s a topic for a different course.
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