6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 12

1. EXAMPLE: PREDICTION ON GRAPHS, CONTINUED

Let us continue the example of prediction on graphs. Recall that at each step, the prediction
method needs to compute ¢(y) where ¥ = (y1:4-1,+1, €441:n), Or the version with a minus
sign at the tth position. We proposed the following definition of ¢:

Fi={fe{1}": f'Lf <K},  ¢(y)=du(y Fg)+Ch

However, it might be difficult to compute the Hamming distance. Essentially it is asking
for the number of changes one needs to make to the labeling y of vertices to bring it to the
set with cut value at most K.

The idea is to enlarge F', thus decreasing the Hamming distance, but increasing the
Rademacher averages C), for this larger set. Let us illustrate this approach. Write
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by going to the real-valued vectors. Thus, let us take
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We need to check that ¢ is smooth. We leave it as a homework exercise. We can now use
¢ in our prediction algorithm, since its computation is a convex optimization problem. We
will later provide an even better solution based on hinge loss (and one that works much
better in practice).
The hope now is that C), is not too large (and, in particular, still o(1)). We have
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Let us overbound the above expression to get a closed-form solution. Notice that
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and thus
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(prove this!) Hence,
1
C) = Q—E\/ e"M-le (5)
n

for M = % + % This can now be analyzed via spectral properties of the graph G. Homework:
show that (5) is upper bounded in terms of eigenvalues of L.



1.1 Model selection

In the previous lecture, we considered the star graph and argued that the cut value is n—1
(very large!) for the labeling y assigning a —1 to the center and +1 to the rest, yet this
labeling is Hamming distance 1 from the constant labeling (all +1), and thus the number
of mistakes on this sequence will be small. Let us now consider a different example which
will motivate the question of model selection.

Figure 1: Labeling with cuts of size 2 and 4.

Consider a ring graph with n vertices. Suppose we choose K = 2. That is, we take F5 to
be the set of y that have either zero or two switches in sign. However, consider a labeling
with cut value 4. The Hamming distance to F» may be ©(n), and thus we obtain a very
weak bound on the number of mistakes incurred by the associated prediction algorithm. The
issue here is that K was not chosen “correctly”, and the mistake bound is very sensitive
to this choice. The question is whether one can choose the best K for the given sequence,
as if it were known a priori. This is a model selection question, and we will see that it is
possible!

2. BINARY PREDICTION WITH INDICATOR LOSS AND SIDE

INFORMATION
Consider now a supervised learning scenario, where covariates x1,...,%, are drawn i.i.d.
from some (unknown) marginal distribution Px. The sequence yi,...,y, is still assumed

to be arbitrary.

Fort=1,...,n
Observe an independent draw x; ~ Px
Predict 7; € {+1}

Observe outcome y; € {£1}

What happens to the argument in the previous lecture? Let ¢ now be a function of two
sequences: ¢: X" x {£1}" - R and suppose

|¢($1:n7 Y1:t-1, +1) yt+1:n) - ¢($1:n) Y1:t-1, _17 yt+1:n)| < 1/” (6)

We will prove the following generalization of Cover’s result.



Theorem 1. Let ¢ : (X x {£1})" — R be such that (6) holds, and suppose that x;’s are
i.i.d. Then there exists a prediction strategy (specified later in Algorithm 1) such that
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Above, the expectation on the left-hand side of (7) is over the randomization of the
algorithm and the z’s, while on the right-hand side is over z’s. In (8), the expectation is
both over the z’s and over the independent Rademacher random variables.

Proof. Having observed x1.,-1,¥1:n-1 and x,, at the present time step, we need to solve
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For the last time step, take Rel = —¢. The same steps as before lead to the solution
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We point out that g, depends on z,, as given by the protocol of the problem. Then (9) is
upper bounded by
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We now take expectation over x,, with respect to the unknown Px on both sides:
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It is not hard to see (verify this!) that the argument continues back to t =1, with
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just as in the previous lecture, and the initial condition Rel(@) <0 is
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An attentive reader will notice, however, that the algorithm is not implementable: it requires
the knowledge of Px. However, all we need is to be able to sample z;.1., ~ Px and
independent Rademacher €;,1.,, and define

G (1, Y1:t-1, €t+1:m) = 0 [O(T 1y Y1:0-1, —1, €41:m) — O(Z1im, Y1—1, +1, €t41:m) | - (18)

Regarding the required smoothness condition on ¢, we see that it is simply that (17) is within
the range [-1,1]. In particular, it is implied by the assumed smoothness condition. O

e In conclusion, we can solve the online classification problem with i.i.d. covariates if
we have access to independent draws from the distribution. In particular, this step
can be implemented with unlabeled data which is often available in practice.

e Importantly, the reason we were able to use “random playout” is because the solution
q: was in the form of an expectation. In examples we will study later in the course, g;
will not be in such a nice form, and the straightforward argument for random playout
fails. However, there is a different argument that will be shown work.

e We also remark that the fact that x1., are i.i.d. was not really used. All we require
is that we are able to sample continuation of paths P(z1|z1:) from the conditional
distribution.

Perhaps, it’s worth writing down the algorithm explicitly:

Algorithm 1 Online Supervised Binary Classification
Input: smooth potential function ¢ : (X x {+1})" - R
for t=1,...,T do

Observe x;

Draw xy41,...,o, (e.g. as unlabeled data)
Draw €41, ..., ¢, independent Rademacher
Compute

G (@1, Y1-15 €1m) = 0[S (@1, Y11, =L, €0r1m) — O( @10, Y1:e-1, +1, €p41m) |

Predict by drawing 7; from the distribution on {+1} with mean ¢
end for




