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Alexander Rakhlin

LECTURE 9

1. BIAS-VARIANCE TRADEOFF

From previous lecture, we see that there is a systematic way to map data into a high-
dimensional space where it is linearly separable. One can then achieve zero error on the
training set. Yet, we feel that this is not a good idea, as one can simply memorize the dataset
and have no “predictive power”, a phenomenon called “overfitting”. So, was minimizing
empirical fit to data in the last 8 lectures the wrong approach to learning? This is the topic
of today’s lecture.

What is predictive power? Hopefully, one should be able to predict better on an example
that was not in the training dataset! One way to formalize the question of predictive power
is to assume that the world is static. What we observe are data drawn i.i.d. from an
unknown distribution PX×Y , and the goal is to find a hyperplane x ↦ ⟨w,φ(x)⟩ (or, more
generally, a function f ∶ X ↦ R) that does well on another random draw (X,Y ) from this
distribution, an example that we had not seen before. By “doing well on (X,Y )” we mean
the ability to predict the value Y given only X.

Let `(⟨w,x⟩ , y) denote a cost function that compares the linear prediction ⟨w,x⟩ to y.
We are not specifying whether Y is binary, real-valued, or even multiclass – for the analysis
below it does not matter.

Expected loss of a hypothesis w is

E`(⟨w,X⟩ , Y ),
where the expectation is with respect to (X,Y ) drawn from PX×Y . When w is computed
from the training sample, we denote it by ŵ = ŵ(X1, Y1, . . . ,Xn, Yn). In fact, ŵ is an
algorithm: it is a hyperplane that is calculated based on the training data. Since data are
random, ŵ is random too. ŵ can be a solution of SGD, or exact SVM, or whatever.

We now think of the ball {w ∶ ∥w∥ ≤ B} as a model whose complexity is parametrized by
B. This model may or may not capture the best that one may do in terms of explaining the
relationship between X and Y . What is this best explanation? It is the one that minimizes
E`(η(X), Y ) over all measurable functions η. We will never be able to find η since PX×Y is
not known to us.

The estimation error is defined to be

Eest = E`(⟨ŵ,X⟩ , Y ) − inf
∥w∥≤B

E`(⟨w,X⟩ , Y ), (1)

where the first expectation above is over n + 1 i.i.d. tuples (X1, Y1), . . . , (Xn, Yn), (X,Y ).
The approximation error of the model is

Eapprox = inf
∥w∥≤B

E`(⟨w,X⟩ , Y ) − inf
η
E`(η(X), Y ), (2)
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the difference between the constrained minimization and minimization over all measurable
functions η ∶ X → R. The approximation error does not depend on the learning algorithm,
but rather on the choice of the model. The choice of B may be viewed as a bias-variance
tradeoff. The larger the radius B, the smaller is the bias of our model, but the larger is
the variance of our estimate ŵ. The larger variance comes from having to consider many
possible models on the basis of a sample of size n. This difficulty can be even seen in
optimization: the radius typically enters the number of steps one needs to make to optimize
a function.

The bias-variance tradeoff is a fundamental issue when one posits a model and the true
minimum η of the loss might live outside the model. Model selection and the method of
sieves are just some of the keywords you may search for if you are interested in learning
more.

While in practice we use a penalty λ∥w∥2, it is essentially equivalent to a restriction on∥w∥2 as we’ve seen in an earlier lecture.
Our goal is now to understand the estimation error (1), and we will not study the

approximation error any further.

1.1 Stochastic Approximation vs Sample Average Approximation

Recall from Lecture 3 that we can guarantee, for any w with ∥w∥ ≤ B,

Ef(w̄) − f(w) ≤ BG√
T

(3)

after T steps of stochastic subgradient descent with E∥∇t∥2 ≤ G2. Here w̄ = 1
T ∑Tt=1wt. The

expectation on the first term is with respect to the random choices of subgradients. There
is no other randomness in the general statement of (3).

We will now apply this result to two objective functions:

f̂(w) = 1

n

n∑
i=1

`(⟨w,Xi⟩ , Yi) ≜ Ê`(⟨w,X⟩ , Y ) (4)

and

f(w) = E`(⟨w,X⟩ , Y ). (5)

The first objective will be called the empirical objective, and the second — the expected
objective. The expectation E in the second expression is with respect to the unknown PX×Y ,
while Ê is the empirical expectation with respect to the known distribution 1

n ∑ni=1 δ(Xi,Yi)
on the data. Since data are random, f̂ is a random objective. Furthermore,

Ef̂ = f,
when we take expectation over the data {(Xi, Yi)}ni=1.

What does SGD look like for f and f̂? Well, for f̂ we already know the answer —
this is precisely what we did in the last few lectures. What was the reasoning for taking
a subgradient by sampling index i uniformly at random from {1, . . . , n}? We exchange
differentiation and expectation:

∇ [Ê`(⟨w,X⟩ , Y )] = ∇ [ 1

n

n∑
i=1

`(⟨w,Xi⟩ , Yi)] = 1

n

n∑
i=1

∇`(⟨w,Xi⟩ , Yi) = Ê∇`(⟨w,X⟩ , Y ) (6)
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and thus a subgradient of a randomly chosen loss function is, on average, the exact subgra-
dient of the empirical objective.

The general result (3) applied to f̂ tells us that if we sample T times i1, . . . , iT with
replacement from the indices {1, . . . , n}, the optimization bound is

Ei1,...,iT [ 1

n

n∑
i=1

`(⟨w̄,Xi⟩ , Yi)] − inf
∥w∥≤B

1

n

n∑
i=1

`(⟨w,Xi⟩ , Yi) ≤ BG√
T

(7)

where the expectation is with respect to the uniform-with-replacement random choices of
points from the dataset (not with respect to the data). The whole expression in (7) holds
conditionally: the dataset is held fixed. Over the T steps of the optimization method, we
might have encountered each example multiple times. This is ok: the argument that shows
unbiasedness of the subgradients works fine for sampling with replacement.

Suppose now we perform stochastic subgradient descent for f . What should the sub-
gradients be? Just as in (6), we may exchange expectation with differentiation

∇ [E`(⟨w,X⟩ , Y )] = E [∇`(⟨w,X⟩ , Y )] . (8)

Hence, a subgradient with respect to any (X,Y ) drawn from PX×Y will give a subgradient
of the expected objective. Nice! Suppose we have i.i.d. data (X1, Y1), . . . , (Xn, Yn). Then
we have n subgradients to use. However, we may only pass through the data once. Prove
that passing more than once breaks the above argument.

If we pass through the data once, (3) gives a guarantee for the expected loss f :

E`(⟨w′,X⟩ , Y ) − inf
∥w∥≤B

E`(⟨w,X⟩ , Y ) ≤ BG√
n

(9)

where G is the Lipschitz constant of the loss function with respect to w, and w′ = 1
n ∑nt=1wt

is the average of the trajectory (recall that T = n here).
Important conclusion: the two procedures (one samples with replacement from the

dataset and the other passes through the data once) aim to minimize different objectives.
The first procedure (called sample average approximation, SAA) goes after the empirical
minimum

inf
∥w∥≤B

1

n

n∑
i=1

`(⟨w,Xi⟩ , Yi) (10)

while the second (called stochastic approximation, SA) goes after the expected value

inf
∥w∥≤B

E`(⟨w,X⟩ , Y ). (11)

The SAA objective is also called Empirical Risk Minimization (ERM) objective.
What happens if one passes through the data several times in a cyclic manner? What

is the optimization target? Well, it is no longer SA and the method is now aiming at the
empirical objective (this is not immediate and requires some work).

The next question is how far the two objectives are from each other. At a given vector
w, the difference between the two curves (see Figure 1) is f(w) − f̂(w). The worst such
difference over the ball {w ∶ ∥w∥ ≤ B} is

sup
∥w∥≤B

{f(w) − f̂(w)} .
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Figure 1: Expected vs empirical minimizers. Black solid region is the ball of radius B.
Red dashed line is the expected objective f(w). Blue solid line is the empirical objective
f̂(w). w∗ is the minimizer of f over the ball; ŵ is the minimizer of f̂ over the ball; w̄ is
the output of an optimization procedure that aims to minimize f̂(w); w′ is the output of
an optimization procedure that minimizes f(w).
We write it as a one-sided difference, although we can also consider the two-sided version

sup
∥w∥≤B

∣f(w) − f̂(w)∣ .
The supremum of the difference is a random quantity, since (X1, Y1), . . . , (Xn, Yn) are ran-
dom and f̂ is a random function. We need to decide how to measure the size of a random
quantity. The most basic is through expectation:

E sup
∥w∥≤B

{f(w) − f̂(w)} (12)

We shall call this expression the uniform deviations of empirical and expected objectives.
The word uniform refers to the supremum over the ball. (12) is a fundamental quantity
in statistics and learning theory. In fact, we know the value of (12) for the ball, up to a
constant, as we show later. Further, there exist tools to study more general expressions of
the form

E sup
g∈G

{Eg(Z) − 1

n

n∑
i=1
g(Zi)} (13)

for some collection of functions G.
Now, we see that the closeness of the two curves, which is given by uniform deviations,

gives us a handle on how “wrong” we might be when we minimize the empirical objective
instead of the desired expected objective. In fact, this is the central question of statistics.
We phrase an objective in terms of an unknown distribution, yet minimize some empirical
objective based on the observed data. Statistics studies how good our solution is in terms
of the expected objective.

So, how does the minimizer of the empirical objective do in terms of its expected value?
For the given draw of data,

f(ŵ) − f(w∗) = f(ŵ) − f̂(ŵ) + f̂(ŵ) − f̂(w∗) + f̂(w∗) − f(w∗). (14)
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The middle difference is non-positive since ŵ is a minimizer of f̂ , and the last difference
is zero in expectation over the data (remember that Ef̂ = f). However, expectation of the
first difference is not zero (why?). Taking expectation over data,

Ef(ŵ) − f(w∗) ≤ E [f(ŵ) − f̂(ŵ)] ≤ E sup
∥w∥≤B

{f(w) − f̂(w)} . (15)

The last step uses the fact that ŵ is in the ball of radius B.
Conclusion: on average, the suboptimality of empirical minimizer ŵ in terms of its

expected performance is upper bounded by the uniform deviations. Since so many quantities
appear to depend on these uniform deviations, we should try to get a sense of the size of
these expected suprema.

Take the particular case of hinge loss

`(⟨w,x⟩ , y) = max{0,1 − y ⟨w,x⟩}.
It is possible to show (we will do it in the following lectures) that uniform deviations in (12)
are upper bounded as

E sup
∥w∥≤B

{f(w) − f̂(w)} ≤ 2 × BG√
n

(16)

where G2 ≥ E∥X∥2.
Putting everything together, the difference of the two objectives (SA vs SAA minima)

in (??) and the bound on suboptimality of ŵ with respect to the expected loss f is at most

2 × BG√
n
. (17)

SURPRISE: up to a factor 2, this uniform deviations upper bound is the same as the SGD
guarantee for either the empirical objective (7) (with T = n) or the expected objective in
(9). A priori, there is no reason this should have happened: one quantity is the convergence
rate of SGD (which is an online procedure), and the other is uniform deviations (which is
purely a question about the supremum of a certain stochastic process). Yet, the equivalence
of upper bounds is not a coincidence, but rather a fundamental connection between online
and offline procedures. To understand the underlying mechanisms we first need to build an
arsenal of tools. We will come back to the problem at the end of the semester.

1.2 Conclusions

The reasoning below is based on comparing upper bounds we derived. In general, such a
reasoning can lead to erroneous conclusions (we can point to a few examples in the literature
if interested). However, for the case of hinge loss, the upper bounds are “tight” up to
constants, so our conclusions are valid (unless one makes some further specific assumptions
on the problem).

First, we have a guarantee that minimization of the empirical objective gives us a good
predictor in the sense of the expected objective. This can be seen as a vindication of the
SAA (or, ERM) principle for this problem.

Second, recall from (15) that the guarantee of the exact ERM solution in terms of
its expected performance is given by (17). However, since we do not have the exact ERM
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solution, but only an approximate one (obtained, e.g., as SGD solution w̄ in (7)), one incurs
an additional optimization error

Eopt = f(w̄) − f(ŵ),
where ŵ is an exact empirical minimizer, and w̄ is an approximate one (in Figure 1 this
difference is negative, but it need not be). We see that there is no need to bring this
optimization error below the level of the estimation error, which is anyway BG/√n. Hence,
there is no need to choose T to be larger than 4n.

However, why would we choose T = 4n and sample with replacement (as dictated by
SGD on the empirical objective) if the SA procedure that passes through the data once and
outputs w′ (see Figure 1) achieves the same error bound BG/√n. Given the bounds we
derived, there is no way we can beat this! The argument speaks in favor of SA, as opposed
to SAA, for the particular problem with hinge loss (the argument should not be taken as a
general statement in all situations).

But the story is not over, as practitioners often make several passes through the data,
which is neither SA nor SAA. An interesting research question is to quantify the performance
of this method.
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