
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 13

0.1 Recap

We started discussing the problem of online prediction with the simple result of Cover. In
this setting, there is just a sequence of bits y1, . . . , yn to predict, and we do so by introducing
φ as the prior knowledge about what sequences we expect to see. Our algorithms work for
all sequences y1, . . . , yn. We then extended the result to include i.i.d. side-information
x1, . . . , xn. This is a hybrid i.i.d.-adversarial (or, i.i.d.-worst-case) scenario, which we study
in a bit more detail below. Then, we will turn to the easier case of “transductive learning”
where x1, . . . , xn are known ahead of time. Later in the course we will also discuss what
can be achieved for arbitrary x1, . . . , xn sequences of side information. We can list these
scenarios roughly in the order of their “complexity”:

1. No side information

2. Transductive: x1, . . . , xn are known ahead of time

3. i.i.d. x1, . . . , xn (or a stochastic process which we can simulate)

4. Arbitrary x1, . . . , xn, possibly adversarially chosen

0.2 Defining φ as a function class benchmark

As discussed in the previous lecture, a standard way of defining φ ∶ {±1}n → R is to choose
a subset F ⊆ {±1}n of the hypercube and set

φ(y) = dH(y, F) +Cn

The advantage of this definition is that the smoothness condition is automatically satisfied,
and Cn can be chosen large enough to ensure Eφ ≥ 1/2.

The same approach can be taken when covariates are present. In statistics and machine
learning, one often posits that the relationship between x and y is explained well, in the
vague sense of

yt ≈ f(xt),
by some unknown function f ∶ X → R (in our case, X → {±1}). While the function is
unknown, one chooses a model class F in the hopes of capturing f or a good approximation
of it.

Let F be a collection of functions X → {±1}. We can then define

F = {(g(x1), . . . , g(xn)) ∶ g ∈ F} ≜ F ∣x1∶n ,

the subset of the hypercube realized by functions in F when applied to covariates. We may
say that F ∣x1∶n is a projection of F onto data.

1

We then define
φ(x1∶n, y1∶n) = dH(y1∶n,F ∣x1∶n) +Cn.

The calculation of Cn is exactly as before, and we find that

Cn =
1

2n
E sup
g∈F

n

∑
t=1
εtg(xt),

known as the Rademacher averages of F (the expectation is over x1∶n, ε1∶n). This com-
plexity of F is a central object in understanding rates of convergence in Statistics and
Statistical Learning.

We have the following corollary of the Theorem from the preceding lecture:

Corollary 1. Consider the hybrid i.i.d.-adversarial scenario. Given a class of real-valued
functions F on X , there is a randomized prediction strategy such that for any sequence
y1, . . . , yn ∈ {±1},

E [1

n

n

∑
t=1

1{ŷt ≠ yt}] ≤ E [inf
f∈F

1

n

n

∑
t=1

1{f(xt) ≠ yt}] +Cn (1)

where Cn is the Rademacher averages of F .

If F contains a function such that yt = f(xt) “most of the time,” then the number of
mistakes made by the algorithm on average is comparable to that of this best function,
plus Rademacher averages of F . These averages typically go to zero with increasing n,
unless F is too large. Notably, Rademacher averages are precisely the performance bound
one obtains in Statistical Learning with i.i.d. data. Here, we were able to obtain the
same result with individual sequence of y’s, and in the online (rather than batch) scenario.
Vapnik-Chervonenkis theory (a part of the larger field of Empirical Process Theory) gives a
precise understanding of how Rademacher averages reflect complexity of the abstract class
F .

0.3 Transductive version

In certain cases, x1∶n are known and fixed ahead of time. In this case, the algorithm

q̂t(x1∶n, y1∶t−1, εt+1∶n) = n[φ(x1∶n, y1∶t−1,−1, εt+1∶n) − φ(x1∶n, y1∶t−1,+1, εt+1∶n)]

is still guaranteeing the bound of φ(x1∶n, y1∶n), and we no longer need to draw xt+1∶n. This
setting is called transductive learning. To see why the same algorithm works, go through
the proof of the theorem from last lecture and omit the step where we took expectation
with respect to side-information.

One important subtlety is whether the order of x1, . . . , xn needs to be known ahead of
time. This depends on φ. If φ is symmetric with respect to xt+1∶n (that is, has the same
value for any permutation), then the order of x1, . . . , xn need not be known in advance.
One example where the function is symmetric is in the definition of φ as a benchmark with
respect to a class, as discussed above. The statement we just made requires a proof, and
we leave it as an exercise.

The subtlety of “knowing the order” will be discussed in the next example of collabora-
tive filtering.

2

1. COLLABORATIVE FILTERING: FIRST ATTEMPT

We will now develop a method of predicting, sequentially, whether users like or dislike
movies. Rather than predicting a rating (we can work that out later in the course) we shall
simply predict thumbs up (+1) or thumbs down (−1).

The setup is as follows. On each round, we observe the identity of the user and the
identity of the movie, and make the thumbs up/down prediction. We then observe the actual
outcome of whether the user liked the movie. Once the rating for the user-movie pair has
been revealed, we do not ever come back to the same user-movie pair (this assumption allow
us to treat the setting as transductive). We shall start with no information whatsoever and
slowly build the matrix of ratings. Arguably, this is a very simplified version of the Netflix
task. Yet, typical statistical analyses of matrix completion require much more unrealistic
assumptions (such as independence and uniform sampling of the entries).

The user-movie pair (it, jt) ∈ [k] × [p] is the side information xt we receive on round t.
For now we will assume that the time horizon is n = kp; hence, all x1, . . . , xn are known in
advance, except the order in which they arrive. As we will argue, the order does not make
a difference.

A function that maps side information to a prediction is simply a matrix with ±1 entries.
The benchmark is then defined with respect to

min
M∈F

1

n

n

∑
t=1

1{M(it, jt) ≠ yt} (2)

for some collection F of matrices that we hope will explain well the ratings given by users.
What collection should we choose? One of the standard ways to capture the underlying
phenomenon is to consider low-rank matrices. Specifically, it is believed that people are
not all that different and if the matrix were to be filled out completely, it would be well
approximated as

M ≈ A ×B

with A ∈ Rk×r,B ∈ Rr×p for some r << k, p. We could take the set F to be the set of all ±1
matrices of rank r (a parameter of choice). However, this set is computationally difficult,
and it is common to replace the low-rank assumption by the assumption of low trace norm.

1.1 Trace-norm-bounded benchmark

Recall that trace (or nuclear) norm is defined as

∥M∥∗ =
min(k,p)
∑
j=1

σj = trace (
√
M∗M) . (3)

A convexification of the benchmark (2) is

min
∥M∥

∗
≤b

1

n

n

∑
t=1

1{M(it, jt) ≠ yt} , (4)

the best explanation of ratings by a low-trace-norm matrix with ±1 entries. The choice b
is a parameter of the model, and we now think of it as fixed. We will discuss this model
selection choice later.

3

Since evaluation of the benchmark (4) is a difficult integer program, we relax it further.
We interpret each entry of M ∈ [−1,1]k×p as the expected value of a randomized strategy
that predicts the corresponding user-movie pair. The loss is then

Ey′∼M(it,jt)1{y
′ ≠ yt} =

1

2
∣M(it, jt) − yt∣ =

1

2
− 1

2
ytM(it, jt). (5)

The benchmark (and the function φ) is now defined as

φ(x1∶n, y1∶n) = min
∥M∥

∗
≤b,∥M∥

∞
≤1

1

n

n

∑
t=1

1

2
∣M(it, jt) − yt∣ +Cn (6)

where xt = (it, jt), ∥M∥∞ is the largest element of M in absolute value, and Cn is an
appropriate constant that guarantees Eφ ≥ 1/2. Smoothness of φ with respect to a flip of a
coordinate yt is immediate. Write

φ(x1∶n, y1∶n) −Cn −
1

2
= −1

2
sup

∥M∥
∗
≤b,∥M∥

∞
≤1

1

n

n

∑
t=1
ytM(it, jt)

= − 1

2n
sup

∥M∥
∗
≤b,∥M∥

∞
≤1
Y ●M (7)

where Y ●M = ∑i,j Y (i, j)M(i, j) is the vectorized matrix product, and Y (i, j) is yt for t
corresponding to (it, jt) = (i, j). Assuming n = kp, all entries of Y are defined this way.

1.2 Calculating Cn for trace norm benchmark

As before, and in view of (7), the condition Eφ ≥ 1/2 means that Cn needs to be chosen to
be at least

1

2n
E sup
∥M∥

∗
≤b,∥M∥

∞
≤1
E ●M (8)

where E is a matrix filled with independent Rademacher random variables. By dropping the
∥M∥∞ constraint we get a larger value (supremum is over a larger collection of matrices),
and, hence, it is sufficient to set

Cn =
1

2n
E sup
∥M∥

∗
≤b
E ●M (9)

= b

2n
E sup
∥M∥

∗
≤1
E ●M (10)

= b

2n
E ∥E∥σ (11)

for the spectral (or, operator) norm (largest singular value). The last equality holds because
the two norms (trace and spectral) are dual to each other. An upper bound on the spectral
norm of a random matrix is known, and it is

E ∥E∥ ≤ c(
√
k +√

p)

for the k × p matrix E , with some constant c (see [BvH14] and references therein).

4

References

[BvH14] Afonso S Bandeira and Ramon van Handel. Sharp nonasymptotic bounds
on the norm of random matrices with independent entries. arXiv preprint
arXiv:1408.6185, 2014.

5

