
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURES 15 AND 16

1. THE EXPERTS SETTING. EXPONENTIAL WEIGHTS

All the algorithms presented so far hallucinate the future values as random draws and then
perform two evaluations of φ. In many situations, an easier method is available—one that
does not require drawing the random variables. In fact, most of the methods encountered in
the online learning literature can be seen as doing precisely this—getting rid of the random
variables for “future” rounds.

One of the most famous scenarios in online learning is that of prediction with expert
advice. There are several roughly equivalent formulations, but once you’ve seen one, you’ll
be able to modify the proof for the other.

Consider the situation where on each round t = 1, . . . , n, we observe advice of N experts.
Suppose the advice comes in the form of a vector xt ∈ [−1,1]N , and we think of xt(i) as,
say, the buy/sell advice by expert i. We treat xt as side information for making our own
decision. After seeing the advice, we decide on a mixed strategy ŷt ∈ ∆(N) (a distribution
over the N experts) and make a prediction ⟨ŷt, xt⟩ ∈ [−1,1] by mixing the opinions according
to ŷt. The outcome yt ∈ {±1} is then revealed.

Once we have the mean ⟨ŷt, xt⟩ for the mixed strategy, we may either draw the actual
binary-valued prediction from this distribution, or we may simply think of

∣yt − ⟨ŷt, xt⟩ ∣ = 1 − ⟨ŷt, ytxt⟩

as the expected indicator loss of our strategy (see the collaborative filtering example). What
is different here from previous lectures is that our decision variable ŷt is not a real number,
but a distribution.

The goal of the learner is to incur small average loss

1

n

n

∑
t=1

∣yt − ⟨ŷt, xt⟩ ∣. (1)

As it turns out, a simple algorithm allows the learner to keep this average loss not much
worse than the loss of the best expert, without knowing who the best is until the end. In
particular, we prove that

Lemma 1. There is an algorithm (in fact, several distinct methods) that guarantees

1

n

n

∑
t=1

∣yt − ⟨ŷt, xt⟩ ∣ ≤ min
j∈[N]

1

n

n

∑
t=1

∣yt − xt(j)∣ + c

√
logN

n
(2)

for any sequence (x1, y1), . . . , (xn, yn). As an example, this bound (with c =
√

8) is attained
by the exponential weights algorithm

ŷt(j) ≜
e−η∑

t−1
s=1 ∣ys−xs(j)∣

∑
N
j=1 e

−η∑t−1
s=1 ∣ys−xs(j)∣

(3)

1



with a step size η =
√

logN
2n .

We will present two very similar proofs. After proving the Lemma, we will re-do the
proof in the slightly simpler transductive setting through the lens of Cover’s statement. It’s
instructive to look at both proofs and see the few small differences.

Both proofs will utilize the following inequalities. First is the soft-max bound. Choose
a parameter η > 0 and let A1, . . . ,AN be real numbers. We then have

max
j∈[N]

Aj =
1

η
max
j
ηAj =

1

η
log exp max

j
ηAj =

1

η
log max

j
exp{ηAj} ≤

1

η
log

N

∑
j=1

exp{ηAj} .

There is only one inequality between the maximum over j and the “soft-max” function.
Suppose all Aj are equal. Then the right-hand-side is larger than the left-hand-side by
an additive η−1 logN factor (verify this!). As η increases, the gap between the two sides
vanishes. Same can be argued for the case when the values are not equal. In fact, the last
upper bound is an equality if we are allowed to choose η.

The second inequality we use is

1

2
(ex + e−x) ≤ ex

2/2

which you can prove via Taylor expansions. The inequality implies

Eeλε ≤ eλ
2/2 (4)

for the Rademacher random variable ε and a contant λ ∈ R. The same bound holds for any
zero-mean random variable Z with values in [−1,1]:

EeλZ ≤ eλ
2/2, (5)

and it is immediate that the bound becomes eb
2λ2/2 for [−b, b]-valued Z.

1.1 Proof of Lemma 1

Thanks to the identity
∣a − b∣ = 1 − ab

that holds for a ∈ {±1} and b ∈ [−1,1], we may rewrite the difference between the loss of the
algorithm and the benchmark in (2) as

1

n

n

∑
t=1

−yt ⟨ŷt, xt⟩ − min
j∈[N]

1

n

n

∑
t=1

−ytxt(j). (6)

Let us omit the fraction 1
n and bring it back at the very end. When comparing to the proof

in the next section, just insert this fraction throughout.
Consider the last step t = n. In the first sum, all the terms except the last one are fixed,

and so we need to solve

min
ŷn∈∆(N)

max
yn∈{±1}

{−yn ⟨ŷn, xn⟩ +Rel(x1∶n, y1∶n)} (7)

2



with

Rel(x1∶n, y1∶n) ≥ − min
j∈[N]

n

∑
t=1

−ytxt(j). (8)

Here ∆(N) is the probability simplex on N experts. We could choose Rel to be equal to
the right-hand side in (8). However, for computational purposes, we slightly modify this
function. Instead of max we shall work with “soft-max”. That is, take

Rel(x1∶n, y1∶n) =
1

η
log

N

∑
j=1

exp{η
n

∑
t=1

ytxt(j)}

for some η, to be determined.
The algorithm (3), in the form (6), can be written as

ŷt(j) ∝ eη∑
t−1
s=1 ysxs(j) (9)

while the loss on round t is (trivially)

−yt ⟨ŷt, xt⟩ = −Ej∼ŷt [ytxt(j)] =
1

η
log exp{−ηEj∼ŷt [ytxt(j)]} .

The key observation now is that

N

∑
j=1

exp{η
n

∑
t=1

ytxt(j)} =
N

∑
j=1

exp{ηynxn(j)} exp{η
n−1

∑
t=1

ytxt(j)} (10)

= Ej∼ŷn [exp{ηynxn(j)}] ×
N

∑
j=1

exp{η
n−1

∑
t=1

ytxt(j)} (11)

because Ej∼ŷn [A(j)] = ∑Nj=1 ŷn(j)A(j) with

ŷn(j) =
exp{η∑n−1

t=1 ytxt(j)}

∑
N
j=1 exp{η∑n−1

t=1 ytxt(j)}
. (12)

Putting everything together, (7) is upper bounded by the particular choice of the infi-
mum strategy ŷt as

(7) ≤ max
yn∈{±1}

{⟨ŷn,−ynxn⟩ +Rel(x1∶n, y1∶n)} (13)

= max
yn∈{±1}

{
1

η
log exp{−ηEj∼ŷn [ynxn(j)]} +

1

η
logEj∼ŷn [exp{ηynxn(j)}]} (14)

+
1

η
log

N

∑
j=1

exp{η
n−1

∑
t=1

ytxt(j)} (15)

We now focus on the two terms in (14):

1

η
log exp{−ηEj∼ŷn [ynxn(j)]} +

1

η
logEj∼ŷn [exp{ηynxn(j)}] (16)

=
1

η
logEj∼ŷn [exp{η(ynxn(j) −Ej∼ŷn [ynxn(j)])}] (17)

≤
1

η

(2η)2

2
= 2η (18)

3



by (5). Note that the range of the zero-mean random variable is [−2,2], and so an additional
factor of 22 appears from the application of (5). Observe that this last step of peeling off
the zero-mean term makes the expression independent of yn and xn! In particular, it does
not matter whether the sequence of x’s is generated i.i.d. or in an arbitrary manner.

Unlike the Cover’s approach of solving the max over the two alternatives, we presented a
particular ŷt that allows (through an upper bound) to make the choice yn irrelevant. While
the two approaches give slightly different algorithms, the upper bounds they enjoy are the
same.

Now, we simply define

Rel(x1∶n−1, y1∶n−1) =
1

η
log

N

∑
j=1

exp{η
n−1

∑
t=1

ytxt(j)} + 2η (19)

and

Rel(x1∶t, y1∶t) =
1

η
log

N

∑
j=1

exp{η
t

∑
s=1

ysxs(j)} + 2(n − t)η. (20)

Of course,

Rel(∅) =
1

η
logN + 2nη ≤ 2

√
2n logN. (21)

by choosing η =
√

logN
2n . Now, since we initially divided throughout by 1/n, the bound of

the lemma is
√

8 logN
n .

1.2 (slightly easier) transductive setting through the lens of Cover’s algorithm

Consider the simplified setting where expert advices x1, . . . , xn ∈ {±1}N are fixed and known
a priori, and let F = {x ↦ xj ∶ j ∈ [N]} be the set of N functions that simply output a
coordinate of x. As discussed earlier, F induces a subset F ⊆ {±1}n of finite cardinality N ,

F = {y ∶ y = (x1(j), . . . , xn(j)), j ∈ [N]}

and

φ(y) = dH(y, F ) +Cn = min
f∈F

1

n

n

∑
t=1

1{ft ≠ yt} +Cn (22)

for some appropriate Cn which we will define later.
In this section, we will directly solve for the real-valued prediction qt ∈ [−1,1], which

can be viewed as the mean of the mixed strategy for predicting ŷt ∈ {±1}. This is slightly
different from what was described earlier, where the prediction is calculated by mixing the
advice as ⟨ŷt, xt⟩. We will solve the latter directly in the next section.

Recall that the choice of relaxation Rel defines the algorithm. In this section we give
the derivation using the very basic technique that goes back to Lecture 1. The algorithm
that arises from Cover’s lemma is not exponential weights, but it gives the same guarantee
on performance as the exponential weights method.

4



Let us take Rel(y1∶n) as any upper bound on the benchmark term

−min
f∈F

1

n

n

∑
t=1

1{ft ≠ yt} = −
1

2
+

1

2n
max
f∈F

⟨f,y⟩ . (23)

We will use the soft-max upper bound (verify that it holds):

Rel(y1∶n) ≜ −
1

2
+

1

2n

1

η
log ∑

f∈F
exp{η ⟨f,y⟩} (24)

Check that this function does not change by more than 1/n when flipping one bit. Now, as
before,

min
qn

max
yn

{E [
1

n
1{ŷn ≠ yn}] +Rel(y1∶n)} = EεnRel(y1∶n−1, εn) +

1

2n
(25)

By Jensen’s inequality (E log ≤ logE),

EεnRel(y1∶n−1, εn) ≤ −
1

2
+

1

2n

1

η
log ∑

f∈F
Eεn exp{η ⟨f, ỹ⟩} (26)

with ỹ = (y1∶n−1, εn). The only randomness in the above expression is the εn on the last
coordinate of ỹ. Let us abuse the notation and write ⟨f, ỹ⟩ = ⟨f1∶n−1, y1∶n−1⟩+εnfn. Our aim
is to get rid of εn. If we succeed, we do not have to draw the random coin flips for random
playout at the intermediate steps.

By (4),

Eεn exp{η ⟨f, ỹ⟩} ≤ exp{η ⟨f1∶n−1, y1∶n−1⟩} × exp{η2
/2} (27)

and, therefore, (26) is upper bounded by

1

2n

1

η
log ∑

f∈F
exp{η ⟨f1∶n−1, y1∶n−1⟩} +

η

4n
−

1

2
(28)

In view of (25), we can now define,

Rel(y1∶n−1) =
1

2nη
log ∑

f∈F
exp{η ⟨f1∶n−1, y1∶n−1⟩} +

η

4n
−
n − 1

2n
. (29)

That’s it! There is no εn in the relaxation at time n− 1. We “peeled it off”. One can check
that at the intermediate step t,

Rel(y1∶t) =
1

2nη
log ∑

f∈F
exp{η ⟨f1∶t, y1∶t⟩} +

(n − t)η

4n
−
t

2n
(30)

with ⟨f1∶t, y1∶t⟩ being defined as ∑ts=1 fsys. We also see that

Rel(∅) =
1

2nη
log ∑

f∈F
exp{0} +

η

4
=

1

2nη
logN +

η

4
=

√
logN

2n
(31)

by choosing η =
√

2 logN
n . This is a non-algorithmic derivation, and the algorithm is given

in Lecture 1. We leave it as a homework exercise to write it explicitly. (hint: it does not
become exponential weights). We also note that the difference in the constant c comes from
scaling of the indicator loss vs the absolute value loss.

5



1.3 Discussion

The two proofs are essentially the same. Both start by relaxing the max to a soft-max, and
taking this as Reln. Then, the second approach explicitly solves for the optimal real-valued
prediction (the mean of the mixed strategy), while the first approach guesses a (potentially
suboptimal) strategy of exponential weights. Once the strategy for the infimum is plugged
in, one obtains an expression with a zero-mean random variable. This zero-mean variable
is eliminated using a probabilistic inequality (Eq. (17) and (27), respectively).

To reiterate, the salient features of the proofs are: (1) passing to a relaxation for Reln,
(2) solving for the best strategy or guessing a near-best strategy, and (3) using probabilistic
inequalities to remove the random variable that arises from plugging in the strategy. These
steps can be taken as a rough prescription for the development of online methods. We will
illustrate the steps again in the subsequent lectures.

The next note is on the nature of the sequence x1, . . . , xn. Essentially, both approaches
make it irrelevant how the xt’s are generated. That is not to say that the method does not
take the side information into account (of course it does – through the losses of experts).
Rather, the point is that we can successfully deal with adversarially generated x’s, a strength
of the experts approach.

Another strength of the experts bound is its mild (logarithmic) dependence on the
number of experts. One may take a large number of experts and still have an average error
being o(1) from the average error of the best expert.

Finally, we remark that the experts approach can be seen as a “union bound” or an
aggregation procedure. Suppose one has N algorithms making predictions. Then one can

predict as well as any of these algorithms by paying O (

√
logN
n ). Such a black box tech-

nique is very useful (see the version of “linearized experts” below for the general black box
statement). For instance, suppose one does not know how to choose a parameter θ ∈ [0,1]
of the algorithm optimally. One can then run (at least in principle) N = 1/ε algorithms cor-
responding to an ε-discretization of the parameter. If the output is in some sense Lipschitz
with respect to the parameter choice, on can claim that the resulting aggregating procedure

does as well as the best choice, plus an ε-precision term, plus an O (

√
log(1/ε)

n ) penalty.

1.4 Linearized Experts

Recall that in the experts setting introduced in the beginning of the lecture, we observe pre-
dictions xt ∈ [−1,1]N of the experts, choose a distribution ŷt ∈ ∆(N) for the weighted vote,
and then observe the outcome yt ∈ {±1}. Observe that the exponential weights algorithm
at time t does not use xt to calculate the distribution over experts. Hence, we may think
of a setting where we choose a distribution ŷt ∈ ∆(N) and then observe both predictions
xt and the true outcome yt. Rather than mixing the advice of the experts to produce our
own, we may instead choose the expert at random from the distribution ŷt and go with her
advice. Then the expected cost for the period t is

⟨ŷt, zt⟩

where zt ∈ [−1,1]N is the vector of losses for each expert: zt(j) = ∣yt − xt(j)∣. In fact,
the loss function does not matter anymore, and it does not matter that data comes in the
form (xt, yt) pairs. Instead, we may just think of each expert incurring some cost, we are

6



choosing an expert at random and incur the same cost as that expert. In expectation, we
pay ⟨ŷt, zt⟩.

Let us state the protocol explicitly:

For t = 1, . . . , n

Predict ŷt ∈ ∆(N)

Observe costs zt ∈ [−1,1]N

Alternatively, we may choose the random expert j according to ŷt and pay zt(j).
The goal here is to have small expected cost, relative to the cost of the best expert:

1

n

n

∑
t=1

⟨ŷt, zt⟩ ≤ min
j∈[N]

1

n

n

∑
t=1

⟨ej , zt⟩ + c

√
logN

n
(32)

for any sequence z1, . . . , zn of costs. The cost zt may be chosen even with the knowledge of
our decision ŷt.

Let us quickly prove that the exponential weights algorithm

ŷt(j) ∝ exp{−η
t−1

∑
s=1

zs(j)}

achieves the above guarantee. We write the last step of the problem (removing the 1/n
normalization term) as

min
ŷn∈∆(N)

max
zn∈[−1,1]N

{⟨ŷn, zn⟩ +Rel(z1∶n)} (33)

with

− min
j∈[N]

n

∑
t=1

⟨ej , zt⟩ = max
j∈[N]

−
n

∑
t=1

zt(j) ≤
1

η
log

N

∑
j=1

exp{−η
n

∑
t=1

zt(j)} ≜Rel(z1∶n). (34)

The rest of the proof of (32) is essentially identical to that of the proof of Lemma 1.

References

7


