
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 8

This lecture is partly based on chapter 16 in [SSBD14].

1. KERNELS

Last week we started discussing non-linear classifiers: we introduced nonlinearities by com-
posing (possibly several times) matrix multiplication and a “transfer function” σ. The
resulting structure can be viewed as a network. The effective classification boundary is
highly nonlinear.

In this lecture we discuss a second popular approach to building a nonlinear classification
boundary, a kernel method. As already mentioned last week, we will attempt to replace
⟨w,x⟩ with ⟨w,φ(x)⟩ for some mapping φ into a possibly high-dimensional (or even infinite-
dimensional) space. Why is this a good idea? Consider the 2d data
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Clearly, these data are not separable by a hyperplane. However, the classes are exactly
described by

sign(x[1]2 + x[2]2 − 1)

where x[1] and x[2] are coordinates of a data point x ∈ R2. Suppose we map each data
point x ∈ R2 to φ(x) = (1, x[1]2, x[2]2) ∈ R3. Then the hyperplane w = (−1,1,1) has zero
error on the data in this new space. Of course, by taking degree high enough, any fixed
amount of data can be made linearly separable in that high-dimensional space. We see that
building a perfect predictor of the given (training) data is not by itself necessarily a good
idea. This issue of model complexity and overfitting will be discussed later.

1.1 A convex problem

While the classification boundary induced by the kernel mapping is non linear, the optimiza-
tion problem can still be convex. Let’s look at the SVM objective for binary classification
with x replaced by φ(x):

min
w

1

n

n

∑
i=1

max{0,1 − yi ⟨w,φ(xi)⟩} + λ∥w∥
2 (1)
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where w ranges over the space in which φ(x) lives. We could even take this space to be an
infinite dimensional space, as long as inner product makes sense there (modulo technicalities,
this is known as a Hilbert space).

The claim is that an optimal w in (1) belongs to the span of n vectors {φ(x1), . . . , φ(xn)}.
Indeed, if it does not, there is a component orthogonal to the span. This component does
not affect the loss on the data (since it is orthogonal to any φ(xi)), yet increases the
norm. Hence, for any solution, one obtains a better solution by removing this orthogonal
component. In fact, the argument holds for any optimization problem of the form

min
w

Φ(⟨w,φ(x1)⟩ , . . . , ⟨w,φ(xn)⟩) +Ψ(∥w∥) (2)

for a nondecreasing Ψ.
This simple observation has profound consequences. In particular, it says that the

minimization problem over the (possibly) infinite dimensional space reduces to a finite-
dimensional problem, since we only need to search for vectors of the form

w =
n

∑
j=1

αjφ(xj).

The vector of coefficients α is n-dimensional, and the optimization problem (1) takes on the
form

min
α

1

n

n

∑
i=1

max

⎧⎪⎪
⎨
⎪⎪⎩

0,1 − yi ⟨
n

∑
j=1

αjφ(xj), φ(xi)⟩

⎫⎪⎪
⎬
⎪⎪⎭

+ λ∥
n

∑
j=1

αjφ(xj)∥
2 (3)

By defining K(xi, xj) =Ki,j = ⟨φ(xi), φ(xj)⟩, we rewrite the problem as

min
α

1

n

n

∑
i=1

max

⎧⎪⎪
⎨
⎪⎪⎩

0,1 − yi
n

∑
j=1

αjKi,j

⎫⎪⎪
⎬
⎪⎪⎭

+ λ
n

∑
i,j=1

αiαjKi,j (4)

or, in matrix notation,

min
α

1

n

n

∑
i=1

max{0,1 − yi(Kα)i} + λα
TKα. (5)

1.2 No need to compute φ(x)

Curiously enough, the optimization problem (5) no longer depends on the mapping φ ex-
plicitly. Instead, it depends on K, the matrix of inner products ⟨φ(xi), φ(xj)⟩. This matrix
K (known as the Gram matrix) is n × n, which may be much smaller than the matrix
[φ(x1), . . . , φ(xn)]. Computing/storing the K matrix is, in many cases, much easier than
computing the mappings φ(xi). The SVM objective only depends on the inner products in
the high-dimensional space, and not on the actual vectors. This observation applies to many
machine learning methods where data enters through inner products with the parameter
vector; many of these methods can be “kernelized” (this was a hot topic about 15 years
ago, but this door is now pretty much closed).

One then asks what K one may choose. A mapping φ gives rise to K, but will any
K gives rise to some φ? Mercer’s theorem, under certain conditions, tells us that we only
need to ensure that K is positive semidefinite for any set x1, . . . , xn. On the other hand, we
might not even care that (5) can be converted back to (1) with some φ.
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1.3 Examples of kernels

Gaussian kernel:

K(xi, xj) = exp{−
∥xi − xj∥

2

σ
} .

This kernel was use in the initial work of Aizerman et al. One may think of placing positive
potentials at examples of one class and negative potentials at examples from another class.
(For this reason, Aizerman et al called K a potential function).

Polynomial kernel, another popular choice, is defined by

K(xi, xj) = (1 + ⟨xi, xj⟩)
k

1.4 Kernelized SGD

Recall that rather than solving (1), we equivalently solve (5) over α ∈ Rn. Any such vector
gives a linear (in the high-dimensional space) function

x↦ ⟨w,φ(x)⟩ = ⟨
n

∑
j=1

αjφ(xj), φ(x)⟩ =
n

∑
j=1

αjK(xj , x),

as long as K is well defined outside of the sample. So, even on a new example, we do not
ever need to calculate φ(x): the prediction is given via the kernel function.

Prediction of the class label for the given x is

sign
⎛

⎝

n

∑
j=1

αjK(xj , x)
⎞

⎠
.

Recall that SGD for hinge loss chooses a random example (xi, yi) and checks whether the
prediction has margin less than 1:

yi
n

∑
j=1

αjK(xj , xi) < 1. (6)

If this is the case, a correction needs to be made. The correction is a subgradient of hinge
max{0,1 − yi ⟨w,φ(xi)⟩, which is yiφ(xi), with an appropriate step size scaling. Recall the
closed-form representation of the vector w for Pegasos from Lecture 4:

wt+1 =
1

λt

t

∑
s=1

yisφ(xis)1{yis ⟨ws, φ(xis)⟩ < 1} (7)

where is denotes the index of the random example chosen at step s, and we have replaced
xis by φ(xis). Since the vectors φ(xj) repeat in the above sum, we may write (following
[SSBD14])

wt+1 =
1

λt

n

∑
j=1

βtjφ(xj) (8)

with βt being the current vector of coefficients, being updated at every step by yis1{yis ⟨ws, φ(xis)⟩ < 1}.
The final output of the algorithm is computed by averaging

α̂ =
1

T

T

∑
t=1

1

λt
βt =

1

T

T

∑
t=1

αt
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Algorithm 1 SGD for kernel SVM

Input: λ > 0 (regularization parameter)
Init: β1 = 0
for t=1,. . . ,T do

Set αt = 1
λtβ

t

Sample i ∼ Unif[n]
Set βt+1j = βtj for all j ≠ i.

if yi∑
n
j=1 α

t
jK(xj , xi) < 1 then

βt+1i = βti + yi
else
βt+1i = βti

end if
end for

The coefficients α̂ then give the decision function

x↦ sign
⎛

⎝

n

∑
j=1

α̂jK(xj , x)
⎞

⎠

We remark that kernelized SGD is not a truly online algorithm since memory require-
ment grows with n, and prediction at a new x requires computing the kernel function
between x and all the training data points (unless we are lucky and most αj coefficients
end up being zero).

1.5 Comparison to neural nets

By taking an expressive enough kernel, we can achieve zero classification error with a highly
nonlinear classifier. Similarly, by taking large enough neural network one may fit the data
perfectly. What makes the non-convex neural network formulation preferred in this situation
to convex kernel methods is a subject of current research in the community. (more details
discussed in class)

In the next lecture we will talk about the bias-variance tradeoff with respect to the
expressiveness of the model.
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