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Alexander Rakhlin

LECTURE 23

1. FINAL REMARKS

In the previous lecture, we sketched two results. First, if we have an online method that
attains a non-trivial regret bound for all sequences, we may convert it into a batch method
that has an i.i.d. guarantee in the style of Statistical Learning Theory. Second, we showed,
for a particular example, that existence of a strategy that has non-trivial regret for all
sequences is equivalent to probabilistic statements about martingales. These two results
suggest a deeper connection between Online Learning and Statistical Learning. Indeed,
such a connection has been recently found.

Statistical Learning
with i.i.d. data

Uniform convergence
for i.i.d. random variables

Online Learning with 
individual sequences

Martingale uniform 
convergence

The following discussion is admittedly vague, and misses the various assumptions under
which the statements hold; however, it is hopefully useful as a rough guideline.

It is well-known that the problem of statistical learning with i.i.d. data is intimately
related to questions of uniform convergence of means to expectations. This connection
goes back to the beginning of machine learning – the work of Vapnik and Chervonenkis.
It turns out that the problem of online learning is intimately connected (and in many
cases equivalent) to the question of martingale uniform convergence. Martingale uniform
convergence implies i.i.d. convergence, but not vice versa. Hence, one expects that online
learning is, in general, harder than statistical learning. However, there are plenty of cases
where uniform convergence for i.i.d. is no different than the corresponding statement for
martingales. In such a case, one expects online and i.i.d. worlds to coincide. Essentially,
this was the case in Lemma 2 in Lecture 18, where a martingale difference was replaced by
an i.i.d. draw; we then ended up with classical Rademacher complexity even though the
problem had no i.i.d. assumption on the sequence.

The discussion also connects to the first part of this course, and in particular Lecture
09. Recall that we had a surprise: uniform deviations needed for the analysis of SAA on
the SA objective were, up to a constant, the same as the very rate of SA on the expected
objective. We can now reason about the nature of this phenomenon. The rate of SA is
given, as an online procedure, by martingale uniform convergence, which (in the case of
Lecture 09) is identical to the i.i.d. variant.
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Let us go back to the perceptron. To analyze the i.i.d. performance, one can either
take the online mistake bound in terms of the margin (1/γ2) and convert it into a Sta-
tistical Learning guarantee, or, alternatively, one may proceed with the classical Vapnik-
Chervonenkis style analysis by observing that the VC dimension of the class of hyperplanes
is d. In a 1968 paper (see [RS15] for the discussion), Vapnik and Chervonenkis appear to
be surprised that the two distinct approaches exist. One is online, the other is offline. One
is distribution-independent and based on VC theory, the other one requires the margin as-
sumption and an online mistake bound. We now understand this connection, which involves
the minimax theorem and an extension of VC theory to martingales. We refer to [RS15]
for more details.

When contrasting the statistical learning theory with online learning, it is also worth
emphasizing again the algorithmic potential of the online approach, as we are required to
output one prediction at a time rather than the whole solution all at once.

Finally, the online paradigm of predict-test-update-predict-... allows us to test the
performance on-the-go. We test on each data point and then incorporate it into the dataset.
This is in contrast to the batch scenario where the only way to gauge the actual performance
is to split the data into a separate test and training sets.

We finish the course with an interesting question of how to assess performance in machine
learning competitions. This question is very much related to issues of uniform convergence.

1.1 Machine learning competitions

Recall our discussion earlier in the semester about splitting the data into training and test
sets. The test set is supposed to be only used once to report the final error rate. However,
it is nearly impossible to police this: nothing prevents the researcher from trying out a
multitude of models until the test error is found to be small and reporting this final result
in the paper.

In the last two decades, much of machine learning research has been driven by “competi-
tions.” Initially, the results were reported in papers as performance on a benchmark dataset
(such as MNIST). Nowadays, the competitions are live and mediated by a third party (such
as Kaggle). The teams sequentially adapt their methods to improve performance. Typi-
cally, a training set is made public, but the test set is locked by the organizers. Yet, to
drive the competition, the teams must be allowed to check how well they are performing on
this test set. A leaderboard maintains the best-performing teams.

How does one organize such a competition? This might seem like a simple question, but
it turns out to be quite delicate. A typical approach is to limit the number of queries to the
test set. Yet, it’s not entirely clear how this helps avoid overfitting (there are zero-th order
optimization methods that only require the value of the objective to perform descent). If
overfitting occurs, then the leaderboard does not provide a good assessment of the relative
performance of the proposed solutions.

A cute approach is the mechanism proposed in [BH15, DFH+15], which we briefly de-
scribe here. Consider the case of only one team. The team queries the oracle (the keeper
of the test set and the leaderboard) for the empirical value on the test set S. Let D be
the population distribution from which S is obtained as an i.i.d. sample. The training set
is immaterial here, and we allow the team to have an arbitrary (but deterministic) way to
change the hypothesis upon obtaining new information from the oracle. The goal of the
competition organizer is to report a nearly-correct error rate (with respect to D) of the
leader at every time instant. Only the leader matters for this example, and not the whole
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leaderboard.
Let f1 stand for the first query, f2 for second, and so on, and let `○f be the loss function

composed with the hypothesis. Of course, Ê` ○ f1 ≈ E` ○ f1 by the central limit theorem,
where Ê is the empirical measure supported on the test set S. If the oracle releases the
empirical value R1 = Ê` ○ f1 on the test data, the next function f2 is a function of R1, and,
hence, depends on the test data. The central limit theorem no longer applies at the second
step, and, thus, there is no guarantee that the empirical value Ê`○f2 = Ê[`○f2(R1)] is close
to the true expected value. Of course, if we know that the algorithm is only searching for
hypotheses f1, . . . , in the set F of a given complexity, we may invoke uniform convergence
results. However, in the setting of online competitions, we cannot guarantee this. The
proposal of [BH15, DFH+15] is to limit the number of functions that can be chosen by the
algorithm, but the way this is enforced is by limiting the feedback given to the team. Here
is their method: on round t, return Rt = ⌊Ê` ○ ft⌋η (an η-discretized value of Ê` ○ ft) if
Ê` ○ ft < Rt−1 − η, and otherwise return Rt = Rt−1. If the learner is deterministic, f2[R1]
can take on O(1/η) values according to the discretized value of R1. In a similar manner, we
can calculate the number of possible values of ft[R1, . . . ,Rt−1]. Suppose the loss function
is bounded. Since any string R1, . . . ,Rt consists of non-increasing discretized values, it is
completely described by the places where the value changes and by the jump in values. The
number of possible strings is then easily bounded, which means a bound on the number of
hypotheses produced by the learning method. A union bound gives the desired control of
expected and empirical quantities.

Can we come up with a better way to evaluate algorithms in a competition? Can we
design competitions based on the online predict-update-predict protocol?
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