
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 14

1. COLLABORATIVE FILTERING, FIRST ATTEMPT, CONTINUED

In the previous lecture, we had settled for

φ(x1∶n, y1∶n) = min
∥M∥

∗
≤b,∥M∥

∞
≤1

1

n

n

∑
t=1

1

2
∣M(it, jt) − yt∣ +Cn (1)

as the benchmark that captures our prior knowledge about the low-rank (low trace-norm)
structure of the rating matrix. We have also evaluated Cn, so that we know how fast we
approach the performance of the benchmark. What is left is to specify an optimization
problem to evaluate φ. This amounts to finding

sup
∥M∥

∗
≤b,∥M∥

∞
≤1

n

∑
t=1

ytM(it, jt) = sup
∥M∥

∗
≤b,∥M∥

∞
≤1
Y ●M (2)

The method is based on semidefinite programming, and students unfamiliar with this ap-
proach can skip the next section.

1.1 An algorithm for trace norm benchmark

We first pretend that the order of user-movie pairs is known. Then the algorithm is: draw
εt+1∶n and predict according to

q̂t(x1∶n, y1∶t−1, εt+1∶n) = n[φ(x1∶n, y1∶t−1,−1, εt+1∶n) − φ(x1∶n, y1∶t−1,+1, εt+1∶n)] (3)

This mixed strategy can be evaluated efficiently whenever we can maximize the linear
objective in (2) over the set {M ∶ ∥M∥

∗
≤ b, ∥M∥

∞
≤ 1}. It turns out that

∥M∥
∗
= min
U,V

a (4)

s.t. [ U M
MT V

] ⪰ 0 (5)

trace(U) + trace(V ) = 2a (6)

with optimization over matrices U,V . Then the maximization problem in (2) can be written
as

min − Y ●M (7)

− 1 ≤Mi,j ≤ 1 (8)

[ U M
MT V

] ⪰ 0 (9)

trace(U) + trace(V ) = 2b (10)
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and the variables are M ∈ Rk×p, and positive semidefinite U ∈ Rk×k, V ∈ Rp×p. Let X =
[U,M ;MTV ] be the semidefinite matrix being optimized over, and pad Y with zeros in the
corresponding blocks to write Y ●M as Ỹ ●X. Then the optimization problem is

min − Ỹ ●X (11)

− 1 ≤Xi,j ≤ 1, i ∈ [k + 1, . . . , k + p], j = [k] (12)

X ⪰ 0 (13)

trace(X) = 2b (14)

This problem can be solved with some known optimization techniques, and we refer to
[AHK05] and Chapter 5 of [GM12].

1.2 Max-norm benchmark

We briefly point out a related optimization problem

min − Ỹ ●X (15)

X ⪰ 0 (16)

Xi,i ≤ b (17)

with Ỹ = 1
2[0 Y ;Y T 0]. This optimization problem corresponds to the benchmark

sup
∥M∥max≤b

Y ●M (18)

with a bound on the max-norm of M . The max-norm, defined as

∥Z∥max ≜ min
LRT=Z

∥L∥2,∞ × ∥R∥2,∞ (19)

with L ∈ Rk×r, R ∈ Rp×r, r unconstrained, and ∥L∥2,∞ = maxj ∥Lj∥2 = maxj (∑L2
j,i)

1/2
,

has been a popular substitute for the rank constraint. The max-norm has several nice
properties, and admits a relatively efficient algorithm [LRS+10, Jag11, SRJ04].

While there are existing poly-time methods for max-norm-constrained optimization, we
remark that the resulting potential function is b/n-smooth, but not 1/n-smooth. Indeed,
the bound on the diagonal of X does ensure boundedness of the off-diagonal entries, but
not by 1 as required. This is very annoying: we are severely constrained by the smoothness
requirement of Cover. If we think back to where this smoothness of φ was used, it was to
get a closed-form solution for the next Rel function as we worked backwards from t = n
to t = 1. Hopefully, there is now enough motivation to develop machinery beyond Cover’s
result, and we shall do this in the following lectures.

2. COLLABORATIVE FILTERING, SECOND ATTEMPT

Let us go around the limitation imposed by the smoothness requirement of φ. This smooth-
ness requirement arose from having to predict a mixed strategy from which to draw the
prediction. Suppose we change the problem as follows. On round t, we predict ŷt ∈ R, the
outcome yt ∈ {±1} is revealed, and the loss our algorithm incurs is −ŷtyt, a real value. If
we predicted the sign correctly, we have a negative loss, and the more confidence we put
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into our prediction, the smaller is the loss. On the other hand, a highly confident wrong
prediction will incur a large positive loss.

The proposed loss function is linear. Later, we shall develop another set of methods to
deal with more natural loss functions (e.g. square, absolute, logistic, etc). For now let us
demonstrate that the assumption of smoothness of φ is no longer needed.

Let us write down the desired statement. We would like to develop a method such that
the average loss is no more than a benchmark:

E [ 1

n

n

∑
t=1

−ŷtyt] ≤ min
∥M∥

∗
≤b

{ 1

n

n

∑
t=1

−M(it, jt)yt} +Cn (20)

for any y1, . . . , yn and any order of presentation of entries.
It turns out that we no longer need the boundedness of entries of M . Also note that

the prediction strategy need not be randomized (the counterexample in lecture 1 no longer
holds), but we will take advantage of randomization once again by drawing random signs.

Lemma 1. For the collaborative filtering problem with linear loss, there is a randomized
method that attains

E [ 1

n

n

∑
t=1

−ŷtyt] ≤ min
∥M∥

∗
≤b

{ 1

n

n

∑
t=1

−M(it, jt)yt} + c ⋅
b(

√
k +√

p)
n

(21)

for any y1, . . . , yn and any order of presentation of entries. The method draws εt+1∶n i.i.d.
Rademacher and then computes

ŷt =
b

2
[Eεt+1∶n ∥Y +

t ∥ −Eεt+1∶n ∥Y −

t ∥] (22)

where Y +

t is a matrix with ys in corresponding entries (is, js) for s < t, a +1 in the entry
(it, jt), and εt+1∶n in the remaining entries.

Proof. Let us first do the proof for the case when the order x1, . . . , xn of entries in the
matrix is known ahead of time. Let

Rel(x1∶n, y1∶n) = − min
∥M∥

∗
≤b

{ 1

n

n

∑
t=1

−M(it, jt)yt} . (23)

The optimization problem at the last time point n is

min
ŷn∈R

max
yn∈{±1}

{− 1

n
ŷnyn +Rel(x1∶n, y1∶n)}

= min
ŷn∈R

max{− 1

n
ŷn +Rel(x1∶n, y1∶n−1,+1), 1

n
ŷn +Rel(x1∶n, y1∶n−1,−1)} . (24)

The unconstrained minimum is achieved at the intersection of the two lines, as argued
before. Hence, the strategy is

ŷn =
n

2
[Rel(x1∶n, y1∶n−1,+1) −Rel(x1∶n, y1∶n−1,−1)]

and (24) is equal to

EεnRel(x1∶n, y1∶n−1, εn), (25)
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which we define as Rel(x1∶n−1, y1∶n−1). Continuing this process,

Rel(x1∶t, y1∶t) = −
1

n
Eεt+1∶n min

∥M∥
∗
≤b

{−M ● Yt} (26)

where Yt contains y1∶t in the positions given by x1∶t, and the rest of locations xt+1∶n are filled
with independent Rademacher random variables. Finally,

Rel(∅) = − 1

n
Eε1∶n min

∥M∥
∗
≤b

{M ● E} . (27)

We now recall that maximum of a linear form over a unit ball is definition of the dual
norm, which is the spectral norm (largest singular value) in our case. Hence,

− min
∥M∥

∗
≤b

{−M ● Yt} = b max
∥M∥

∗
≤1

{M ● Yt} = b ∥Yt∥ (28)

The last norm is the spectral norm, and we leave it unadorned. We conclude that

Rel(x1∶t, y1∶t) =
b

n
Eεt+1∶n ∥Yt∥ . (29)

The algorithm now takes on the following form:

ŷt =
b

2
[Eεt+1∶n ∥Y +

t ∥ −Eεt+1∶n ∥Y −

t ∥] (30)

where Y +

t and Y −

t , respectively, put +1 and −1 at the position (it, jt), values ys in previously
observed locations (is, js), and εs in the unseen locations. This strategy is not randomized,
but requires averaging over random signs. Instead, we may draw εt+1∶n and define prediction
ŷt as

ŷt(x1∶n, y1∶t−1, εt+1∶n) =
b

2
[ ∥Y +

t ∥ − ∥Y −

t ∥ ] (31)

Finally,

Rel(∅) = b

n
Eε1∶n ∥E∥ ≤ c ⋅

b(
√
k +√

p)
n

.

Homework: argue that the order of presentation need not be known in advance for the
recursion to unfold.

Two remarks. First, the computation essentially involves computing two spectral norms,
which amounts to computing the largest singular values. This can be done by the power
method. Second, if our initial target rank is r, then we should be thinking of b = min{k, p}×r.
For simplicity, let’s take k = p =

√
n. Then the constant Cn is proportional to

rk
√
k

k2
= k−1/2,

and thus for a large matrix the average error of the algorithm is close to the best model, as
given by the benchmark.
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