
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 23

1. SOME CONSEQUENCES OF ONLINE NO-REGRET METHODS

In this lecture, we explore some consequences of the developed techniques.

1.1 Convex optimization

Whenever we have an online linear optimization guarantee

n

∑
t=1

⟨ŷt, zt⟩ −min
v∈K

n

∑
t=1

⟨v, zt⟩ ≤Regn (1)

that holds for all sequences z1, . . . , zn ∈ K ′, then for any convex function f ∶ K → R with
gradients in K ′

{∇f(v) ∶ v ∈K} ⊆K ′,

it holds that

f (ȳ) −min
v∈K

f(v) ≤ 1

n
Regn (2)

for

ȳ = 1

n

n

∑
t=1

ŷt.

In other words, by running an online linear optimization method and averaging the tra-
jectory (called Polyak averaging), we obtain a point in K with suboptimality bounded by
normalized regret 1

nRegn. For instance, if K = B2 and gradients of f are also bounded by
1 in Euclidean norm, methods developed earlier give Regn =

√
n, and thus the average of

the trajectory ȳ satisfies

f(ȳ) −min
v∈K

f(v) ≤ 1√
n
.

Recall that this is a bound we already derived in the beginning of the course.
Let’s prove the claim (2). By convexity, for any v ∈K,

f (ȳ) − f(v) ≤ 1

n

n

∑
t=1

f (ŷt) − f(v) ≤
1

n

n

∑
t=1

⟨ŷt − v,∇f (ŷt)⟩ . (3)

Then (2) follows from (1) by taking zt = ∇f (ŷt). This step is valid because zt can be chosen
based on ŷt (as per the online linear optimization protocol).

We remark that (2) holds with Regn = Regn(z1, . . . , zn). Indeed, adaptive data-
dependent bounds for optimization have been derived via this approach.
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Finally, observe that a version of (3)

1

n

n

∑
t=1

ft (ŷt) −
1

n

n

∑
t=1

ft(v) ≤
1

n

n

∑
t=1

⟨ŷt − v,∇ft (ŷt)⟩ (4)

holds with time-varying convex functions ft. Hence, a regret guarantee for online linear
optimization translates into a regret guarantee for this online convex optimization scenario.

1.2 Zero-sum games

Let M be a d1 × d2 real matrix with bounded entries. We think of Mi,j (resp., −Mi,j) as
the cost for Player I (resp., Player II) when the two players choose their moves as i and j.
As discussed a few lectures ago, the minimax value is

min
q∈∆d1

max
j∈[d2]

qTMej = max
p∈∆d2

min
i∈[d1]

eT
iMp = min

q∈∆d1

max
p∈∆d2

qTMp. (5)

It turns out, both players can find a near-minimax-optimal strategy simply by employing
an online linear optimization method with a non-trivial regret guarantee. More precisely,
we assume that on round t, Player I picks a probability distribution qt ∈ ∆d1 on rows, while
Player II picks a probability distribution pt ∈ ∆d2 on columns of M . The first player then
receives Mpt (or a random draw MeJt , Jt ∼ pt), while the second player receives qTtM (or
the corresponding random draw).

Let q̄ = 1
n ∑

n
t=1 qt and p̄ = 1

n ∑
n
t=1 pt be the averages of the trajectories. Since each player

employs a no-regret strategy,

1

n

n

∑
t=1

qTtMpt − min
q∈∆d1

1

n

n

∑
t=1

qTMpt ≤
1

n
Reg(1)

n (6)

and

1

n

n

∑
t=1

(−qTtM)pt − min
p∈∆d2

1

n

n

∑
t=1

(−qTtM)p ≤ 1

n
Reg(2)

n . (7)

We put a minuses in the second expression because the second player can pretend she is
the minimizing player in the game with losses given according to −M . Adding the two
expressions and using the definition of q̄ and p̄,

max
p∈∆d2

q̄TMp − min
q∈∆d1

qTMp̄ ≤ 1

n
(Reg(1)

n +Reg(2)
n ) (8)

However, we know that

min
q∈∆d1

qTMp̄ ≤ max
p∈∆d2

min
q∈∆d1

qTMp = min
q∈∆d1

max
p∈∆d2

qTMp ≤ max
p∈∆d2

q̄TMp. (9)

In view of (8) and (9), the pair (q̄, p̄) attains a value within 1
n(Reg

(1)
n + Reg

(2)
n ) from

minimax. In other words, the average of the trajectory of both players converges (in the
sense of the minimax value) to a set of minimax optima (Nash equilibria). This technique
extends to multi-player games, whereby each decision-maker runs a no-regret algorithm
against the (complicated) set of moves of the other players.
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1.2.1 What if Player II best-responds

As an alternative (which will be used in the next section) suppose Player I employs a
regret-minimization strategy, while Player II best responds to the observed qTtM :

pt = argmin
j∈[d2]

qTtMej .

This behavior also leads to the minimax strategy since

max
p
q̄TMp ≤ 1

n

n

∑
t=1

max
p
qTtMp = 1

n

n

∑
t=1

qTtMpt (10)

≤ min
q∈∆d1

1

n

n

∑
t=1

qTMpt +
1

n
Reg(1)

n = min
q∈∆d1

qTMp̄ + 1

n
Reg(1)

n (11)

In view of (9), the pair of strategies (q̄, p̄) is within 1
nReg

(1)
n from minimax optimal. In

particular, note that d2 does not affect the rate of convergence – this will be important in
the next section.

1.3 Application: Boosting

We briefly describe a variant of Boosting, a procedure that aggregates weak classifiers into
a strong one. This is a batch procedure, and the online aspect will appear as an iterative
improvement of the aggregate.

More precisely, let (x1, y1), . . . , (xm, ym) ∈ X ×{±1} be a dataset, and F a class of [−1,1]-
valued functions on X . Each function f ∈ F induces a binary prediction sign(f(xt)) at xt.
For the given pair (xt, yt), a mistake occurs if ytf(xt) < 0.

Suppose the class F has finite cardinality k (though this can be lifted at the end since
the final bound does not depend on this value) and enumerate F = {f1, . . . , fk}. Define a
matrix M ∈ [−1,1]m×k with

Mi,j = yifj(xi).

Consider a minimax value qTMp, where q is a distribution on examples and p is a distribution
on functions. We have

min
q∈∆m

max
j∈[k]

qTMej = max
p∈∆k

min
i∈[m]

eT
iMp ≜ γ. (12)

Suppose γ > 0. The two sides of (12) have interesting and distinct interpretations.
The left-hand side says: no matter what distribution q on the dataset we choose, there

is some function fj such that
Ei∼qyifj(xi) ≥ γ.

If you’ve encountered the literature on boosting (search for it in the internet if you haven’t),
the above requirement is known as the weak learnability condition [FS95, SF12]. To be able
to boost “weak learners”, one must be able to find, for any discrete distribution on the m
datapoints, a hypothesis that beats random guess.

The right-hand side of (12) says: there exists a distribution p over the k functions, such
that on any data point (xi, yi), one has

yif̄(xi) ≥ γ, (13)
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for f̄ = ∑k
i=1 pifi. This can be recognized as a separability assumption with margin γ (see

Lecture 2).
Thus, separability with a margin is equivalent to the weak learnability condition. It is

no surprise that weak learnability means one can create a mixture of functions that attains
zero mistakes.

Equivalence aside, the goal of boosting is to furnish a distribution p that nearly achieves
(13). According to the previous subsection and, in particular, Eq. (11), one may achieve this
by running an exponential weighting (or some other regret minimization procedure) over the
m choices for Player I, and best response for Player II. Best response exactly corresponds
to the usual weak learnability assumption whereby a choice fj (a pure strategy) is returned
to Player I for the given qt, a key step in any boosting procedure.

It remains to check the number of iterations n required. If margin is γ, we can aim for
achieving a margin of γ/2. Then equating the Exponential Weights regret bound

1

n
Reg(1)

n = 1

n
C
√
n logm

to target accuracy γ/2, we find

n = O ( 1

γ2
logm) . (14)

The typical analysis of AdaBoost claims exponentially decaying error, which is expressed
as

1

m

m

∑
i=1

1{yif̄(xi) ≤ 0} ≤ exp{−cγ2n} (15)

after n iterations. The setting of (14) ensures that the upper bound is less than 1/m, and
hence no errors are made (convince yourself of this fact!). That is precisely what we found
by ensuring a margin of γ/2.

Observe that k = ∣F∣ never enters the picture since we are using best response strategy
for Player II.

1.4 From Online to Statistical Learning (individual sequence to i.i.d.)

Consider an abstract scenario where the learner chooses ŷt, observes zt, and incurs a cost
`(ŷt, zt). We assume ` is convex in the first argument and that we are able to prove

1

n

n

∑
t=1

`(ŷt, zt) ≤ min
v∈K

1

n

n

∑
t=1

`(v, zt) +
1

n
Regn. (16)

for any sequence z1, . . . , zn. We are not specifying the sets where the decisions and outcomes
take values, as the technique we are about to describe is quite general.

Now, suppose the data are actually i.i.d. with some distribution P . Then

E [ 1

n

n

∑
t=1

`(ŷt, Zt)] ≤ E [min
v∈K

1

n

n

∑
t=1

`(v,Zt)] +
1

n
Regn (17)

since the bound holds for each realization (Z1, . . . , Zn). Let

ȳ = 1

n

n

∑
t=1

ŷt.
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Observe that

E`(ȳ, Z) ≤ E [ 1

n

n

∑
t=1

`(ŷt, Z)] (18)

where the expectation is over both Z and Z1, . . . , Zn. The expression in (18) can be written
as

E [ 1

n

n

∑
t=1

E [`(ŷt(Z1∶t−1), Z)∣Z1∶t−1]] (19)

which is the same as

E [ 1

n

n

∑
t=1

E [`(ŷt(Z1∶t−1), Zt)∣Z1∶t−1]] = E [ 1

n

n

∑
t=1

`(ŷt, Zt)] . (20)

On the other hand,

E [min
v∈K

1

n

n

∑
t=1

`(v,Zt)] ≤ min
v∈K

1

n

n

∑
t=1

E`(v,Zt) = min
v∈K

E`(v,Z)

Putting everything together,

E`(ȳ, Z) ≤ min
v∈K

E`(v,Z) + 1

n
Regn (21)

Such a bound is a goal of Statistical Learning Theory. Moreover, if ` is square loss, the
above bound also translates into an exact oracle inequality, a subject of interest in Statistics.

We see that a regret guarantee gives rise to a statistical guarantee for the average of the
trajectory if we assume that data are i.i.d.

In particular, consider the supervised learning scenario, where at each step we observe
side information xt, predict a real value ŷt, and observe yt. We can think of ŷt as a function
of xt, since for different xt values we would have made a different prediction. In other words,
an equivalent formulation would be: on round t, predict a function ŷt ∶ X → R and observe
(xt, yt). Applying the earlier argument, if (X1, Y1), . . . , (Xn, Yn) are i.i.d., the function

ȳ(⋅) = 1

n

n

∑
t=1

ŷt(⋅)

has the guarantee

E`(ȳ(X), Y ) ≤ min
f∈F

E`(f(X), Y ) + 1

n
Regn (22)

whenever `(ȳ(X), Y ) is convex in ȳ(⋅). While further development of this technique is
beyond the scope of this course, let us mention that under certain assumptions, this way of
constructing an estimator ȳ(⋅) is optimal for a wide range of problems and loss functions,
both in Nonparametric Statistics and Statistical Learning Theory. (ask me if you’d like to
know more)

For those who know the analysis of ERM (empirical risk minimization) in Statistical
Learning may ask whether we have miraculously circumvented the issue of uniform conver-
gence of means to expectations, a necessary step in the analysis of ERM. The answer is that
we haven’t — it is “hidden” in the regret bound Regn =Regn(F). More precisely, it can be
shown that this term is controlled by a martingale version of uniform convergence [RST15].
In many cases of interest, this convergence is equivalent to i.i.d. convergence. Hence, by
passing through online methods, we might be gaining in terms of algorithmic understanding,
and (under certain conditions) not losing in terms of accuracy for i.i.d. data.

5



1.5 Equivalence of deterministic regret bounds and martingale inequalities

The connection between online regret bounds and Statistics and Probability are even more
intriguing than outlined above. Let us sketch one example.

Let z1, . . . , zn ∈ B2 be an arbitrary sequence in the unit Euclidean ball. We construct
the sequence of predictions by ŷ0 = 0 and

ŷt+1 = ΠB2 (ŷt −
1√
n
zt) , (23)

which we can all recognize as gradient descent with projections onto B2 and step size η = 1√
n

.

Earlier in the course we have proved a regret bound of

n

∑
t=1

⟨ŷt − v, zt⟩ ≤
√
n (24)

for any z1, . . . , zn ∈ B2 and v ∈ B2. Let us choose the optimal v and rearrange terms:

∀z1, . . . , zn ∈ B2, ∥
n

∑
t=1

zt∥ −
√
n ≤

n

∑
t=1

⟨ŷt,−zt⟩ . (25)

Now, apply this inequality to a realization of a martingale difference sequence Z1, . . . , Zn

(that is, E[Zt+1∣Z1∶t] = 0). Since the inequality holds for any realization,

P(∥
n

∑
t=1

Zt∥ −
√
n ≥ u) ≤ P (

n

∑
t=1

⟨ŷt,−Zt⟩ ≥ u) . (26)

for any u > 0. Since ŷt = ŷt(Z1, . . . , Zt−1), the right-hand side is a sum of real-valued
martingale differences with values in [−1,1], and so the right-hand side is upper bounded
by exp{−u2/(2n)} via Hoeffding-Azuma inequality. Therefore,

P(∥
n

∑
t=1

Zt∥ −
√
n ≥ u) ≤ exp{−u2/(2n)} . (27)

One may pass from this statement in probability to an expected-value bound

E∥
n

∑
t=1

Zt∥ ≤ c
√
n (28)

by integrating the tails in (27). Note that the inequality holds for all martingale difference
sequences with values in B2.

Using the minimax theorem, one can show (we basically have done this already) that
there exists a strategy with (25) for any sequence because (28) holds. That is, (25) implies
(27) which implies (28) which implies (25) (with a worse constant). Hence, the statements
are, in a certain sense, equivalent. One can, in fact (see the relevant paper [RS15]) improve
tail bounds (27) by taking a smarter gradient descent method with an adaptive step size,
and, conversely, it is possible to derive new optimization methods by proving tail bounds
for martingales.

This lecture was meant to give a brief overview of some interesting connections be-
tween online methods and the near-by areas of game theory, statistics, probability, and
optimization.
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