
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 19 AND 20

1. ONLINE LINEAR OPTIMIZATION, CONTINUED

1.1 Recap: B1/B∞ setting

Recall that we are considering the online linear optimization problem in RN

For t = 1, . . . , n

Predict ŷt ∈ B1

Observe costs zt ∈ B∞

with regret defined as the difference

n

∑
t=1

⟨ŷt, zt⟩ −min
v∈B1

n

∑
t=1

⟨v, zt⟩ . (1)

1.2 Recap: the relaxation approach

Let us recall the relaxation approach that we’ve been using in this course. To guarantee
that (1) can be upper bounded for all sequences, we define a function Rel such that

−min
v∈B1

n

∑
t=1

⟨v, zt⟩ ≤Rel(z1∶n) (2)

and such that

inf
ŷt

max
zt

{⟨ŷt, zt⟩ +Rel(z1∶t)} ≤Rel(z1∶t−1). (3)

Any relaxation that satisfies (2) and (3) is called admissible . A subtlety: a particular
strategy ŷ′t might not be the optimal solution in (3), yet it might still guarantee that

max
zt

{⟨ŷ′t, zt⟩ +Rel(z1∶t)} ≤Rel(z1∶t−1). (4)

We will call such a choice an admissible strategy for the given relaxation. Indeed, in many
cases, we might choose a relaxation but not be able to solve it exactly. Such is the case
with random playout.

If Rel is an admissible relaxation, then we have that

n

∑
t=1

⟨ŷt, zt⟩ −min
v∈B1

n

∑
t=1

⟨v, zt⟩ ≤Rel(∅), (5)

and so the choice of Rel implies both an optimization problem to solve and the final regret
bound.

1



1.3 A Rel for linear optimization

We derived the relaxation

Rel(z1∶t) = Eut+1∶n∼D
XXXXXXXXXXX

t

∑
j=1

zj + 6
n

∑
s=t+1

us

XXXXXXXXXXX∞
(6)

where D is uniform on {±1}n. This relaxation guarantees that

∀z1, . . . , zn,
n

∑
t=1

⟨ŷt, zt⟩ ≤ min
v∈B1

n

∑
t=1

⟨v, zt⟩ + 6
√

2n logN. (7)

That is, for any sequence (which could even be adaptively chosen by Nature) the average
cost is no more than the cost of the best fixed decision, plus an O(

√
(logN)/n) term.

1.4 Algorithm

Let us take the relaxation (6) and develop an algorithm. Recall that we need to solve

min
ŷt∈B1

max
zt∈B∞

⎧⎪⎪⎨⎪⎪⎩
⟨ŷt, zt⟩ +Eut+1∶n

XXXXXXXXXXX

t

∑
j=1

zj + 6
n

∑
s=t+1

us

XXXXXXXXXXX∞

⎫⎪⎪⎬⎪⎪⎭
. (8)

Now this is in the form that can be used for random playout. Take the algorithm to be: on
round t, draw U = 6∑ns=t+1 us and solve

ŷt = argmin
ŷt∈B1

max
zt∈B∞

{⟨ŷt, zt⟩ + ∥zt +Lt−1 +U∥∞} (9)

where Lt−1 = ∑t−1
j=1 zj is the sum of past loss vectors. If the largest (in absolute value)

coordinate of Lt−1 + U is separated by more than 4 from the second-largest value, the
solution in (9) takes on a simpler-looking form

ŷt = argmin
v∈B1

⟨v,Lt +U⟩ , (10)

which is attained at a ±ej standard unit vector corresponding the the maximal coordi-
nate (homework: prove this). The method (10) is called Follow-the-Perturbed-Leader
(FTPL) [Han57, KV05].

The FTPL method has a nice interpretation when we consider experts. Let’s think
of the B1 ball as the set of experts and their negations. Then FTPL says: compute cu-
mulative costs of all experts (here, the experts are the coordinates), add an appropriately
scaled random perturbation to each cumulative cost, and choose the best. (Perhaps, the
interpretation is cleaner when we consider the probability simplex for ŷt, as opposed to B1)

While it can be shown that choosing the best response to the empirical performance
(Fictitious Play) cannot ensure that (1) is sublinear for all sequences z1∶n, the FTPL method
(Smoothed Fictitious Play) does the job. In fact, the method recovers the correct scaling
of the regret bound (7), up to a multiplicative constant.

We just argued that (9) is equivalent to (10) when the gap between the top two coor-
dinates (in absolute value) are separated by more than 4. The probability that this does
not happen is small because we are perturbing the cumulative costs by U which has in-
dependent coordinates, and each coordinate is an average of n − t coin flips. We will skip

2



the analysis and just state that the probability that the gap is smaller than 4 is at most
O(N × exp{−c(n − t)2}) for some appropriate constant c. On the event of this probability,
the per-round loss incurred by the algorithm is ⟨ŷt, zt⟩ ≤ 1, and, hence, the extra expected
loss when using (10) in place of (9) is O(N ∑nt=1 exp{−c(n − t)2}), which is negligible.

We remark that the present proof requires a draw of U , which is a sum of n−t vectors with
Rademacher random variables. An almost identical proof works for vectors with Gaussians
coordinates. The advantage of this choice is computational: we simply draw a vector with
independent standard Gaussian components and re-scale it by

√
n − t.

Summary so far: we have derived the Follow-the-Perturbed-Leader algorithm that may
be viewed as an alternative to Exponential Weights. As we will see later on the example of
Online Shortest Path, FTPL is computationally attractive.

1.5 Admissibility

Unfortunately, we are not done yet. The bound 6
√

2n logN was proved for the algorithm
that solves (8) with relaxation (6). Yet, we solved the random-playout version of it. Is
it an admissible strategy for this relaxation (as defined earlier)? We need to show that
Rel(z1∶t−1) is an upper bound on the value of (8) under the proposed strategy.

Let us take a closer look at the response of the max player in (9) when the gap between
the top coordinates is at least 4. Suppose ŷt = ±ej is the FTRL solution. What is the best
response for zt and how much value can this response bring? The value of zt on coordinates
other than j is irrelevant, as the `∞ norm will be achieved on coordinate j, thanks to the
gap. Moreover, both choices zt(j) = ±1 give the same overall value to the objective (can
you see why?), which is

∥Lt−1 +U∥∞ .

Now, recalling the “magic” random-playout lemma from the previous lecture (Lemma 1),
the value of the overall strategy on the min max objective (8) is upper bounded by the
expected value of the min max objective in (9), which is

EU ∥Lt−1 +U∥∞ ,

which is precisely Rel(z1∶t−1). To make the proof completely rigorous, we need to include
the expected cost of a bad event of small probability.

1.6 Beyond B1/B∞

There are very few steps in the above proof that required the particular form of the `1 and
`∞ norms. The online protocol can be stated for arbitrary pairs of dual norms (and even
beyond, as we will see in the next example). The relaxation is modified appropriately and
the random playout version of (8) is still possible. What may change is that (9) may no
longer take on a simpler form (10), and the perturbation distribution D may need to be
taken differently.

3



2. APPLICATION: ONLINE SHORTEST PATH

Consider the problem of choosing a path from home to work, repeatedly for n days. After
arriving at work, the traffic information (delays on all the edges) are revealed, prompting
us to adjust the strategy for the next day. Our goal is to have a small average time-to-work
over the course of n days. We hope that there exists at least one good path (best path in
hindsight), and a modest goal is to incur average delay almost as small as that of this best
path.

Let G = (V,E) be an acyclic directed graph with a designated source s and sink t. Let
m = ∣E∣ be the number of edges, and M be the number of s−t paths. Each path is associated
with the vector p ∈ {0,1}m, indicators of edges present in the path. Let P ⊆ {0,1}m denote
the set of all valid s − t paths. Let zt ∈ [0,1]m denote the delays on all the edges on day t.
Our goal can be phrased as developing a (possibly randomized) strategy for choosing ŷt ∈ P
such that

1

n

n

∑
t=1

⟨ŷt, zt⟩ −min
p∈P

1

n

n

∑
t=1

⟨p, zt⟩ (11)

is small.
How different is this problem from B1/B∞ in the previous section? Well, the choice of

the delays here is [0,1]m rather than [−1,1]m, but that’s not a big change. What is more
crucial is that B1 is replaced by P which is a (very structured!) subset of {0,1}m. Its
convex hull conv(P) is known as the flow polytope. The “size” of this set should come into
play, but it’s not clear at the moment how to measure the size (the answer is: Rademacher
averages of the flow polytope).

One approach is to think of each path in P as an expert and lift the problem in the
space R∣P∣. However, the update of Exponential Weights, or FTPL in that space would
require enumerating all s− t paths, which might take prohibitively long (surprisingly, there
is an efficient implementation of Exponential Weights, see Chapter 5 of [CBL06]). We will
develop a method (in a different form due to [KV05]) that works in the original space Rm.
The method is:

On round t, let Lt−1 ∈ Rm denote the cumulative delays on all edges. Draw a random
vector U from a suitable distribution (defined later) and find the shortest path with
respect to delays Lt−1 +U .

One can see that this is a version of FTPL method. The computation is simply the
shortest-path per round.

2.1 Towards a proof

Let’s outline the key ingredients of the B1/B∞ proof. First, we proved that for any v ∈ Rm
and any distribution p on B∞ (which may be chosen based on v),

Ez∼p ∥v + (z −E[z])∥∞ ≤ Eu∼D ∥v + 6u∥∞ (12)

where D is uniform. This condition is then used in the recursive proof. We then defined a
random playout strategy, and showed that, given a gap between the top two coordinates, it
is equivalent to FTPL.

All these steps can be extended to our conv(P)/[0,1]m setting. Let us take a shortcut
that ensures a version of (12) and also introduces an additional technique.

4



Take the (unnormalized) comparator term in (11) and define the last relaxation as an
upper bound

−min
p∈P

n

∑
t=1

⟨p, zt⟩ = max
p∈P

⟨p,
n

∑
t=1

−zt +Eγ⟩ ≤ Eγ max
p∈P

⟨p,
n

∑
t=1

−zt + γ⟩ ≜Rel(z1∶n) (13)

Here γ is a Rm-valued zero-mean random variable which we will specify later.
Now, there are two possible way to proceed. One is to prove a version of (12):

Ez∼pEγ max
p∈P

⟨p, v + z + γ⟩ ≤ Eu∼DEγ max
p∈P

⟨p, v + 6u + γ⟩ , (14)

for any v and any zero-mean distribution p supported on [−1,1]m. However, since γ already
carries enough randomness, we will simply prove

Ez∼pEγ max
p∈P

⟨p, v + z + γ⟩ ≤ Eγ max
p∈P

⟨p, v + γ⟩ , (15)

If we choose γ to be independent Gaussian with standard deviation
√
n on each coor-

dinate, we will ensure that with high probability the best path with respect to the delays
v + γ is 2K-separated from the second-best path, where K is the length of the longest s − t
path. Under this event, the vector z, no matter how chosen, cannot cause the best path to
change. That is, on that event,

argmax
p∈P

⟨p, v + z + γ⟩ = argmax
p∈P

⟨p, v + γ⟩ .

The condition (15) then holds. It remains to ensure that the distribution of γ has large
enough standard deviation for this event to hold.

2.2 Proof

We now formally write out the recursion and solve it. Define Rel(z1∶n) as in (13). We will
see that the relaxations at other time steps are

Rel(z1∶t) = Eγ max
p∈P

⟨p,−
t

∑
s=1

zt + γ⟩ (16)

Let us consider the optimization problem at step t:

min
ŷt∈P

max
zt∈[0,1]m

{⟨ŷt, zt⟩ +Rel(z1∶t)} . (17)

Using the minimax theorem, as before, the expression above is equal to

max
pt∈∆([0,1]m)

{min
ŷt∈P

⟨ŷt,E[zt]⟩ +EztRel(z1∶t)} (18)

In the B1/B∞ proof we used the fact that the min is simply the minus norm of Ezt, and
then proceeded with the triangle inequality. Here, we can no longer write the maximum as
a norm, but the triangle inequality still holds in spirit:

min
ŷt∈P

⟨ŷt,E[zt]⟩ +EztRel(z1∶t) (19)

= EztEγ max
p∈P

{⟨p,−Lt + γ⟩ +min
ŷt∈P

⟨ŷt,E[zt]⟩} (20)

≤ EztEγ max
p∈P

{⟨p,−Lt−1 − zt + γ⟩ + ⟨p,E[zt]⟩} (21)

5



where Lt = ∑ts=1 zs. We simply replaced the best choice ŷt with p (this is essentially what
triangle inequality does). We now use (15) to get rid of the worst-case choice pt over
which we have no control. The upper bound is then becomes Rel(z1∶t−1), thus proving the
recursion.

Under the event that the gap between top paths is at least 2K, the algorithm reduces
to FTPL, just as before. In fact, this improves the result of [KV05] (and the one described
in [CBL06]). The improvement is in terms of the regret upper bound.

To conclude a regret upper bound, we need to understand Rel(∅). We have

Rel(∅) = Eγ max
p∈P

⟨p, γ⟩ (22)

where γ is a random vector that ensures the gap condition with high probability. If we treat
all s − t paths as independent, we upper bound (22) as

O(K
√
σn log ∣P∣)

where the linear dependence on K comes from the fact that the number of ones in the
vector p ∈ P is at most K, and γ(i) ∼ N(0, nσ2). Note that σ is not a constant, but has
mild dependence on problem parameters (homework: work it out!) More nuanced control
of (22) is possible. The result can be seen as an improvement over [KV05, CBL06] which
have an extra m dependence.

3. APPLICATION: ONLINE RANKING

We briefly discuss another interesting problem, where the set of decisions is a combinatorial
subset of the hypercube. As we have seen, the understanding of an achievable regret bound
and computationally efficient algorithms rests on the geometry of the set of decisions. In
the ranking problem, discussed further in Homework 3, the set of decisions needs to be
represented in a non-trivial manner to admit a computationally efficient prediction method.

Let us describe the online ranking problem. There are d teams that repeatedly play each
other, for a total of n games. Suppose on round t, the pair (it, jt) of two teams is announced,
it ≠ jt. We are interested in predicting the outcome of each game. The prediction should
be based both on the past outcomes of the games for the present pair it and jt, as well as
on the outcomes of all other games (which may indirectly provide the information about
team rankings). Nothing is assumed about the order in which teams play each other, and
the outcomes are not assumed to be consistent with any ranking.

Notation: Let ŷt ∈ {±1} denote our prediction (possibly randomized) of whether team
it will win against jt. The outcome yt ∈ {±1} is then observed.

Discussion: the experts bound and the independent-matches bound.

References

[CBL06] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

[Han57] J. Hannan. Approximation to Bayes risk in repeated play. Contributions to the
Theory of Games, 3:97–139, 1957.

[KV05] Adam Tauman Kalai and Santosh Vempala. Efficient algorithms for online decision
problems. J. Comput. Syst. Sci., 71(3):291–307, 2005.

6


